
GPU-accelerated Verification of the
Collatz Conjecture

Takumi Honda, Yasuaki Ito, and Koji Nakano

Department of Information Engineering, Hiroshima University,
Kagamiyama 1-4-1, Higashi Hiroshima 739-8527, Japan

{honda,yasuaki,nakano}@cs.hiroshima-u.ac.jp

Abstract. The main contribution of this paper is to present an im-
plementation that performs the exhaustive search to verify the Collatz
conjecture using a GPU. Consider the following operation on an arbi-
trary positive number: if the number is even, divide it by two, and if
the number is odd, triple it and add one. The Collatz conjecture as-
serts that, starting from any positive number m, repeated iteration of
the operations eventually produces the value 1. We have implemented
it on NVIDIA GeForce GTX TITAN and evaluated the performance.
The experimental results show that, our GPU implementation can ver-
ify 5.01×1011 64-bit numbers per second, while the CPU implementation
on Intel Xeon X7460 can verify 1.80 × 109 64-bit numbers per second.
Thus, our implementation on the GPU attains a speed-up factor of 278
over the single CPU implementation.

Keywords: Collatz conjecture, GPGPU, Parallel processing, Exhaus-
tive verification

1 Introduction

The Collatz conjecture is a well-known unsolved conjecture in mathematics [8,
19, 22]. Consider the following operation on an arbitrary positive number:

even operation if the number is even, divide it by two, and
odd operation if the number is odd, triple it and add one.

The Collatz conjecture asserts that, starting from any positive number, repeated
iteration of the operations eventually produces the value 1. For example, starting
from 3, we have the following sequence to produce 1.

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1

The exhaustive verification of the Collatz conjecture is to perform the repeated
operations for numbers from 1 to the infinite as follows:

for m← 1 to ∞ do
begin



2 Takumi Honda, Yasuaki Ito, Koji Nakano

n← m
while(n > 1) do

if n is even then n← n
2

else n← 3n + 1
end

Clearly, if the Collatz conjecture is not true, then the while-loop in the program
above never terminates for a counter example m. A working project for the
Collatz conjecture is currently checking 61-bit numbers [17].

There are several researches for accelerating the exhaustive verification of the
Collatz conjecture. It is known [1, 3–5] that series of even and odd operations
for n can be done in one step by computing n← B[nL] · nH + C[nL] for appro-
priate tables B and C, where the concatenation of nH and nL corresponds to
n. In [1, 3, 5], FPGA implementations have been presented to repeat the oper-
ations of the Collatz conjecture. These implementations perform the even and
odd operations for some fixed size of bits of interim numbers. However, in [1],
the implementation ignores the overflow. Hence, if there exists a counter exam-
ple number m for the Collatz conjecture such that, infinitely large numbers are
generated by the operations from m, their implementation may fail to detect it.
On the other hand, in [3], the implementation can verify the conjecture for up to
23-bit numbers. This is not sufficient because a working project for the Collatz
conjecture is currently checking 61-bit numbers [17]. In our previous paper [4],
we have shown a software-hardware cooperative approach to verify the Collatz
conjectures for 64-bit numbers n. This approach supports almost infinitely large
interim numbers m. The idea is to perform the while-loop for interim values with
up to 78 bits using a coprocessor embedded in an FPGA. If an interim value
m has more than 78 bits, the original value n is reported to the host PC. The
host PC performs the verification for such n using unlimited number of bits by
software. This software-hardware cooperative approach makes sense, because

– the hardware implementation on the FPGA is fast and low power consump-
tion, but the number of bits for the operation is fixed,

– the software implementation on the PC is relatively slow and high power
consumption, but the number of bits for the operation is unlimited.

Additionally, in another previous paper of ours [5], we have proposed an effi-
cient implementation of a coprocessor that performs the exhaustive search to
verify the Collatz conjecture using embedded DSP slices on a Xilinx FPGA. By
effective use of embedded DSP slices instead of multipliers used in [4], the co-
processor can perform the exhaustive verification faster than the above FPGA
implementations.

The main contribution of this paper is to further accelerate the exhaustive
verification for the Collatz conjecture using a GPU (Graphics Processing Unit).
Recent GPUs can be utilized for general purpose parallel computation. We can
use many processing units connected with an off-chip global memory in GPUs.
CUDA (Compute Unified Device Architecture) [12] is an architecture for general
purpose parallel computation on GPUs. Using CUDA, we can develop parallel



GPU-accelerated Verification of the Collatz Conjecture 3

processing programs to be implemented in GPUs. Therefore, many studies have
been devoted to implement parallel algorithms using CUDA [2, 6, 7, 9, 10, 16, 18,
20, 21]. The ideas of our GPU implementation are (i) a GPU-CPU cooperative
approach, (ii) efficient memory access for the global memory and the shared
memory, and (iii) optimization of the code for arithmetic with larger integers.
By effective use of a GPU and the above ideas, our new GPU implementation
can verify 5.01× 1011 64-bit numbers per second. On the other hand, the CPU
implementation can verify 1.80 × 109 64-bit numbers per second. As far as we
know, the FPGA implementation in [5] has been the fastest implementation.
However, our GPU implementation can verify the Collatz conjecture 3.05 times
faster the FPGA implementation.

This paper is organized as follows. Section 2 presents several techniques for
accelerating the verification of the Collatz conjecture. In Section 3, we show
the GPU and CUDA architectures to understand our idea. Section 4 proposes
our new ideas to implement the verification of the Collatz conjecture on the
GPU. The experimental results are shown in Section 5. Finally, Section 6 offers
concluding remarks.

2 Accelerating the verification of the Collatz conjecture

The main purpose of this section is to introduce an algorithm for accelerating the
verification of the Collatz conjecture. The basic ideas of acceleration are shown
in [8, 22].

The first technique is to terminate the operations before the iteration pro-
duces 1. Suppose that we have already verified that the Collatz conjecture is
true for numbers less than n, and we are now in position to verify it for number
n. Clearly, if we repeatedly execute the operations for n until the value is 1, then
we can confirm that the conjecture is true for n. Instead, if the value becomes n′

for some n′ less than n, then we can guarantee that the conjecture is true for n
because it has been proved to be true for n′. Thus, it is not necessary to repeat
this operation until the value is 1, and we can terminate the iteration when, for
the first time, the value is less than n.

The second technique is to perform several operations in one step. Consider
that we want to perform the operations for n and let nL and nH be the least
significant two bits and the remaining bits of n. In other words, n = 4nH + nL

holds. Clearly, the value of nL is either 00, 01, 10, or 11. We can perform the
several operations for n based on nL as follows:

nL = 00: Since two even operations are applied, the resulting number is nH .
nL = 01: First, odd operation is applied and the resulting number is (4nH +1) ·

3 + 1 = 12nH + 4. After that, two even operations are applied, and we have
3nH + 1.

nL = 10: First, even operation is performed and we have 2nH + 1. Second, odd
operation is applied and we have (2nH + 1) · 3 + 1 = 6nH + 4. Finally, by
even operation, the value is 3nH + 2.



4 Takumi Honda, Yasuaki Ito, Koji Nakano

nL = 11: First, odd operation is applied and we have (4nH+3)·3+1 = 12nH+10.
Second, by even operation, the value is 6nH + 5. Again, odd operation is
performed and we have (6nH + 5) · 3 + 1 = 18nH + 16. Finally, by even
operation, we have 9nH + 8.

For example, if nL = 11 then we can obtain 9nH + 8 by applying 4 operations,
odd, even, odd, and even operations in turn. Let B and C be tables as follows:

B C
00 1 0
01 3 1
10 3 2
11 9 8

Using these tables, we can perform the following table operation, which emulates
several odd and even operations:

table operation For least significant two bits nL and the remaining most sig-
nificant bits nH of the value, the new value is B[nL] · nH + C[nL].

Let us extend the table operation for least significant two bits to d bits.
For an integer n ≥ 2d, let nL and nH be the least significant d bits, that is,
n = 2dnH + nL. We call d is the base bits. Suppose that, the even or odd
operations are repeatedly performed on n = 2dnH + nL. We use two integers a
and b such that n = b · nH + c to denote the current value of n. Initially, b = 2d

and c = nL. We repeatedly perform the following rules for b and c.

even rule If both b and c are even, then divide them by two.
odd rule If c is odd, then triple b, and triple c and add one.

These two rules are applied until no more rules can be applied, that is, until
b is odd. It should be clear that, even and odd rules correspond to even and
odd operations of the Collatz conjecture. If i even rules and j odd rules applied,
then the value of b is 2d−i3j . Thus, exactly d even rules are applied until the
termination. After the termination, we can determine the value of elements in
tables B and C such that B[nL] = b and C[nL] = c. Using tables B and C, we
can perform the table operation for d bits nL, which involves d even operations
and zero or more odd operations. In this way, we can accelerate the operation of
the Collatz conjecture. In paper [1], we have implemented for various numbers
of bits of nL. Our GPU implementation results show that the performance is
well balanced when the number of bits of nL is 11.

The third technique to accelerate the verification of the Collatz conjecture
is to skip numbers n such that we can guarantee that the resulting number is
less than n after the table operation. For example, suppose we are using two
bit table and nH > 0. If nL = 00 then the resulting value is nH , which is less
than n. Thus, we can skip the table operation for n if nL = 00. If nL = 01 then
the resulting value is 3nH + 1, which is always less than n = 4nH + 1, and we
can skip the table operation. Similarly, if nL = 10 then we can skip the table



GPU-accelerated Verification of the Collatz Conjecture 5

operation. On the other hand nL = 11 then the resulting value is 9nH +8, which
is always larger than n. Therefore, the Collatz conjecture is guaranteed to be
true whenever nL 6= 11, because it has been verified true for numbers less than
n. Consequently, we need to execute the table operation for number n such that
nL = 11.

We can extend this idea for general case. For least significant d bits nL, we
say that nL is not mandatory if the value of b is less than 2d at some moment
while even and odd rules are repeatedly applied. We can skip the verification for
non-mandatory nL. The reason is as follows: Consider that for number n, we are
applying even and odd rules. Initially, b = 2d and c ≤ 2d − 1 hold. Thus, while
even and odd rules are applied, b > c always hold. Suppose that b ≤ 2d−1 holds
at some moment while the rules are applied. Then, the current value of n is

bnH + c < bnH + b ≤ (2d − 1)nH + b < 2dnH ≤ n.

It follows that, the value is less than n when the corresponding even and odd
operations are applied. Therefore, we can omit the verification for numbers that
have no mandatory least significant bits.

For least significant d bit number, we use table S to store the mandatory
least significant bits. Let sd be the number of such mandatory least significant
bits. Using these tables, we can write a verification algorithm as follows:

for mH ← 1 to +∞ do
for i← 0 to sd − 1 do

begin
mL ← S[i];
n← m← 2dmH + mL;
while(n ≥ m) do

begin
Let nL be the least significant d bits and

nH be the remaining bits.
n← B[nL] · nH + C[nL];

end
end

For the benefit of readers, we show B, C, and S for 4 base bits in Table 1.
From s4 = 3, we have 3 mandatory least significant bits out of 16.

For the reader’s benefit, Table 2 shows the necessary word size for each
of tables B and C for each base bit. It also shows the expected number of
odd/even operations included in one step operation n ← B[nL] · nH + C[nL].
Table 3 shows the size of table S. It further shows the ratio of the mandatory
numbers over all numbers. Later, we set base bit 11 for tables B and C, and base
bit 32 for table S in our proposed GPU implementation. Thus, one operation
n← B[nL] ·nH +C[nL] corresponds to expected 16.5 odd/even operations. Also,
we skip approximately 99.04% of non-mandatory numbers.



6 Takumi Honda, Yasuaki Ito, Koji Nakano

Table 1. Tables B, C, and S for least significant 4 bits.

B C S

0000 1 0 0111
0001 9 1 1011
0010 9 2 1111
0011 9 2 -
0100 3 1 -
0101 3 1 -
0110 9 4 -
0111 27 13 -
1000 3 2 -
1001 27 17 -
1010 3 2 -
1011 27 20 -
1100 9 8 -
1101 9 8 -
1110 27 26 -
1111 81 80 -

Table 2. The size of tables B and C

base bit words operation

4 16 6.0
5 32 7.5
6 64 9.0
7 128 10.5
8 256 12.0
9 512 13.5

10 1k 15.0
11 2k 16.5
12 4k 18.0
13 8k 19.5
14 16k 21.0
15 32k 22.5
16 64k 24.0



GPU-accelerated Verification of the Collatz Conjecture 7

Table 3. The size of tables S

base bit words ratio base bit words ratio
3 2 0.2500 18 7495 0.0286
4 3 0.1875 19 14990 0.0286
5 4 0.1250 20 27328 0.0261
6 8 0.1250 21 46611 0.0222
7 13 0.1016 22 93222 0.0222
8 19 0.0742 23 168807 0.0201
9 38 0.0742 24 286581 0.0171

10 64 0.0625 25 573162 0.0171
11 128 0.0625 26 1037374 0.0155
12 226 0.0552 27 1762293 0.0131
13 367 0.0448 28 3524586 0.0131
14 734 0.0448 29 6385637 0.0119
15 1295 0.0395 30 12771274 0.0119
16 2114 0.0323 31 23642078 0.0110
17 4228 0.0323 32 41347483 0.0096

3 GPU and CUDA architectures

Figure 1 illustrates the CUDA hardware architecture. CUDA uses three types
of memories in the NVIDIA GPUs: the global memory, the shared memory, and
the registers [14]. The global memory is implemented as an off-chip DRAM of
the GPU, and has large capacity, say, 1.5-6 Gbytes, but its access latency is very
long. The shared memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-48 Kbytes. The registers in CUDA are placed on each core in the
multiprocessor and the fastest memory, that is, no latency is necessary. However,
the size of the registers is the smallest during them. The efficient usage of the
global memory and the shared memory is a key for CUDA developers to acceler-
ate applications using GPUs. In particular, we need to consider the coalescing of
the global memory access and the bank conflict of the shared memory access [11,
13]. To maximize the bandwidth between the GPU and the DRAM chips, the
consecutive addresses of the global memory must be accessed in the same time.
Thus, threads should perform coalescing access when they access to the global
memory. Also, CUDA supports broadcast access to the shared memory without
the bank conflict [14]. The broadcast access is a shared memory request such that
two or more threads refer the same address. Thus, in our GPU implementation,
to make memory access efficient, we perform the coalescing and the broadcast
access for the reference to tables B and C stored in the global memory and the
shared memory as possible, respectively.

CUDA parallel programming model has a hierarchy of thread groups called
grid, block and thread. A single grid is organized by multiple blocks, each of which
has equal number of threads. The blocks are allocated to streaming processors
such that all threads in a block are executed by the same streaming processor



8 Takumi Honda, Yasuaki Ito, Koji Nakano

Fig. 1. CUDA hardware architecture

in parallel. All threads can access to the global memory. However, as we can
see in Figure 1, threads in a block can access to the shared memory of the
streaming processor to which the block is allocated. Since blocks are arranged
to multiple streaming processors, threads in different blocks cannot share data
in shared memories. Also, the registers are only accessible by a thread, that is,
the registers cannot be shared by multiple threads.

CUDA C extends C language by allowing the programmer to define C func-
tions, called kernels. By invoking a kernel, all blocks in the grid are allocated in
streaming processors, and threads in each block are executed by processor cores
in a single streaming processor. In the execution, threads in a block are split into
groups of thread called warps. Each of these warps contains the same number of
threads and is executed independently. When a warp is selected for execution,
all threads execute the same instruction. When one warp is paused or stalled,
other warps can be executed to hide latencies and keep the hardware busy.

There is a metric, called occupancy, related to the number of active warps
on a streaming processor. The occupancy is the ratio of the number of active
warps per streaming processor to the maximum number of possible active warps.
It is important in determining how effectively the hardware is kept busy. The
occupancy depends on the number of registers, the numbers of threads and
blocks, and the size of shard memory used in a block. Namely, utilizing too
many resources per thread or block may limit the occupancy. To obtain good
performance with the GPUs, the occupancy should be considered.



GPU-accelerated Verification of the Collatz Conjecture 9

4 GPU implementation

The main purpose of this section is to show a GPU implementation of verifying
the Collatz conjecture. The ideas of our GPU implementation are

(i) a GPU-CPU cooperative approach,
(ii) efficient memory access for the global memory and the shared memory, and
(iii) optimization of the code for arithmetic with larger integers.

The details of our GPU implementation using these ideas are described, as fol-
lows.

4.1 A GPU-CPU cooperative approach

In the following, we show a GPU-CPU cooperative approach that is similar to the
idea of a hardware-software cooperative approach in [4]. In this paper, we assume
that 64-bit numbers are verified. This assumption is sufficient because a working
project for the Collatz conjecture is currently checking 61-bit numbers [17]. We
note that the verified numbers can be extended easily since the interim numbers
in the verification can be larger than 64-bit numbers. In the verification of the
Collatz conjecture, therefore, arithmetic with larger integers having more than 64
bits is necessary to compute B[nL] · nH + C[nL]. Depending on an initial value,
the size of the interim value may become very large during the verification.
If larger interim value is allowed in the computation on the GPU, the values
cannot be stored on the registers, that is, they have to be stored on the global
memory whose access latency is very long. In our implementation, therefore, the
maximum size of interim values is limited to 96 bits, which consists of three 32-
bit integers, to perform the computation only on the registers. By limiting the
maximum size, the computation can be performed as fixed length computation
without overhead caused by arbitrary length computation. Suppose that a thread
finds that the interim value is overflow for the initial value m. The thread reports
m through the global memory. After all the threads finish the verification, the
host program checks whether there are overflows or not. If overflows are found,
the host verifies the Collatz conjecture for the values using unlimited number of
bits by software on the CPU.

The reader may think that if the number of overflows is larger, the verifica-
tion time is longer. However, the number of overflows is small enough for the
limitation of 96 bits [5]. Therefore, it is reasonable to perform the verification
for overflow numbers on the host. In Section 5, we will evaluate the number of
overflows and the verification time for them.

4.2 Efficient memory access for the global memory and the shared
memory

In order to reduce the global memory access, all the contents of tables B and C
stored in the global memory are cached on the shared memory. Threads in each



10 Takumi Honda, Yasuaki Ito, Koji Nakano

block load the contents of the tables B and C to the shared memory at first. In
this case, threads read them from the global memory with the coalescing access.
After that, each thread verifies assigned numbers. In our implementation, we
use tables B and C with base bit 11. Each entry of tables B and C is stored
as a 32-bit integer. According to Table 2, the number of words of tables B and
C is 2048 and the total size of these tables is 16 Kbytes. Since the maximum
size of the shared memory is 48 Kbytes, tables B and C with base bit 12 can be
stored on the shared memory. However, since for that case, the size of utilized
shared memory is too much, the occupancy is decreased, that is, the performance
becomes lower. Thus, we use tables B and C with base bit 11 and cache them
on the shared memory.

In addition, we consider efficient memory access of cached tables B and C
on the shared memory. Recall that the address of the reference for tables B
and C is always determined by the value of nL which is the least significant
bits of interim value n. If interim values have distinct least significant bits, the
access for tables B and C becomes distinct. This occurs the bank conflict of the
shared memory. To reduce this bank conflict, we utilize the broadcast access,
that does not occur the bank conflict. In our GPU implementation, we arrange
initial values verified by threads in a block such that the least significant bits of
them are identical. More specifically, the data format of them is shown in Fig. 2.
In the figure, thread ID denotes a thread index within a block, block ID denotes
a block index within a kernel, and M is a constant. In each block, S[block ID ]
and M are common values for threads and each thread in a block verifies the
Collatz conjecture for 28(= 256) initial values. Using this arrangement, threads
in a block concurrently verify the conjecture for values that are identical except
thread ID . Since the values are not exactly identical, we cannot avoid the bank
conflict for all the access. However, until the bits depending on the thread ID
are included into nL, threads in a block can refer the identical address of tables
B and C at the same time. For each iteration of the while-loop in the algorithm
in Section 2, the interim value is divided into the least significant d bits and the
remaining bits, that is, the value is d-bit-right-shifted. Therefore, using the data
format in Fig. 2, threads can refer the same address b 8+(45−b)+b

d c = b 53d c times
for each verification. For example, when d = 11, that is the optimal parameter
in our experiment, threads can refer the same address at least 4 times for each
initial value.

4.3 Optimization of the code for arithmetic with larger integers

As mentioned in the above, arithmetic with larger integers having more than
64 bits is necessary to compute B[nL] · nH + C[nL]. In C language, however,
there is no efficient way of doing such arithmetic because C language does not
support operations with the carry flag bit. In a common way to perform the
arithmetic with larger integers, 32-bit operations are performed on 64-bit opera-
tions by extending the bit-length. However, the overhead of type conversion for
the extension of the bit-length cannot be ignored. To optimize the arithmetic
with larger integers, therefore, a part of the code is written in PTX [15] that is



GPU-accelerated Verification of the Collatz Conjecture 11

1 thread_ID 00000000 M S[block_ID]

10 bits 8 bits b bits45-b bits

1 thread_ID 11111111 M S[block_ID]

256

�

1 thread_ID 00000001 M S[block_ID]

1 bit

Fig. 2. The data format of 64-bit numbers verified by each thread in a block, where
thread ID denotes a thread index within a block, block ID denotes a block index within
a kernel, and M is a constant.

an assembly language for NVIDIA GPUs and can be used as inline assembler in
CUDA C language. PTX supports arithmetic operations with the carry flag bit.
Concretely, we use mad and madc that are 32-bit arithmetic operations in PTX
to compute B[nL]·nH +C[nL]. These operations multiply two 32-bit integers and
add one 32-bit integer excluding and including the carry flag bit, respectively.
Applying the optimization of the code, in the preliminary experiment, the re-
sult shows that the optimized implementation can verify the Collatz conjecture
approximately 1.8 times faster than the non-optimized implementation.

5 Performance Evaluation

We have implemented our GPU implementation of verifying the Collatz conjec-
ture using CUDA C. We have used NVIDIA GeForce GTX TITAN with 2688
processing cores (14 Streaming Multicore processors which have 192 processing
cores each) running in 876 MHz and 6 GB memory. For the purpose of esti-
mating the speed up of our GPU implementation, we have also implemented
a software approach of verifying the Collatz conjecture using GNU C. In the
software implementation, we can apply the idea of accelerating the verification
described in Section 2. The difference from the GPU implementation is that
the software implementation uses unlimited number operations and verifies the
Collatz conjecture serially. Each of them will be compared in the following. We
have used in Intel Xeon X7460 running in 2.66GHz and 128GB memory to run
the CPU implementation.

We have evaluated the computing time of the GPU implementation by veri-
fying the Collatz conjecture for the 64-bit numbers whose data format is shown
in Fig. 2. For this purpose, we have 10 randomly generated integers as a con-
stant M . For each generated integer M , the GPU implementation verified the
Collatz conjecture. In the GPU and CPU implementation, we use tables B and
C with base bit 11 and 12, which are optimal bits obtained by our experiments,
respectively.



12 Takumi Honda, Yasuaki Ito, Koji Nakano

1.0× 1011

2.0× 1011

3.0× 1011

4.0× 1011

5.0× 1011

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

base bit of table S

0

(a) GPU

0

5× 108

1.0× 109

1.5× 109

2.0× 109

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

base bit of table S

(b) CPU

Fig. 3. The number of verified 64-bit numbers per second for various size of base bit
of table S



GPU-accelerated Verification of the Collatz Conjecture 13

Fig. 3 shows the number of verified numbers per second for various base bit
of table S in the GPU and CPU implementations. We note that in the GPU
implementation, the computing time of the verification for overflow numbers by
the CPU is included as described in Section 4. For example, when base bit of table
S is 32 for a constant M in the GPU verification, 29764 overflow numbers were
found, that is, the size of interim values for 29764 numbers became more than
96 bits. After that, the host program verified the conjecture for these numbers
using unlimited number of bits by software. The verification time in the CPU was
65 ms including the time of data transfer between the GPU and CPU. Since the
total computing time was 2249144 ms, the verification time for overflow numbers
by the CPU is much shorter. According to the both graphs, when the base bit
is larger, the number is larger because the number of non-mandatory numbers
is larger for larger base bit as shown in Table 3. For table S with base bit
32, our GPU implementation can verify the Collatz conjecture for 5.01 × 1011

numbers per second. On the other hand, in the CPU implementation, for table S
with base bit 32, the CPU implementation can verify the Collatz conjecture for
1.80×109 numbers per second. Thus, our GPU implementation attains a speed-
up factor of 278 over the CPU implementation. As far as we know, the FPGA
implementation in [5] has been the fastest implementation. However, our GPU
implementation can verify the Collatz conjecture 3.05 times faster the FPGA
implementation.

6 Conclusions

We have presented a GPU implementation that performs the exhaustive search
to verify the Collatz conjecture. In our GPU implementation, we have considered
programming issues of the GPU architecture such as the coalescing of the global
memory, the shared memory bank conflict, and the occupancy of the multicore
processors. We have implemented it on NVIDIA GeForce GTX TITAN. The
experimental results show that it can verify 5.01 × 1011 64-bit numbers per
second. On the other hand, the CPU implementation verifies 1.80 × 109 64-bit
numbers. Thus, our GPU implementation attains a speed-up factor of 278.

References

1. An, F., Nakano, K.: An architecture for verifying Collatz conjecture using an
FPGA. In: Proc. of the International Conference on Applications and Principles
of Information Science. pp. 375–378 (2009)

2. Diaz, J., Muñoz-Caro, C., Niño, A.: A survey of parallel programming models
and tools in the multi and many-core era. IEEE Transactions on Parallel and
Distributed Systems 23(8), 1369–1386 (August 2012)

3. Ichikawa, S., Kobayashi, N.: Preliminary study of custom computing hardware for
the 3x+1 problem. In: Proc. of IEEE TENCON 2004. pp. 387–390 (2004)

4. Ito, Y., Nakano, K.: A hardware-software cooperative approach for the exhaustive
verification of the Collatz conjecture. In: Proc. of International Symposium on
Parallel and Distributed Processing with Applications. pp. 63–70 (2009)



14 Takumi Honda, Yasuaki Ito, Koji Nakano

5. Ito, Y., Nakano, K.: Efficient exhaustive verification of the Collatz conjecture using
DSP blocks of Xilinx FPGAs. International Journal of Networking and Computing
1(1), 49–62 (2011)

6. Ito, Y., Nakano, K.: A GPU implementation of dynamic programming for the
optimal polygon triangulation. IEICE Transactions on Information and Systems
E96-D(12), 2596–2603 (2013)

7. Ito, Y., Ogawa, K., Nakano, K.: Fast ellipse detection algorithm using Hough trans-
form on the GPU. In: Proc. of International Conference on Networking and Com-
puting. pp. 313–319 (Dec 2011)

8. Lagarias, J.C.: The 3x+1 problem and its generalizations. The American Mathe-
matical Monthly 92(1), 3–23 (1985)

9. Man, D., Nakano, K., Ito, Y.: The approximate string matching on the hierar-
chical memory machine, with performance evaluation. In: Proc. of the IEEE 7th
International Symposium on Embedded Multicore SoCs. pp. 79–94 (2013)

10. Man, D., Uda, K., Ito, Y., Nakano, K.: Accelerating computation of Euclidean
distance map using the GPU with efficient memory access. International Journal
of Parallel, Emergent and Distributed Systems 28(5), 383–406 (2013)

11. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a paral-
lel algorithm for computing Euclidean distance map in multicore processors and
GPUs. International Journal of Networking and Computing 1(2), 260–276 (July
2011)

12. NVIDIA Corp.: CUDA ZONE. https://developer.nvidia.com/cuda-zone
13. NVIDIA Corp.: CUDA C Best Practice Guide Version 5.5 (2013)
14. NVIDIA Corp.: CUDA C Programming Guide Version 5.5 (2013)
15. NVIDIA Corp.: Parallel Thread Execution ISA Version 3.2 (2013)
16. Ogawa, K., Ito, Y., Nakano, K.: Efficient Canny edge detection using a GPU. In:

International Workshop on Advances in Networking and Computing. pp. 279–280
(Nov 2010)

17. Roosendaal, E.: On the 3x + 1 problem. http://www.ericr.nl/wondrous/index.html
18. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., mei W. Hwu,

W.: Optimization principles and application performance evaluation of a multi-
threaded GPU using CUDA. In: Proc. of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming. pp. 73–82 (2008)

19. Silva, T.O.: Maximum excursion and stopping time record-holders for the 3x + 1
problem: Computational results. Mathematics of Computation 68(225), 371–384
(1999)

20. Takeuchi, Y., Takafuji, D., Ito, Y., Nakano, K.: ASCII art generation using the
local exhaustive search on the GPU. In: Proc. of International Symposium on
Computing and Networking. pp. 194–200 (2013)

21. Uchida, A., Ito, Y., Nakano, K.: Accelerating ant colony optimisation for the trav-
elling salesman problem on the GPU. International Journal of Parallel, Emergent
and Distributed Systems 29(4), 401–420 (2014)

22. Weisstein, E.W.: Collatz problem. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CollatzProblem.html


