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Abstract—The main contribution of this paper is to show
efficient FIFO-based hardware sorters that sort n elements
with w bits each stored in a high bandwidth memory with
modest access latency. We assume that each address of the high
bandwidth memory can store p elements of w bits each, which
can be read or written at the same time. Thus, n elements to be
sorted are stored in n

p
addresses. The access latency l of the high

bandwidth memory is assumed to take l clock cycles to access
p elements in a specified address. Furthermore, burst mode is
supported and k (≥ 1) consecutive addresses can be accessed
in k + l − 1 clock cycles in a pipeline fashion. However, if k
addresses are not consecutive, then memory access to each of
them takes l clock cycles and so kl clock cycles are necessary to
access all of them. Thus, all n elements arranged n

p
addresses

can be duplicated in 2(n
p
+ l − 1) clock cycles in burst mode.

These assumptions capture fundamental characteristic of latest
high bandwidth memories such as HBM2 and GDDR5X. We
present two types of hardware sorters that sort n = rc elements
stored in an r × c matrix of the high bandwidth memory. We
first develop Three-Pass-Sort and Four-Pass-Sort that sort an
r × c matrix by reading from and witting in it three times and
four times, respectively. We implement these two algorithms using
FIFO-based mergers that can be configured as pairwise mode and
sliding mode. Our hardware sorter based on Three-Pass-Sort runs
in 6n

p
+3 c2

p2 l+O( c
p
(l+log r)+r) clock cycles using a circuit

of size O(rwp) provided that r ≥ c2. Also, our hardware sorter
based on Four-Pass-Sort runs in 8n

p
+2c2l+O(cl+log r+p)

clock cycles using a circuit of size O(rw).

Keywords—parallel sorting algorithms, hardware sorter, high
bandwidth memory, burst memory access, big data analysis.

I. INTRODUCTION

It is no doubt that sorting is one of the most important
tasks in computer engineering, such as database operations,
image processing, big data analysis, statistical methodology
and so on. Hence, many sequential and parallel sorting al-
gorithms have been studied in the past [1], [2]. We focus
on comparison-based sorting, in which data movement for
sorting is determined only by means of comparison operations
for pairs of two elements. It is well-known that sequential
sorting algorithms such as heap sort and merge sort can sort
n elements in O(n log n) time [3], and they are optimal
because at least Ω(n log n) comparisons are necessary to sort n
elements. Also, a work-time optimal parallel sorting algorithm
running in O(log n) time using n processors on the PRAM
has been presented [4]. Furthermore, sorting n elements can
be done by a O((log n)2)-depth circuit [5] and a O(log n)-
depth circuit [6].

The main contribution of this paper is to introduce a
Hardware Sorter for High Bandwidth Memory (HS-HBM)
model, and show very efficient hardware algorithms on it.
Figure 1 illustrates the HS-HBM model. We assume that n
elements with w bits are stored in the high bandwidth memory
with modest access latency. We assume that each address of
the high bandwidth memory can store p elements of w bits
each, which can be read or write at the same time. Thus,
the n elements to be sorted are stored in n

p addresses. We
also assume access latency l of the high bandwidth memory
such that it takes l clock cycles to access p elements in a
specified address. Further, burst mode is supported and k (≥ 1)
consecutive addresses can be accessed in k + l − 1 clock
cycles in a pipeline fashion. However, if k addresses are not
consecutive, then memory access to each of them takes l clock
cycles and so kl clock cycles are necessary to access all of
them. Figure 1 also shows the timing chart of consecutive
access and stride access. Memory access to consecutive 8
addresses 0, 1, 2, . . ., 7 can be completed in 8 + l − 1 = 10
clock cycles. However, stride access to 8 addresses 0, 2, 4,
. . ., 14 takes 8l = 24 clock cycles. Thus, memory access
operations should be performed on consecutive addresses to
maximize the performance. A hardware sorter is implemented
using logic circuits using basic logic gates such as AND, OR,
NOT, XOR, etc, flip-flops, registers, and internal memories.
For example, latest FPGAs have a number of Look-Up-Tables
(LUTs) [7], [8] and block memories [9], [10] in which these
logic circuits can be implemented. An internal memory is a
dual-port memory to which read and write operations can be
performed to different addresses at the same time. Also, we use
FIFOs to which enqueue and dequeue operations are performed
at the same time. Note that a FIFO can be implemented as a
ring buffer using a dual-port block memory and registers to
indicate the head and tail of the FIFO. In particular, latest
FPGAs support hardware FIFOs using block memories [10].
We evaluate the circuit size of a hardware sorter by the sum
of the total number of logic gates and the total number of bits
of internal memories.

We define sorting problem for the HS-HBM as follows.
Input: n input elements to be sorted are stored in consecutive
n
p addresses in the high bandwidth memory.
Output: sorted elements are stored in consecutive n

p addresses
in the high bandwidth memory as follows.
Let π : {0, 1, . . . , n

p−1}×{0, 1, . . . , p−1} → {0, 1, . . . , n−1}
be a pre-determined one-to-one mapping. After sorting, each j-
th element of address i (0 ≤ i ≤ n

p −1 and 0 ≤ i ≤ p−1) must
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Fig. 1. A Hardware Sorter with high bandwidth memory (HS-HBM) and the
timing chart of memory access with latency l = 3.

store π(i, j)-th largest element of the input. We say that the
HS-HBM works for sorting correctly if the output is correctly
sorted with respect to some fixed permutation π for any input
matrix.

There are several works that present hardware sorters.
For example, Marcelino et al. [11] implemented a FIFO-
based merge sorter [12] and evaluated the performance on
an FPGA. Koch and Torresen [13] presented FPGA imple-
mentations of various parallel sorting algorithms. Mueller et
al. [14] presented implementations of sorting networks [15].
However, sorting networks are very costly and require a
lot of comparators. Marcelino et al. [16] shows a simple
architecture for parallel merge sort using one merge sorting
unit. Since it repeats merging many times, latency is quite
large. Matsumoto et al. [17] have presented a very efficient
merge-based sorter, which minimizes the FIFO capacity used
in FIFO-based merge sorter proposed in [12]. Harada et al. [18]
have presented a timestamp sorter, which sorts almost sorted
sequence using FIFO-based mergers. However, most of the
above works support sorting of a one-port memory, in which
each address stores an element. Hence, it is not possible to
sort n elements in the high bandwidth memory faster than n
clock cycles, which are necessary to read n elements. It is
a challenging work to achieve a speedup factor of p using
bandwidth of pw bits to sort n w-bit elements.

We present two sorting algorithms, Three-Pass-Sort and
Four-Pass-Sort that sort n = rc elements with w bits arranged
in an r × c matrix. These algorithms are modifications of

Leighton’s Columnsort [19], [20] for efficient implementations
in the HS-HBM model. We first show that the Three-Pass-Sort
can be implemented in the HS-HBM model with bandwidth
pw to run in 6n

p + n
p2 l+O( c

2

p2 l+
c
p log r+ r) clock cycles 1.

Quite surprisingly, it reads and writes n elements to/from the
high bandwidth memory only three times each. This hardware
algorithm uses the following circuits:

• p FIFO-based hardware r-sorters with pairwise mode
and sliding mode;

• an internal memory of size r × pw; and

• a transposer of size p× p, which is used to transpose
p× p matrices.

An r-sorter in pairwise mode sorts sequences of r elements
each in a pipeline fashion. When in sliding mode, it sorts an
almost sorted sequence, called r

2 -sorted sequence, in which a
pair of two elements can be in wrong order if the difference
of their positions is less than r

2 . Finally, we implement the
Four-Pass-Sort in the HS-HBM, which reduces the circuit size
to O(rw). Our implementation performs 4 read and 4 write
operations per element and runs in 8n

p+2c2l+O(cl+log r+p)
clock cycles.

This paper is organized as follows. In Section II, we present
the Three-Pass-Sort and the Four-Pass-Sort, which sort an r×c
matrix in three passes and four passes, respectively. We then go
on to show three circuit elements: an r-sorter, a transposer, and
an internal memory, which are used to implement the Three-
Pass-Sort and the Four-Pass-Sort in the HS-HBM. Section IV
implements the Three-Pass-Sort and the Four-Pass-Sort in the
HS-HBM model. In Section V, we concludes our work.

II. THREE-PASS-SORT AND FOUR-PASS-SORT

The main purpose of this section is to present the Three-
Pass-Sort and the Four-Pass-Sort, which sorts an r× c matrix
with n = rc elements such that r ≥ c2 in row-major order.
For simplicity, we assume that r and c are powers of two.

A. Three-Pass-Sort

Three-Pass-Sort has three passes, each of which reads all
elements stored in the input matrix, performs some operations
on them, and writes the output matrix. The output matrix in
each pass will be the input matrix of the following pass and
the sorted results will be stored in the output matrix of Pass 3.
Figure 2 shows how a 16×4 matrix with 0-1 elements is sorted.
Note that from the 0-1 principle for sorting [21], comparison-
based sorting can sort any input numbers if it can sort any 0-1
elements. So, it is sufficient to analyze how 0-1 elements are
sorted for the purpose of understanding the correctness of the
Three-Pass-Sort.

We say that a sequence s0, s1, . . . is k-sorted if si ≤ sj
(i ≤ j) holds for all i and j such that j−i ≥ k. In other words,
if si > sj then j − i < k must be satisfied. For example,
sequence 0, 1, 5, 3, 4, 6, 7 is 3-sorted. However, it is not 2-
sorted, because 5 > 4. In the context of 0-1 principle, sequence

1We use formulas such as f+O(g) if f ≫ g, for the purpose of clarifying
dominant terms f and avoid cumbersome handling of small non-dominant
terms g.
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Fig. 2. Three-Pass-Sort for a 16× 4 matrix.

0, 0, 1, 0, 0, 1, 1 is 3-sorted, but not 2-sorted. Intuitively, k-
sorted sequence is “better sorted” if k is smaller.

The Three-Pass-Sort performs column-wise sort, which
sorts r elements in each column independently, and row-major
c2

2 -sort, which sorts c2

2 -sorted sequence of length n in row-
major order as illustrated in Figure 2. The details are spelled
out as follows.

Suppose that an r × c matrix is partitioned into c bands
of r

c consecutive rows each. Thus, each band has c × r
c = r

elements. In Pass 1, column-wise sort and transpose write are
performed as follows. All r elements in each column i (0 ≤
i ≤ c

2 −1) are sorted and written in band i in row-major order.
Similarly, each column i ( c2 ≤ i ≤ c− 1) is sorted and written
in band i in inverse row-major order, in which elements are
placed from right to left in each row. From Figure 2, we can
see that at most one row in each band may have both 0 and
1 elements in the resulting matrix. Pass 2 simply performs
column-wise sort. We say that a row of the resulting matrix
of Pass 2 is dirty if it has both 0 and 1 elements. We will
show that after Pass 2, the resulting matrix has at most c

2 dirty
rows. In each band i (0 ≤ i ≤ c

2 − 1) obtained in Pass 1, a
dirty row has 0s followed by 1s. Similarly, each band i + c

2
(0 ≤ i ≤ c

2 − 1) has 1s followed by 0s in a dirty row. Hence,
if column-wise sort is performed for two bands i and i + c

2
combined, at most one row is dirty. Thus, the resulting matrix
obtained by column-wise sort in Pass 2 has at most c

2 dirty
rows, and so it is c2

2 -sorted in row-major order. Pass 3 simply
performs c2

2 -sort to complete sorting of the matrix in row-
major order.

B. Parallel Three-Pass-Sort

Next, we present the Parallel Three-Pass-Sort, which per-
forms the Three-Pass-Sort using multiple processing units
working in parallel. We assume a parallel machine with p
processing units and a shared memory to store the matrix.
We also assume that p is a power of two such that p ≤ c.
Similarly to the PRAM (Parallel Random Access Machine)
model [21], p processing units work synchronously and can
read from and/or write to any address of the shared memory
at the same time. Each processing unit can perform:

r-wise sort: r elements in a column are read one by one and
then the sorted results are written one by one. This can be
done for multiple columns in a pipeline fashion.
c2

2
-sort: an c2

2 -sorted sequence is read one by one. After
reading c2

2 elements, the sorted sequence is written, element
by element, in a pipeline fashion.
Figure 3 shows the timing charts for the above sorters. For
simplicity, we assume latency r and c2

2 respectively, because
a processor unit has to read elements in the latency time
necessary to output the first element. We do not discuss the
details of processing units in this section. The processing units
will be implemented by circuits later in this paper.

We will show how p processing units complete the Three-
Pass-Sort. In Pass 1, we assign c

p columns to each processing
unit and perform column-wise sorting. The sorted results of
each band with r

c consecutive rows in row-major order or
inverse row-major order. Since each processing unit works for
c
p columns, it runs in c

p ·r+r = n
p +r clock cycles. Pass 2 can

be done in the same way in n
p + r clock cycles. For Pass 3,

we consider a sequence S of length n obtained by picking
elements in the matrix in row-major order. Suppose that the
resulting matrix of Pass 2 are arranged in a 1-dimensional
array of length n = rc by picking elements in row-major
order as illustrated in Figure 4. We partition the 1-dimensional
array into p segments S0, S1, . . . , Sp−1 of n

p elements each.
Furthermore, let S′

0, S
′
1, . . . , S

′
p−1 be segments such that

• each S′
i (0 ≤ i ≤ p − 2) is the concatenation of Si

and the first c2

2 elements in Si+1; and

• S′
p−1 = Sp−1.

Hence, each each S′
i (0 ≤ i ≤ p− 2) has n

p + c2

2 elements. In
Pass 3, each S′

i (0 ≤ i ≤ p− 1) is assigned processing unit i,
which performs c2

2 -sort in parallel. Note that, when processing
unit i (0 ≤ i ≤ p−2) operates on the first c2

2 elements in Si+1,
the resulting elements obtained by c2

2 -sort by processing unit
i + 1 must be used. Since the 1-dimensional array stores c2

2 -
sorted sequence, Pass 3 correctly sorts these elements in n

p +c2

clock cycles. Thus, we have,

Lemma 1: Parallel Three-Pass-Sort sorts n = rc elements
in 3n

p +2r+c2 clock cycles using p processing units if r ≥ c2.

C. Parallel Four-Pass-Sort

We will change Pass 3 in Parallel Three-Pass-Sort so that
r-wise sort defined below is executed twice. Suppose that an
r × c input matrix for Pass 3 is partitioned into n

r = c bands
T0, T1, . . . , Tc−1 of r elements in r

c rows each as illustrated
in Figure 5. We perform r-wise sort in row-major order for
the input matrix such that each Ti is sorted. For the resulting
matrix of r-wise sort, imagine that the first r

2 elements in r
2c

rows and the last r
2 elements in r

2c rows in row-major order
are removed. We partition the remaining (r − r

c ) × c matrix
into n

r −1 bands T ′
0, T

′
1, . . . , Tc−2 of r

c rows each as shown in
Figure 5. We perform r-wise sort in row-major order for the
input matrix such that each T ′

i is sorted. The input matrix of
Pass 3 has at most r

2c (≥ c
2 ) dirty rows if r ≥ c2. Thus, dirty

rows are in at most two consecutive Tis. After sorting of each
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Ti by r-wise sort, at most one T ′
i has dirty rows. Hence, by

sorting each T ′
i by r-wise sort, sorting can be done correctly.

We assume that a processing unit can perform r-wise sort
in row-major order. Since we use p processing units, we assign
c
p bands to each processing units and perform r-wise sort. Each
processor can perform r-wise sort for c

p bands in n
p + r clock

cycles. Since r-wise sort is executed twice, Pass 3 can be done
in 2n

p +2r clock cycles. Since Passes 1, 2, and 3 takes n
p + r,

n
p + r, and 2n

p + 2r, respectively, we have,

Lemma 2: Parallel Four-Pass-Sort sorts n = rc elements
in 4n

p + 4r clock cycles using p processing units if r ≥ c2.

III. CIRCUIT ELEMENTS FOR THREE-PASS-SORT AND
FOUR-PASS-SORT

This section is devoted to show the following circuits: a d-
sorter, a transposer, and an internal memory for implementing
the Three-Pass-Sort and the Four-Pass-Sort to run in the HS-
HBM. A d-sorter is a hybrid of the hardware sorter presented
in [17] and the timestamp sorter shown in [18].

A. d-merger with pairwise mode and sliding mode

First, we show a d-merger, which has two FIFOs A and
B of sizes d + 1 and d, respectively, and a comparator as
illustrated in Figure 6. A FIFO is a first-in first-out memory,
to which enqueue and dequeue operations are performed. Let
S0, S1, . . . , be an input sequence such that each Si (i ≥ 0)
is a sorted sequence with d elements. A d-merger receives
an element of an input sequence in every clock cycle and
outputs an element in every clock cycle after some latency
time. It has two modes, pairwise mode and sliding mode. In
sliding mode, an input sequence must be d-sorted. In addition,
to simplify treatment of two elements with the same value,
we assume that, if the values of two elements are the same,
then an element in smaller indexed S is smaller than the other.
Hence, no two elements in different sequences are the same
under this assumption and Si < Si+2 (i.e. all elemnts in Si are
small than those in Si+2) always holds if the input is d-sorted.

In both modes, an element of an input sequence is en-
queued in one of FIFOs in every clock cycle such that it is
enqueued in FIFO A if it is in S2i (i ≥ 0), and in FIFO B
if it is in S2i+1. In pairwise mode, each pair of two sorted
sequences S2i and S2i+1 is merged into one sorted sequence
and is output in every clock cycle after d+ 1 clock cycles. In
sliding mode, all elements of S0, S1, . . ., are merged into one
sorted sequence.

A d-merger in both modes works as follows. After all
d elements in S0 and the first element S1 are enqueued in
FIFOs A and B, respectively, dequeue operation starts. One
of the FIFOs is selected and dequeued in every clock cycle,
and so two FIFOs always have d + 1 elements totally. In the
figure, FIFOs always have 5 elements on and after 5 clock
cycles. A FIFO for which dequeue operation is performed is
selected as follows. In sliding mode, the heads of two FIFOs
are compared and a FIFO with smaller head is dequeued and
output. In pairwise mode, the head of FIFO A is an element
in S2i for some i and that of FIFO B is an element in S2i+1
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Fig. 6. Timing chart of 4-mergers with pairwise and sliding modes.

then a FIFO with smaller head is dequeued. If the head of A is
an element in S2i+2 and that of B is an element in S2i+1 then
FIFO B is dequeued, because no element in S2i+2 should be
output before an element in S2i+1 is output. For example, in
4-merger with pairwise mode of Figure 6, element 11 in FIFO
B is output because it is in S2 and element 11 in FIFO B is an
element in S1. It should be clear that d-merger with pairwise
mode can merge each pair of S2i and S2i+1 of d elements
each into one sorted sequence of 2d elements.

We show the correctness of a d-merger with each mode. It
should be clear that a d-merger with pairwise mode correctly
outputs a pairwise sorted sequence, because a smaller element
in the heads is dequeued from the two sorted sequences. Note
that FIFO A may store d + 1 elements and so the size of
FIFO A must be d + 1. For example, all elements in S0 is
larger than S1 then FIFO A is empty after the last element
in S1 is dequeued from FIFO B. If this is the case, FIFO
A stores all d elements in S0 and the first element in S2 is
enqueued. Thus, FIFO A stores d+ 1 elements. On the other
hand, even if all d elements in S1 is in FIFO B, the first
element of S2 is enqueued to FIFO A. Hence, FIFO B stores
at most d elements. We can confirm the correctness of a d-
merger with sliding modes as follows. Since each Si is sorted
and Si < Si+2 holds for all i, elements in the concatenated
sequence of even-indexed sequences S0, S2, S4, . . . enqueued
in FIFO A are sorted. Similarly, elements in S1, S3, S5, . . .
enqueued in FIFO B are also sorted. Thus, they can be merged
into one sorted sequence by dequeuing and outputting smaller
one of heads of two FIFOs. We will show that FIFO B never
stores more than d elements. The proof for FIFO A can be
done in the same way. Recall that FIFOs A and B store d+1
elements totally in and after d+ 1 clock cycles. Hence, FIFO
B stores d+ 1 elements if

• FIFOs A and B stores 1 and d elements, respectively,
and

• dequeue and enqueue operation are performed for
FIFOs A and B, respectively.

If the element in FIFO A is not the last element of S2i for
some i (≥ 1), then enqueue operation is performed for FIFO
A to store the next element of S2i. Thus, the element in FIFO
A must be the last element of S2i. Since dequeue operation is
performed for FIFO A, the head of FIFO A is smaller than the
head of FIFO B. Hence, the head of FIFO B is not an element
from S2i−1 or earlier because an input sequence is d-sorted.
Thus, all elements in FIFO B are from S2i+1 or later. Since

no element in S2i+2 has been enqueued yet, all d elements
in FIFO B are from S2i+1, and S2i+2 must be enqueued in
FIFO A, a contradiction. Therefore, FIFO B stores at most d
elements. Consequently, we have,

Lemma 3: A d-merger with pairwise mode merges pairs
of two sorted sequences with d elements each and outputs the
sorted sequence with 2d elements in latency d+ 1. In sliding
mode, a d-merger sorts a d-sorted sequence and outputs the
sorted sequence in latency d+ 1.

B. d-sorter with pairwise mode and sliding mode

For simplicity, let d be a power of two. A d-sorter is a
cascade of log2 d mergers, 1-merger, 2-merger, 4-merger, . . .,
d
2 -merger as illustrated in Figure 7. A d-sorter also has two
modes, pairwise mode and sliding mode. In a d-sorter with
pairwise mode, all mergers in it are pairwise mode. On the
other hand, d

2 -merger is sliding mode and the other mergers are
pairwise mode, in a d-sorter with sliding mode. In other words,
a d-sorter with sliding mode is d

2 -sorter with pairwise mode
followed by d

2 -merger with sliding mode. Since the latency of
i-merger is i+1, the latency of d-sorter is (1+1)+ (2+1)+
(4+1)+ · · ·+(d2 +1) = d+log2 d. Figure 7 shows a 8-sorter
with pairwise mode and sliding mode. The 8-sorter is pairwise
mode and sliding mode if the 4-merger is pairwise mode and
sliding mode, respectively.

A d-sorter receives an input sequence in every clock cycle.
Let S0, S1, . . . be partitions of the input sequence, each of
which has d elements. Clearly, d-sorter with pairwise mode
sorts all d elements in each Sj and outputs them in turn,
because pairwise merge is performed for two sequences with
j element in i-merger (i = 1, 2, 4, . . . , d). Figure 7 also shows
a timing chart of 8-sorter with pairwise mode. We can see that
the latency is (1+ 1)+ (2+ 1)+ (4+1) = 10 and S0 and S1

with 8 elements each are sorted.

Next, we will show that d-sorter with sliding mode outputs
the sorted sequence of an input d

2 -sorted sequence. It is
sufficient to show that d

2 -merger with pairwise mode in d-
sorter outputs d

2 -sorted sequence, because following d
2 -merger

with sliding mode correctly sorts it. Let s0, s1, . . . be an input
sequence for d

2 -sorter. By d
2 -merger with pairwise mode, the

input sequence is locally sorted. We will show that the output
sequence of d

2 -merger with pairwise mode is still d
2 -sorted.

We say that an interval [i, j] (i < j) of an input sequence is
maximal reverse if
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(1) si > sj ;
(2) all sk (k < i) is smaller than sj ; and
(3) all sk (k > j) is larger than si.

Since the input sequence is d
2 -sorted, j − i ≤ d

2 holds from
(1). Let s′i′ and s′j′ be two elements in the output sequence
s′0, s

′
1, . . . of d

2 -sorter with pairwise mode. From (2) and (3),
both i ≤ i′ and j′ ≤ j are satisfied. Thus, j′ − i′ ≤ j − i ≤ d

2
holds. In general, for any interval [u, v] (u < v) satisfying
su > sv , there exists a maximal reverse interval [i, j] such that
[u, v] ⊆ [i, j]. Similarly, let s′u′ and s′v′ be elements su and sv
in the output sequence. For such maximal reverse interval [i, j],
both i ≤ u′ and v′ ≤ j hold. Thus, v′ − u′ ≤ j − i ≤ d

2 holds
and d

2 -sorter with pairwise mode outputs an d
2 -sorted sequence,

which is given to d
2 -merger with sliding mode. Figure 7 also

shows a timing chart for an 8-sorter with sliding mode. We
can see that 4-sorted sequence is sorted correctly.

Lemma 4: A d-sorter with pairwise mode sorts input
sequences with d elements each and outputs the resulting
sequence in latency d+log2 d. When in sliding mode, d-sorter
sorts a d

2 -sorted sequence and outputs the sorted sequence in
latency d+ log2 d.

C. Transposer and internal memory

Since column-wise access to the high bandwidth memory
has large overhead, we use the transposer and the internal
memory for row-wise memory access in burst mode.

Similarly to the high bandwidth memory, the internal
memory is a memory in which each address stores p elements
with w bits. We evaluate the size of the internal memory by
the total number of bits it can store. We can perform read or
write p elements in a specified address at the same time. Since
the internal memory is implemented on-chip, we assume that
the memory access latency is only 1.

The transposer is a dual-port memory of size p×p. We can
specify a row address or a column address to access a row and
a column, and p elements in a row/column can be read and
written at the same time. We assume write-after-read mode,
and so p elements in a specified row/column before writing are

read. Using the transposer, we can transpose each of multiple
matrices of size p×p in a pipeline fashion as follows. Matrices
0, 1, . . . are written in p rows and p columns of the transposer
alternately, that is, at clock cycle t (t ≥ 0), row t mod p of
matrix ⌊ t

p⌋ is written in row t mod p of the transposer if ⌊ t
p⌋

is even and, in column t mod p if odd. After p clock cycles
from the beginning, the transposer is also read in row-wise
and in column-wise alternately, that is, the same row or the
same column is read before writing a row or a column at clock
cycle t + p (t ≥ 0). A row of the transposer is read at clock
cycle t + p, column t mod p of matrix ⌊ t

p⌋. We can confirm
this fact from Figure 8, which shows transposing of matrices
of size 4× 4. In the figure, we assume that integers from 0 to
15, from 16 to 31, and from 32 to 47 are stored in matrices
in 0, 1, and 2 in row-major order. In 4 clock cycles, rows 0,
1, 2, and 3 of matrix 0 are written in rows 0, 1, 2, and 3 of
the transposer. After that, those stored in matrix 1 are written
in columns 0, 1, 2, and 3 of the transposer in 4 clock cycles.
At the same time, columns 0, 1, 2, and 3 of the transposer are
read, and read columns are equal to columns 0, 1, 2, and 3
of matrix 0. Similarly, those stored in matrix 2 are written in
rows 0, 1, 2, and 3 of the transposer and the same rows are
read at the same time. The read values are equal to columns
0, 1, 2, and 3 of matrix 1. By repeating the same operation,
all columns of multiple matrix can be read.

IV. HARDWARE ALGORITHMS FOR THE HS-HBM

We will show hardware algorithms for the HS-HBM. We
assume that n = rc elements of w bits are stored in the
high bandwidth memory with bandwidth pw and latency l and
hardware sorter performs Parallel Three-Pass-Sort on a r × c
matrix of n elements. We first show a hardware algorithm for
the Three-Pass-Sort-1 on the HS-HBM. We then go on to show
for the Three-Pass-Sort-2, which reduces the latency overhead.

A. Three-Pass-Sort-1

Three-Pass-Sort-1 uses following three types of circuits:

• p r-sorters configured as pairwise mode and sliding
mode;
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Fig. 8. Transposing multiple matrices of size 4× 4 using the transposer.
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Fig. 9. Wide column-major and wide row-major arrangements of an H×W
matrix in the high bandwidth memory; numbers represent addresses in the
high bandwidth memory.

• a transposer of size p× p; and

• an internal memory of size p× r.

Note that p < c < r < n and r ≥ c2 holds. Clearly, the circuit
size is O(rpw). We configure p r-sorters as pairwise mode to
implement Passes 1 and 2, and as sliding mode for Pass 3. We
obtain a c2

2 -sorted sequence after Pass 2 and an r-sorter with
sliding mode can sort an r

2 -sorted sequence. The transposer of
size p× p is used in Passes 1 and 2.

We use two arrangements, wide column-major arrangement
and wide row-major arrangement of matrix elements in the
high bandwidth memory as illustrated in the Figure 9. The fig-
ure shows how an H×W matrix is arranged in a memory space
of the high bandwidth memory. Each number corresponds to an
address (or an address offset of the assigned memory space) in
the high bandwidth memory. Hence, the leftmost p columns of
the matrix in wide column-major arrangement can be accessed
in burst mode in H + l − 1 clock cycles because they are
arranged in consecutive addresses from 0 to H − 1. Thus,
column-wise read operation performed in Pass 1 of the Parallel
Three-Pass-Sort runs very efficiently if the matrix is in wide
column-major arrangement. Similarly, the topmost p rows of
the matrix in wide row-major arrangement can be accessed
in only W + l − 1 time in burst mode. The wide row-major
arrangement is used for efficient implementation of Pass 3 of
the Parallel Three-Pass-Sort, which performs read operation in
row-major order.

Figure 10 illustrates how the Three-Pass-Sort-1 works.
Each Pass has an input matrix and an output matrix of size

r × c such that the output matrix of Pass i (i = 1, 2) is the
input matrix of Pass i+ 1 and the sorted result is obtained as
the output matrix of Pass 3.

The details of Passes 1, 2, and 3 are spelled out as follows.
Let U0, U1, . . . , U c

p−1 be strips of r × p elements in the
input matrix of Pass 1 such that each Ui (0 ≤ i ≤ c

p − 1)
has p columns from column ip to ip + p − 1. Also, let
U ′′
0 , U

′′
1 , . . . , U

′′
c
p−1 be bands of size pr

c ×c in the output matrix
of Pass 1 such that each U ′′

i (0 ≤ i ≤ c
p ) has pr

c rows
from iprc to (i + 1)prc − 1. Clearly, each Ui and each U ′′

i
has rp elements. Pass 1 reads each Ui, operates on it, and
write the results in U ′′

i . We assume that both input and output
matrices of Pass 1 are wide column-major arrangement in the
high bandwidth memory. The reader should refer to Figure 10
illustrating elements of U0 and U ′′

0 to see their locations in the
matrices. Also, Figure 11 illustrates how each Ui is processed.
First, U0 are read in row-wise from the top to the bottom,
and send to p r-sorters with pairwise mode, in which every
column of U0 is sorted. Let U ′

i (0 ≤ i ≤ c
p − 1) denote the

sorted result of Ui by p r-sorters. Next, U ′
0 are written in

the internal memory through the transposer, and at the same
time U1 is read and sent to the p r-sorters. After that, U ′

0 of
the internal memory is read and written in U ′′

0 of the output
matrix. The same operation is repeated for the remaining Uis in
a pipeline fashion as shown in Figure 11. Note that, transpose
write is a bit different from the original Three-Pass-Sort. This
implementation performs block-wise transpose write, which
is transpose in p × p block-wise as shown in Figure 11.
The block-wise transpose write is essentially the same as the
transpose write in Figure 2, because the column-destination
of each element is the same and Pass 2 performs column-
wise sort. Note that reading and writing operations for the
high bandwidth memory are performed alternately as shown
in Fig 11, because the bus connecting the high bandwidth
memory is unidirectional. To maximize writing performance in
burst mode, writing operation from the internal memory to the
high bandwidth memory are performed in column-wise. Each
U ′′
i are written in pr

c consecutive addresses c
p times, it takes at

most (prc + l−1) · c
p = r+ c

p (l−1) clock cycles to write each
U ′′
i in the output matrix. On the other hand, reading of each Ui

can be done in burst mode, which takes r+ l−1 clock cycles.
Also, the latency overheads of “log2 r” and “p” are imposed
for p r-sorters and the transposer, respectively. Thus, Pass 1
takes no more than (r+ l− 1+ r+ c

p (l− 1)+ log2 +p) · c
p =

2n
p+

c2

p2 l+O( cp (l+log2 r)+c) time. Note that, since c
p l ≪

c2

p2 l,
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Fig. 10. Parallel Sorting algorithm on the HS-HBM based on Three-Pass-Sort.
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Fig. 11. Pipelined operation in Pass 1 of Three-Pass-Sort-1.

c
p log2 r ≪ n

p , and c ≪ n
p , we use big-O notation to non-

dominant terms.

Next, we will show Pass 2 of Thee-Pass-Sort-1. Let Vi

(0 ≤ i ≤ c
p ) be a strip of p columns in the input matrix (i.e.

the output matrix of Pass 1). Also, let V ′′
i be a strip of p

columns of the output matrix. Similarly to Pass 1, every Vi

is processed in a pipeline fashion as shown in Figure 12 and
sorted result V ′′

i is written. Reading of each Vi is exactly the
same as that of Pass 1. Writing of each V ′′

i is performed for
the output matrix in the wide-row major arrangement for burst
read operation in Pass 3. Each Vi is sorted in column-wise
and the sorted result V ′

i is written in the internal memory. The
internal memory storing V ′

i is read in shuffle order and written
in the output matrix through the transposer. The shuffle order
of r rows is 0, r

p , 2r
p , 3r

p , . . ., that is, the i-th row number is
(i mod p) · r

p + ⌊ i
p⌋. Figure 10 illustrates the shuffle write, in

which V ′′
i is written in the shuffle order. Reading each Vi from

the high bandwidth memory is performed on consecutive rows
in burst mode, which takes r + l − 1 clock cycles. However,
each V ′′

i in the output matrix with wide row-major arrangement
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...
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Fig. 12. Pipelined operation in Pass 2 of Three-Pass-Sort-1.

are not consecutive. For example, the first 2p rows of V ′′
0 are

arranged in p addresses from 0 to p−1 and then in p addresses
from c to c+p−1, respectively. Since p consecutive addresses
can be written in p+ l−1 clock cycles, writing of each V ′′

i in
the high bandwidth memory takes (p+ l−1) · rp = r+ r

p (l−1)
clock cycles. Thus, including the latency overheads of p r-
sorters and the transposer, Pass 2 takes at most (r + l − 1 +
r+ r

p (l−1)+log2 r+p) · cp = 2n
p +

n
p2 l+O( cp (l+log2 r)+c)

time.

Recall that Pass 3 of Parallel Three-Pass-Sort performs c2

2 -
sort for each segment S′

i in Figure 4. Since we assumed r ≥ c2,
an r-sorter can perform c2

2 -sort, because we assumed r ≥ c2.
Each segment Si (0 ≤ i ≤ p − 1) is arranged in rows i,
i + p, i + 2p, . . . in the resulting matrix of Pass 2 by the
shuffle write. Similarly, let S′′

i (0 ≤ i ≤ p − 1) be a segment
in the output matrix of Pass 3 corresponding to Si. Thus, by
simple reading operation for addresses from 0 to n

p of the
input matrix in the wide row-major arrangement, p segments
S0, S1, . . . , Sp−1 can be read in parallel. They are sent to p

r-sorters with sliding mode for c2

2 -sort. The sorted results are
written in the output matrix in wide row-major arrangement.



After p segments S0, S1, . . . , Sp−1 in the input matrix are
read, the first c2

2 elements in S′′
1 , S

′′
2 , . . . , S

′′
p−1 in the output

matrix are read. In Figure 10, S0 and the first c2

2 elements
of S′′

1 are indicated. Since they are sent to an r-sorter with
sliding mode, Pass 3 of Parallel Three-Pass-Sort is emulated
correctly. We can perform this operation using p r-sorters and
the internal memory in a pipeline fashion. Reading and writing
are performed for consecutive addresses, because the input
and the output matrices are in wide row-wise arrangement.
Hence, Pass 3 can be done in pipeline fashion similarly to
Pass 1 shown in Figure 11. More specifically, we partition the
input matrix into c

p groups of rp elements each and they are
processed using p r-sorters and the internal memory. After all
groups are processed, the first r elements in S′′

1 , S
′′
2 , . . . , S

′′
p−1

in the output matrix are processed in the same way. Thus,
we can think that c

p + 1 groups are processed by p r-
sorters and the internal memory. Thus, Pass 3 takes at most
(r+l−1+r+l−1+log2 r)·( cp+1) = 2n

p +2 c
p l+O( cp log2 r)

clock cycles. By combining three passes of the Three-Pass-
Sort-1, we have,

Lemma 5: Three-Pass-Sort-1 runs 6n
p + n

p2 l + O( c
2

p2 l +
c
p log2 r + r) using a circuit of size O(rpw).

Note that, when l ≪ p, we have n
p2 l ≪ 6n

p and the latency
overhead can be hidden in this implementation.

B. Three-Pass-Sort-2

We will show that the latency overhead n
p2 l in Three-Pass-

Sort-1 can be decreased. This latency overhead is involved
in the shuffle write of Pass 2. Three-Pass-Sort-2 additionally
uses p 2r-mergers with sliding mode. By combining them and
p r-sorters with pairwise mode, we have p 2r-sorters with
sliding mode, each of which performs r-sort for r-sorted input
sequence. Also, a larger internal memory of size p×2r is used.
Note that the size of the circuit is still O(rpw).

The idea is to use an output matrix of size 2c × r
2 in

Pass 2 and to perform the wide shuffle write as illustrated
in Figure 13. We partition the output matrix of Pass 2 into
c
p strips V ′′

0 , V ′′
1 , . . . , V ′′

c
p−1 of size 2c × rp

2c each. Hence, the
width of strips is increased from p to rp

2c , and the writing for rp
2c

consecutive addresses is performed 2c
p times. The wide shuffle

write is performed so that elements in a single row of V ′′
i

contains r
2c consecutive rows in each V ′

i . Thus, each row of
V ′′
i has r

2c · c
p = r

2p consecutive rows of V ′
i with r

2p · p = r
2

elements. From r ≥ c2, dirty rows with at most r
2 (≥ c2

2 )
elements in V ′

i are in at most two rows of V ′′
i . Since two

consecutive rows of V ′′
i have r elements, we can think that

V ′′
i is an r-sorted sequence. Hence, Pass 3 uses p 2r-sorters

to sort each V ′′
i .

Let us evaluate the running clock cycles. The wide shuffle
write of each strip V ′′

i takes ( rp2c + l− 1) · 2c
p = r+ 2c

p (l− 1)

and so Pass 2 takes (r+ l−1+r+ 2c
p (l−1)+log2 r+p) · cp =

2n
p +2 c2

p2 l+O( cp log r+c). Pass 3 performs r-sort in the same
way. Thus, we have,

Theorem 6: Three-Pass-Sort-2 runs in 6n
p+3 c2

p2 l+O( cp (l+
log r) + r) clock cycles using a circuit of size O(rpw).

Pass 2
wide shuffle write

r
2

2c

pr
2c

write in wide row-major

V ′′
0

Fig. 13. The wide shuffle write performed in Pass 2.

When l ≪ rp
c , we have 3 c2

p2 ≪ 6n
p , and the latency overhead

can be hidden. From r ≥ c2, we can say that the latency
overhead of Three-Pass-Sort-2 is smaller than that of Three-
Pass-Sort-1.

C. Four-Pass-Sort

Three-Pass-Sort-1 and Three-Pass-Sort2 use circuits of size
O(rpw). We will show that Four-Pass-Sort uses a smaller
circuit of size O(rw) in compensation for a little increase of
running clock cycles.

The idea is to perform r-wise sort using sorters, internal
memories, and transposers by Parallel Four-Pass-Sort for r′×p
matrices, where r′ = r

p . Four-Pass-Sort repeatedly performs r-
wise sort for r× c matrices in the high bandwidth memory to
sort them by Parallel Four-Pass-Sort.

We first show how r-wise sort is performed using:

• four sets of p r′-sorters with pairwise mode;

• four internal memories of size p× r′ each;

• three transposers of size p× p.

Thus, the size of the circuit is O(r′pw) = O(rw). These
circuits are arranged as illustrated in Figure 14 to perform
Parallel Four-Pass-Sort for an r′×p matrix. Using these circuit,
we can perform Parallel Four-Pass-Sort in a pipeline fashion.
For Pass 1, r elements in r

p addresses of the high bandwidth
memory are read and r′-wise sort is performed in parallel
using p r′-sorters. The sorted results are written in the internal
memory through the transposer in a similar way to Three-Pass-
Sort-1. Pass 2 reads this internal memory and performs r′-wise
sort in parallel using p r′-sorters and write them in another
internal memory through the transposer similarly. Pass 3 reads
this internal memory and performs r′-wise twice for simulating
Parallel Four-Pass-Sort. For this purpose, two sets of p r′-
sorters and the internal memory are used as illustrated in
Figure 14. The sorted result in written in an internal memory.
The transposer is used before writing if necessary. The circuit
in Figure 14 works in a pipeline fashion to perform r-wise
sort.

Next, we will show how r-wise sort is used to sort an
r × c matrix stored in the high bandwidth memory. For this
purpose, Parallel Four-Pass-Sort is used. We assume that the
input matrices of Passes 1 and 2 are arranged in narrow
column-major order and that of Pass 3 is in narrow row-major



p r′-sorters internal memory transposer

Pass 1 Pass 3Pass 2

high bandwidth memory read high bandwidth memory read

Fig. 14. Parallel Four-Pass-Sort using four sets of p r′-sorters, 3 p× p-transposers, and four internal memory of size r′ × p.
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Fig. 15. Narrow column-major and narrow row-major arrangements of an
H ×W matrix in the high bandwidth memory; numbers represent addresses
in the high bandwidth memory.

arrangement shown in Figure 15. In Pass 1, the r×c matrix in
the high bandwidth memory are read in column major order.
Each column is sorted by r-wise sort. Since narrow column-
major order arrangement is used, r elements in a column can
be read in r

p + l− 1 clock cycles. After that, the sorted result
by r-wise sort of a column is written in a r

c × c band. Since
a column of the band are stored in r

cp consecutive addresses,
this writing operation takes ( r

cp + l−1) ·c = r
p +c(l−1) clock

cycles. Since the latency of the circuit in Figure 14 is at most
4 log2 r+3p, Pass 1 takes ( rp+l−1+ r

p+c(l−1))·c+4 log2 r+
3p = 2n

p +c(c+1)l+O(log r+p) clock cycles. Pass 2 can be
done in 2n

p +c(c+1)l+O(log r+p) in the same way. Finally,
Pass 3 performs r-wise sort in row-major order twice. Since
the matrices are row-major order, both reading and writing
operations for r elements are stored in the consecutive address
of the high bandwidth memory. Thus, both reading and writing
of r elements can be done in r

p + l − 1 clock cycles. Hence,
the first r-wise sort for n elements can be done in at most
( rp+l−1+ r

p+l−1)·c+4 log2 r+2p = 2n
p +2cl+O(log r+p)

clock cycles. Similarly, the second r-wise sort performed for
n−r elements takes ( rp+l−1+ r

p+l−1)·(c−1)+4 log2 r+2p =

2n−r
p + 2(c− 1)l+O(log r + p) clock cycles. By combining

three passes, we have,

Theorem 7: Four-Pass-Sort runs at most 8n
p+2c2l+O(cl+

log r + p) clock cycles using a circuit of size O(rw).

V. CONCLUSION

In this paper, we have introduced the Hardware Sorter for
High Bandwidth Memory (HS-HBM) model and presented
FIFO-based hardware sorting algorithms. For n = rc elements
with w bits each stored in the high bandwidth memory with
bandwidth pw, we present a hardware sorter of circuit size
O(rpw) that runs in 6n

p + 3 c2

p2 l + O( cp (l + log r) + r) clock
cycles. We also present a hardware sorter of circuit size O(rw)

that runs in 8n
p +2c2l+O(cl+ log r+ p) clock cycles. Thus,

the first and he second sorters are only three and four times
slower than data duplication.
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