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Abstract—Non-photorealistic rendering is one of the digital
art techniques. It generates digital images resembling artis-
tic representation. The main contribution of this paper is to
show a non-photorealistic rendering for high quality pointillism
image generation with squares by pasting square patterns on
canvas. Our technique is inspired by the characteristic of the
human visual system to optimize generated images. Although
it can generate high quality pointillistic images, a lot of time
is necessary. Hence, we have implemented our technique in a
graphics processing unit (GPU) to accelerate the computation.
The experimental results show that the GPU implementation
can achieve a speed-up factor of 160 over the sequential CPU
implementation.

I. INTRODUCTION

Non-photorealistic rendering is a technique which pro-
duce an image resembling artistic representation, such as
oil-painting, pencil drawing, pointillism, and mosaic. In this
work, we focus on a non-photorealistic rendering for image
generation of pointillism. Pointillism is a painting technique in
which small dots of color are put on canvas in order to form an
image represented by Georges Seurat who was a pioneer of the
art style of pointillism in the neo-impressionism movement [1].

In the non-photorealistic rendering, there are several re-
searches in which pointillism image generation have been
tackled. They can be roughly classified into two major cat-
egories; the Seurat’s pointillism reproduction and the simple
pattern pointillism. In the Seurat’s pointillism reproduction,
pointillistic images are generated in order that the gener-
ated images resemble Seurat’s style. The characteristics of
the Seurat’s pointillism consists of 11-color limitation, halo
effect in the boundaries, and utilization of complementary
colors for highlighting, and small dots of color. Based on the
characteristics, several image generation techniques have been
proposed [2]–[5]. On the other hand, in the simple pattern
pointillism, pointillistic images are generated by putting simple
patterns such as dots [6]–[8], circles [9], [10], ellipses [11],
and arbitrary shapes [12] to canvas.

The main contribution of this paper is to propose a method
for generating a pointillistic image which reproduces an input
image by pasting colored squares to canvas. Figure 1 shows an
example of the proposed pointillism method. Given an input
image, the proposed method generates a pointillism image
by pasting rotated square patterns one by one. Unlike the
existing methods of the simple pattern pointillism in which
patterns are arranged without overlap [6]–[8], [12], in the

pointillism considered in this article, paste patterns can be
put onto other patterns. To obtain high quality pointillistic
images, we use the idea based on the human visual system.
This idea has been utilized in the digital halftoning [13]–[15]
and ASCII art generation [16]. In this idea, the goodness of
a generated image is defined as the similarity between its
projected image onto human eyes and the original image.
The projected image is computed using a Gaussian filter that
approximates the characteristic of the human visual system.
The total error of the generated pointillistic image is defined
as the sum of the difference of the intensity levels over all
pixels between the original image and the projected image.
Therefore, in this work, to obtain high quality pointillistic
images, we try to generate a pointillistic image such that the
total error is minimized. On the other hand, several researches
consider features in the original image such as edges and
directions of gradation [7], [8], [11]. However, without such
features, the proposed pointillistic images generated by our
proposed method can well represent such features that are
larger than utilized patterns. In this work, based on the above
idea, we propose two algorithms of the square pointillism
image generation: the serial pasting algorithm and the parallel
pasting algorithm. The serial pasting algorithm is pasting
square patterns one by one, and the parallel pasting algorithm
is putting multiple square patterns at once. Figure 1(b) shows
an example of our square pointillism image generation of
Lena [17] (Figure 1(a)) and its projected image is shown in
Figure 2. In this example, 9786 square patterns of size 11×11
are pasted to generate the pointillistic image. By expanding the
generated image, we can find the image consists of overlapped
squares. However, edges and gradations that are larger than the
square patterns are reproduced well.

The second contribution of this paper is to implement the
above two algorithms on a GPU to accelerate the computation.
GPUs (Graphics Processing Units), composed of a lot of
processing units, can be used for general-purpose computation.
Because GPUs have very high memory bandwidth, the perfor-
mance of GPUs greatly depends on memory access. Therefore,
many studies have been devoted to implement parallel algo-
rithms using GPUs. Our experimental results show that the
GPU implementation of the serial pasting algorithm can run up
to 131.2 times faster than the sequential CPU implementation
and 2.5 times faster than the parallel CPU implementation with
160 threads. On the other hand, regarding the parallel pasting



algorithm, the GPU implementation can run up to 160.7 times
faster than the sequential CPU implementation and 7.1 times
faster than the parallel CPU implementation with 160 threads.

This paper is organized as follows. Section II explains the
proposed square pointillism image generation. In Section III,
we propose two algorithms of the square pointillism image
generation: the serial pasting algorithm and the parallel pasting
algorithm. We then show GPU implementations to accelerate
the computation in Section IV. Section V shows the resulting
pointillistic images, and shows the computing time. Section VI
concludes our work.

II. PROPOSED SQUARE POINTILLISM IMAGE GENERATION

A new pointillism technique by pasting squares is presented
in this section. We first define the goodness of a generated
pointillism image, that is, we introduce the error from an
original image based on the human visual system. After that,
we will show two algorithm of pointillism image generation
in the next section.

First, a gray scale image is considered, and then we extend
it to a color image. Consider an original image A = (ai,j)
of size N × N , where ai,j denotes the intensity level at
position (i, j) (1 ≤ i, j ≤ N) taking a real number in the
range [0, 1]. The pointillism image generation is to find an
image B = (bi,j) obtained by pasting a lot of squares, of the
same size, that reproduces the original image A. The goodness
of the output image B can be computed using the Gaussian
filter that approximates the characteristic of the human visual
system. Let G = gp,q denote a Gaussian filter, that is, a two-
dimensional symmetric matrix of size (2w + 1) × (2w + 1),
where each non-negative real number gp,q (−w ≤ p, q ≤ w) is
determined by a two-dimensional Gaussian distribution such

that their sum is 1. In other words, gp,q = s · e−
p2+q2

2σ2 , where
σ is a parameter of the Gaussian distribution and s is a fixed
real number to satisfy

∑
−w≤p,q≤w gp,q = 1. Let R = (ri,j)

denote the projected gray scale image of an image B = (bi,j)
obtained by applying the Gaussian filter as follows:

ri,j =
∑

−w≤p,q≤w

gp,qbi+p,j+q (1 ≤ i, j ≤ N). (1)

As
∑

−w≤p,q≤w gp,q = 1 and gp,q is non-negative, each ri,j
takes a real number in the range [0, 1]. Hence, the projected
image R is a gray scale image. An image B is a good approx-
imation of the original image A if the difference between A
and R is small enough. The error ei,j at each pixel location
(i, j) of image B is defined by

ei,j = ai,j − ri,j , (2)

and the total error is defined by

Error(A,B) =
∑

1≤i,j≤N

|ei,j |. (3)

Because the Gaussian filter approximates the characteristic of
the human visual system, the image B reproduces original
image A if Error(A,B) is small enough.

We are now in a position to explain how we generate a
pointillistic image. A pointillistic image generated in this work
is obtained by putting fixed-size squares, each of which has a
uniform color, of the same size (2t + 1) × (2t + 1). Squares
are pasted one by one and they are allowed to be rotated and
overlap other squares. Let P denote a set of square patterns
and each element pu,v (1 ≤ u ≤ NL, 1 ≤ v ≤ NR) in P
denotes a square pattern, where NL is the number of colors
of square patterns and NR is the number of the variation of
rotation. Figure 3 depicts an example of the square patterns
P .

To explain which and where square patterns are pasted, we
introduce an improvement value I of the error by pasting a
square pattern:

I(A,B, p, i, j) = Error(A,B)− Error(A,B′), (4)

where B′ is a canvas image when a square pattern p is pasted
at (i, j) to B. Using this, we paste square patterns to B one by
one. We put a square pattern that maximize the improvement I
for all possible patterns to B. In other words, for each position
(i, j) (1 ≤ i, j ≤ N), we select a pattern qi,j whose value I
is the maximum such that

qi,j = arg max
ps,t∈P

I(A,B, ps,t, i, j).

From qi,j’s, we find the most improved pattern qbest whose
improvement value is the maximum. After that, the pattern
qbest is pasted to B. This procedure that the most improved
pattern is put to B is repeated until no more improvement is
possible.

In pointillism, dots are put on blank canvas whose color
is generally white or black [11]. In this work, such back-
ground is completely covered with square patterns in generated
pointillistic images. This is because in our experience, if the
background can be peeked through the gap of square patterns,
such area looks like noise since it is conspicuous. Therefore,
in the following algorithms of pointillism image generation,
we first cover background pixels with square patterns. We
introduce the contribution ratio of covering background pixels
when pattern p is put to B at (i, j), expressed as:

C(B, p, i, j) =
the number of covered background pixels

the number of pixels of p
.

Note that if a pattern is put on background pixels, that
is, every pixel of the pattern covers a background pixel,
C(B, p, i, j) = 1. On the other hand, if a pattern is put on
non-background pixels, C(B, p, i, j) = 0. Hence, the goal that
background is completely covered is to select a pattern such
that C(B, p, i, j) > 0. Also, when the value C(B, p, i, j) is
larger, more pixels are covered by the pattern. By extending
Eq. (4), we define the improvement Icover to consider the
background pixels covering as follows:

Icover(A,B, p, i, j) = (C(B, p, i, j), I(A,B, p, i, j)). (5)

In other words, the improvement is a pair of ‘the contri-
bution ratio of covering background pixels’ and ‘the im-
provement of the total error’ when pattern p is put to B at



(a) input image (Lena) (b) generated pointillism image
Fig. 1. An example of our pointillism image generation

Fig. 2. Projected image of Figure 1(b)
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Fig. 3. Set of square patterns P

(i, j). We assume that the comparison of any two values of
Icover(A,B, p, i, j) are based on the lexicographical order, that
is, Icover(A,B, p, i, j) > Icover(A,B, p′, i, j) if and only if

• C(B, p, i, j) > C(B, p′, i, j) or,
• C(B, p, i, j) = C(B, p′, i, j) and I(A,B, p, i, j) >

I(A,B, p′, i, j).
In the following, to cover background pixels, we use Icover
instead of I . If appearance of background pixels in generated
images is allowed, I is used. Also, if background pixels in
the Gaussian filter application are included, the values of
background pixels affect the total error. Therefore, until all

background pixels are covered, to exclude background pixels
in the Gaussian filter application when Icover is computed,
instead of Eq. (2), we use

ei,j = ai,j − bi,j .

Now, we extend the error computation for gray scale images
to color images. In this work, we consider RGB colors whose
value is specified with three real numbers in the range [0, 1]
that represent red, green, and blue, respectively. For color
images, projected image R and the error in Eq. (2) are
computed for each color. Namely, for each color, Gaussian
filter is pasted and the error is computed. Let eRi,j , eGi,j , and
eBi,j denote the errors of red, green, and blue at each pixel
location (i, j), respectively. Eq. (3) is extended to the sum of
each color value as follows;

Error(A,B) =
∑

1≤i,j≤N

(|eRi,j |+ |eGi,j |+ |eBi,j |). (6)

In the following explanation about our pointillism image
generation method, the difference between gray scale and color
is the above error computation. The other parts are common
between them.

III. ALGORITHMS FOR POINTILLISM IMAGE GENERATION

The main purpose of this section is to propose two pointillis-
tic image generation algorithms; the serial pasting algorithm
and the parallel pasting algorithm. Briefly explaining, the
serial pasting algorithm is pasting square patterns one by one,
and the parallel pasting algorithm is putting multiple square
patterns at once.

Consider an original image A and a canvas image B and let
W (i, j) be a window of size (2t+1)× (2t+1) whose center
is at position (i, j) as illustrated in Figure 4. The window is
the minimum upright square can include all square patterns in
Figure 3. Also, Table I shows the size of window W (i, j) for
each size of square patterns. Because we use a Gaussian filter
of size (2w+1)×(2w+1), pasting a square pattern affects the
errors in a square region of size (2t+2w+1)×(2t+2w+1),
which we refer to as the affected region. Figure 5 depicts a



ݐ2 + 1

ݐ2 + 1

(݅, ݆)

Fig. 4. Window W (i, j)

TABLE I
THE SIZE OF WINDOW W (i, j)

size of patterns size of window
7 × 7 11 × 11 (t = 5)
9 × 9 13 × 13 (t = 6)

11 × 11 17 × 17 (t = 8)
13 × 13 19 × 19 (t = 9)
15 × 15 23 × 23 (t = 11)
17 × 17 25 × 25 (t = 12)
19 × 19 27 × 27 (t = 13)
21 × 21 31 × 31 (t = 15)
23 × 23 33 × 33 (t = 16)

window and the affected region. Note that the best pasting of
a square pattern can be selected by computing the total errors
of the affected region of size (2t+ 2w + 1)× (2t+ 2w + 1)
because pasting the square pattern does not affect errors at
pixels outside the affected region. The error of a fixed pixel in

ݐ2 + ݓ2 + 1

(݅, ݆)
ݐ2 + 1

Gaussian filter

Window ܹ(݅, ݆)

ݓ2 + 1

affected region

Fig. 5. Affected region

an affected region can be computed in O((2w+1)2) = O(w2)
time by evaluating Eqs. (1) and (2). Hence, all the errors in the
affected region can be computed in O(w2(2t + 2w + 1)2) =
O(w2(t2 + w2)) time. After that, their sum can be computed
in O((2t + 2w + 1)2) = O(t2 + w2) time. Thus, the total
error in the affected region can be computed in O(w2(t2 +
w2)) time. Because we need to check all the possible NRNL

square patterns in P , the best square pattern can be obtained
in O(NRNLw

2(t2 + w2)) time.

A. Serial pasting algorithm

In the following, we present a pointillistic image generation
algorithm that are to paste square pattern one by one. Pasting
square patterns and its error computation requires values

from pixels outside of the image boundaries when patterns
are put around borders. Therefore, in this work, the nearest
border pixels in an original image A are extended as far as
necessary to perform the LES around the boundaries [18].
More specifically, an original image A of size N × N is
extended to the (N + 2t + 2w) × (N + 2t + 2w) image
by copying the boundary pixel values. Also, a canvas image
B is initialized such that every pixel is white, i.e., bi,j = 1
(1 ≤ i, j ≤ N) for gray scale images. After that, we find the
best pattern qi,j for each point, and then the most improved
pattern qbest from the patterns is selected and pasted to B. This
procedure is repeated until no more improvement is possible.
However, we do not have to perform an exhaustive search to
find qi,j’s for all the points once all qi,j ’s are obtained. If the
projected image of the affected region, for the current window,
does not change, then we can omit the exhaustive search using
the previous best pattern as the current best pattern. Let Ai,j

denote a set of positions in the affected region of the image
in Figure 5 such that

Ai,j = {(i′, j′)|i− t− w ≤ i′ ≤ i+ t+ w, j − t− w ≤ j′ ≤ j + t+ w}.

Therefore, we compute the total error at pixel location (i, j)
in Eq. (3) by evaluating the following formula:∑

(i′,j′)∈Ai,j

|ei′,j′ |. (7)

Similarly, for color images, the total error in Eq. (6) can be
computed by ∑

(i′,j′)∈Ai,j

(|eRi′,j′ |+ |eGi′,j′ |+ |eBi′,j′ |). (8)

From the above, Algorithm 1 shows the serial pasting algo-
rithm for pointillistic image generation.

B. Parallel pasting algorithm

In the above serial pasting algorithm, square patterns are
pasted one by one. Therefore, it is difficult to implement the
algorithm as parallel execution. Here, we show a pointillistic
image generation algorithm that are to paste multiple square
patterns at once. To paste multiple patterns, we split the input
image A of size N × N into subimages of size h × h. We
partition the subimages into four groups such that

• Group 1: even columns and even rows;
• Group 2: odd columns and even rows;
• Group 3: even columns and odd rows; and
• Group 4: odd columns and odd rows.

Figure 6 illustrates the groups of subimages. Note that, if h ≥
2t + 2w + 1, then the Gaussian filter of two subimages in a
group never affect each other, where the subimage is h×h and
the affected region is (2t+2w+1)× (2t+2w+1). In other
words, affected regions of a particular group do not overlap
with each other. In the parallel pasting algorithm, we perform
the serial pasting algorithm shown in the previous section for
Group 1, Group 2, Group 3, and Group 4, in turn. Since there
are N

h × N
h subimages in each group, at most N

h × N
h square

patterns can be put for each group execution.
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Fig. 6. Groups of subimages and parallel execution without race condition

Algorithm 1 Serial pasting algorithm
Input: Original image A
Output: Pointillistic image B

1: B0 is initialized to a blank image
2: for i = 1 to N do
3: for j = 1 to N do
4: Find qi,j .
5: end for
6: end for
7: k ← 1
8: loop
9: Bk ← Bk−1

10: for i = 1 to N do
11: for j = 1 to N do
12: Update qi,j if the projected image in the affected region

of W (i, j) for Bk and Bk−1 are not identical.
13: end for
14: end for
15: Find the most improved pattern qbest from all qi,j’s
16: if the total error decreases when qbest is pasted to Bk then
17: Paste qbest to Bk

18: else
19: return Bk

20: end if
21: k ← k + 1
22: end loop

IV. GPU ACCELERATION

This section shows an efficient GPU implementation of the
pointillistic image generation to accelerate the computation.

We briefly explain CUDA architecture that we will use in
the GPU implementation. NVIDIA provides a parallel com-
puting architecture called CUDA on NVIDIA GPUs. CUDA
uses two types of memories: the global memory and the shared
memory [19]. The global memory is implemented as an off-
chip DRAM of the GPU, and has large capacity, say, 1.5-
12GB, but its access latency is very long. The shared memory
is an extremely fast on-chip memory with lower capacity, say,
16-96KB. CUDA parallel programming model has a hierarchy
of thread groups called grid, block, and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to streaming
multiprocessors such that all threads in a block are executed by
the same streaming multiprocessor in parallel. All threads can
access to the global memory. However, threads in a block can

access to the shared memory of the streaming multiprocessor
to which the block is allocated. Since blocks are arranged to
multiple streaming multiprocessors, threads in different blocks
cannot share data in the shared memories. CUDA C extends C
language by allowing the programmer to define C functions,
called kernels. By invoking a kernel, all blocks in the grid are
allocated in streaming multiprocessors, and threads in each
block are executed by processor cores in a single streaming
processor.

We are now in position to explain how we implement the
serial pasting algorithm. We assume that an input original
image of size N × N is stored in the global memory in
advance, the implementation writes the resulting pointillistic
image to the global memory. In the serial pasting algorithm,
we repeatedly perform a kernel that pastes a square pattern.
In each kernel, we first find qi,j for each position (i, j)
(1 ≤ i, j ≤ N). Each CUDA block is responsible for
finding qi,j . In each CUDA block, multiple threads are used
to compute improvement values I in Eq. (4) for each square
pattern and then find the most improved pattern at (i, j) qi,j
whose value I is the maximum is found. After that from qi,j’s,
the most improved pattern qbest is selected and pasted. After
this kernel, the above is repeated for the affected area until
no more improvement is possible. We note that in the first
kernel, qi,j’s for all positions need to be computed. However,
the second and after kernels update qi,j’s only for the affected
region where a square pattern is pasted in the previous kernel.

In each CUDA block assigned to a pixel, we use three ideas
efficiently to perform the computation, as follows.

Data caching using the shared memory: The input image
A and the canvas image B stored in the global memory are
frequently read during the computation. Therefore, to reduce
the data access time to them, we cache the elements of A
and B, that are necessary to perform the computation, to the
shared memory.

Application of the Gaussian filter using addition: To
obtain projected images R that are blurred by the Gaussian
filter, we need to compute the convolution for each pixel value
in Eq. (1). In this idea, we replace the convolution to addition
of projected square patterns. More specifically, the sum of
multiplications is replaced by the sum of additions. To do
this, before the computation, we obtain the projected square
patterns which are blurred by the Gaussian filter and store them



in the global memory. After that, the following operations are
performed for each square pattern that is the same angle. First,
a square pattern whose value is 0, that is, black square pattern,
is pasted. After that, the blurred square pattern is added to B
instead of the application of the Gaussian filter. From this
computation, every square pattern which is the same angle,
the convolution can be replaced by the addition except the
computation of the first paste of the black square pattern.

Parallel sum-reduction with warp shuffle instructions:
To obtain the total error in Eq. (7) and Eq. (8), the sum of
the error values is computed. In our implementation, we use
the parallel sum reduction technique using the warp shuffle
instructions [20]. The warp shuffle instructions allow threads
in a warp to perform the data communication between them
without the shared memory [19]. In this technique, the parallel
sum computation is efficiently performed using the warp
shuffle instructions.

Next, we explain the GPU implementation of the parallel
pasting algorithm. As shown in the previous section, in the
parallel pasting algorithm, we perform the serial pasting algo-
rithm for each subimage in one of the four groups illustrated
in Figure 6 in turn. Since the computation for each subimage
can be performed independently, in the GPU implementation
of the parallel algorithm, we perform the same manner as the
GPU implementation of the serial pasting algorithm for each
subimage in parallel. This operation is repeated for each group
until no more improvement is possible.

V. EXPERIMENTAL RESULTS

In this section, we show the resulting pointillistic images
and the computing time. We have used Lena [17] of size
512 × 512 in Figure 1(a). Also, we have utilized the square
patterns consisting of 4096 colors and the patterns are rotated
with angles of 0, 30, and 60 degrees. In total, the number of
patterns in P is 4096 × 3 = 12288. We have evaluated the
image generation by varying the size of patterns from 7 × 7
to 23 × 23. The Gaussian filter has been set with parameters
σ = 1.3 and w = 3. Also, the size of subimage used in the
parallel pasting algorithm is 23 × 23, that is, h = 23. We
have evaluated the following implementations; the sequential
CPU implementation, the parallel CPU implementation, and
the GPU implementation for the serial pasting algorithm and
the parallel pasting algorithm. In the sequential CPU imple-
mentation, a single thread performs each algorithm in serial.
On the other hand, in the parallel CPU implementation, we use
multiple threads to concurrently find qi,j’s at lines 4 and 12 in
Algorithm 1. Each thread computes Eq. (4) or Eq. (5) in serial.
We have implemented it using OpenMP 3.1 [21]. We have used
a multicore server with 4 Intel Xeon E7-8870V4 CPUs running
in 3.0GHz and 1TB memory for the sequential and parallel
CPU implementations. Each CPU has 20 physical cores each
of which acts 2 logical cores by hyper-threading technology.
In the parallel CPU implementation, we have deployed 160
threads that corresponds to the total number of logical cores.
On the other hand, for the GPU implementation, we have
used an NVIDIA TITAN X GPU with 3584 processing cores

running in 1.531GHz and 12GB memory. The source code
programs of the GPU implementations are compiled by nvcc
version 8.0.60 with -O2 and -arch=sm 61 options.

Figure 7 shows a process of generating a pointillistic image
of Figure 1(a) using the serial pasting algorithm. To generate
the resulting pointillistic image in Figure 8(a), a total of 9786
square patterns have been pasted. Also, Figure 9 shows a graph
of the change of the total error in Eq. (6). From the graph,
first, the total error rapidly decreases and then the deceasing
rate becomes small until 5706 square patterns are pasted. After
that, the error slightly decreases again. This is because square
patterns are put to cover the background pixels first even if
the total error increases. Actually, by pasting the first 5878
square patterns, all the background pixels have been covered.
Therefore, after all the background pixels are covered, the total
error decreases again since the square patterns are pasted only
to reduce the total error.

Figure 8(b) shows the resulting image in the parallel pasting
algorithm. Compared with the image by the serial algorithm in
Figure 8(a), by looking closely, both of them are a bit different,
but the quality of them seems to be almost the same at a
glance. In both images, the fine and intricate parts such as
her hair cannot be represented since the size of patterns is not
small enough to represent them. However, principal edges and
gradations of colors are well-reproduced even though squares
that are not covered by other squares are visible.

Figure 10 shows the resulting pointillistic images with
square patterns of size 7 × 7 to 23 × 23. For each size of
patterns, intricate area that is smaller than patterns cannot be
represented. For example, her threads of hair are invisible for
every size of patterns and her eyes can be seen for patterns
of size 7 × 7 to 13 × 13. On the other hand, we can see the
curves of large shapes including her hat and shoulder distinctly
for every size. Table II shows the number of pasted square
patterns and the average error of the resulting images. The
average error is the total error per pixel that is computed by
Error(A,B)

N2 . According to the table, when the size patterns
is large, the number of pasted patterns is small. On the other
hand, regarding the average errors, there is not much difference
by size of pattern and algorithm.

TABLE II
THE NUMBER OF PASTED SQUARE PATTERNS AND THE AVERAGE ERROR

# pasted patterns average error
size of patterns serial parallel serial parallel

7 × 7 17970 19570 18.194 18.186
9 × 9 11507 12746 20.277 20.313

11 × 11 9786 11045 22.104 22.060
13 × 13 6749 7385 23.537 23.730
15 × 15 5164 5604 25.105 25.051
17 × 17 5628 6296 26.582 26.567
19 × 19 3779 4218 27.900 27.865
21 × 21 4588 5027 29.123 29.211
23 × 23 3175 3717 30.604 30.496

Table III shows the computing time of pointillistic image
generation for Lena. In the GPU implementation, the data
communication time between the host PC and the GPU
are included. According to the table, in the sequential CPU



979 squares (10%) 1958 squares (20%) 2936 squares (30%)

3914 squares (40%) 4893 squares (50%) 5872 squares (60%)
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Fig. 7. Snapshots of pasting patterns in the serial pasting algorithm with 11× 11 square patterns



(a) the serial pasting algorithm (b) the parallel pasting algorithm
Fig. 8. The resulting pointillistic images with square patterns of size 11× 11
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Fig. 9. The total error change transition of the serial pasting algorithm

implementation, the parallel pasting algorithm is faster than the
serial pasting algorithm. This is because in the serial pasting
algorithm, we need to find the most improved pattern from N2

qi,j’s to paste one square, where the input image is N × N .
On the other hand, in the parallel pasting algorithm, since one
pattern is pasted in each subimage of size h× h, we select a
pattern only from h2 qi,j’s. Since N = 512 and h = 23 in
this experiment, the parallel pasting algorithm is faster than
the serial pasting algorithm.

In both of the parallel CPU implementation and the GPU
implementation, we perform the computation of qi,j’s in par-
allel. Furthermore, in the GPU implementation, each compu-
tation of qi,j’s is concurrently executed by threads in a CUDA
block. Therefore, the GPU implementation can run much faster
than the parallel CPU implementation even if 160 threads are
used on the multicore server. More specifically, the computing
time of the GPU implementation reduced by a factor up to 131
and 160 over the sequential implementation for the serial and
parallel pasting algorithms, respectively. On the other hand,
compared with the parallel CPU implementation, the GPU
implementation runs at most 2.5 times faster for the serial
pasting algorithm and at most 7.1 times faster for the parallel

pasting algorithm.
In the above, we have evaluated one image Lena of size

512 × 512. Therefore, we show the pointillistic image of a
larger image. Figure 11 shows the resulting image of size
1920 × 1536 from the image database [22] by the parallel
pasting algorithm. In the generation, 28072 square patterns
of size 23 × 23 have been pasted and the average error per
pixel is 36.27. Small characters in the top left image lose their
shape, however, other parts of the image are well-reproduced.
The computing time of the generation in the sequential CPU,
parallel CPU and GPU implementations is 32391.9, 879.17,
and 388.1 seconds, respectively.

VI. CONCLUSION

In this paper, we have proposed a new technique to generate
a square pointillistic image. It is inspired by characteristic
of the human visual system and the resulting pointillistic
images well-reproduce the original images. To accelerate
square pointillism image generation by our method, we have
implemented it in the GPU. The experimental results show
that the GPU implementation can achieve a speed-up factor
up to 160 over the sequential CPU implementation.
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