
Parallel FDFM Approach for Computing GCDs

Using the FPGA

Xin Zhou, Koji Nakano, and Yasuaki Ito

Department of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 JAPAN

Abstract. The main contribution of this paper is to present an FPGA-
targeted architecture called the hierarchical GCD cluster, that computes
the GCDs of all pairs in a set of numbers. It is designed based on the
FDFM (Few DSP slices and Few Memory blocks) approach and consists
of 1408 processors equipped with one block RAM and one DSP slice each.
Every processor works in parallel and computes the GCDs independently.
We have measured the performance of our architecture to compute all
pairs of two numbers in RSA moduli. Implementation results show that it
runs 0.057µs per one GCD computation of two 1024-bit RSA moduli in a
Xilinx Virtex-7 family FPGA XC7VX485T-2. It is 6.0 times faster than
the best GPU implementation and 500 times faster than a sequential
implementation on the Intel Xeon CPU.

Keywords: FDFM approach, parallel algorithms, DSP slices, block RAMs,
RSA cryptosystem

1 Introduction

An FPGA (Field Programmable Gate Array) is an integrated circuit designed
to be configured by a designer after manufacturing. It contains an array of pro-
grammable logic blocks, and the reconfigurable interconnects allow the blocks
to be inter-wired in different configurations. Since any logic circuit can be em-
bedded in an FPGA, it can be used for general-purpose parallel computing [2,
11]. Recent FPGAs have embedded DSP slices and block RAMs. Xilinx Virtex-
7 family FPGAs have DSP slices, each of which is equipped with a multiplier,
adders/subtracters, logic operators, registers, etc [16]. For example, the DSP
slice has a two-input multiplier followed by multiplexers and a three input
adder/subtracter/accumulator. It also has pipeline registers between operators
to reduce the propagation time. A block RAM is an embedded dual-port memory
supporting synchronized read and write operations, and can be configured as a
36k-bit or two 18k-bit dual port RAMs [18]. The main contribution of this paper
is to present an architecture for computing the GCD (Greatest Common Divisor)
of large two numbers using an FPGA. We employ the FDFM (Few DSP slices
and Few block Memories) approach [1] to implement parallel GCD computation
in the FPGA. The key idea of the FDFM approach is to use few DSP slices and
few block RAMs for constituting a processor performing a specific computation.



2 Parallel FDFM Approach for Computing GCDs Using the FPGA

For example, hardware algorithms for RSA encryption/decryption have been
implemented in the FPGA using the FDFM approach [7]. Their implementation
using it is better than the conventional approach [12].

One of the applications for benchmarking GCD computation is breaking weak
RSA keys. RSA [13] is one the most well-known public-key cryptosystems widely
used for secure data transfer. RSA cryptosystem uses an encryption key open
to the public and a secret decryption key. An encryption key is a pair (n, e) of
modulus n and exponent e such that n = pq for two distinct large prime numbers
p and q, and e (< (p − 1)(q − 1)) and (p − 1)(q − 1) are coprime. For example,
for 1024-bit RSA cryptosystem, modulus n with 1024 bits is obtained by 512-bit
prime numbers p and q. The decryption key for this encryption key is a pair
(n, d) such that de ≡ 1 (mod (p − 1)(q − 1)), that is, d is the multiplicative
inverse of e (mod (p− 1)(q− 1)). For a public encryption key (n, e), a message
M (0 ≤ M ≤ n − 1) is converted to the cipher message C = M e mod n. Since
M ≡ M ed (mod n) always holds for all messages M , the cipher message C
can be converted to the original message M by computing Cd mod n. If the
values of p and q are available, d ≡ e−1 (mod (p− 1)(q− 1)) can be computed
very easily by extended Euclidean algorithm [3]. However, to obtain p and q
from an encryption key (n, e), we need to decompose n into p and q. Since the
computation of factorization of large numbers is very costly, it is not possible to
decompose n into p and q in practical computing time. RSA cryptosystem relies
on the hardness of factorization of a large number.

Suppose that we have a set of many RSA encryption keys collected from
the Web. If some of moduli in encryption keys are generated by inappropriate
implementation of a random prime number generator, they may share or reuse
the same prime number. We call RSA keys sharing a prime number weak RSA
keys. Actually, several public keys collected from the Web includes weak RSA
keys [10]. If two moduli share a prime number, they can be decomposed by com-
puting the GCD (Greatest Common Divisor). More specifically, if two distinct
moduli n1 and n2 share a moduli p then the GCD of n1 and n2 is equal to
p. It is well known that the GCD can be computed very easily by Euclidean
algorithms [8]. Once we have the GCD p, we can decompose n1 into p and n1

p

and n2 into p and n2

p
. Hence, we may break weak RSA keys by computing the

GCDs of all pairs of moduli in the Web. It has been shown that a complicated
sequential algorithm can find a pair of weak RSA keys [10]. So, it makes no sense
to perform straightforward pairwise computation of GCDs for RSA moduli for
the purpose of breaking weak RSA keys. However, bulk computation of GCDs
for RSA moduli is useful to measure the performance of the GCD computation.
We designed and implemented 1408 GCD processors in a Xilinx Virtex-7 family
FPGA XC7VX485T-2, that compute the GCDs in parallel. The implementation
results show that, 1408 GCD processors can compute the GCD of one 1024-bit
RSA moduli in expected 0.057µs.

Several hardware implementations for computing the GCD on FPGAs have
been presented [4, 9]. However, they just implemented Binary Euclidean algo-
rithm to compute the GCD using programmable logic blocks as it is. Hence,



Parallel FDFM Approach for Computing GCDs Using the FPGA 3

they can support the GCD computation for numbers with very few bits. On the
other hand, several previously published papers have presented GPU implemen-
tations of Binary Euclidean algorithm in CUDA-enabled GPUs. Fujimoto [5]
has implemented Binary Euclidean algorithm using CUDA and evaluated the
performance on GeForce GTX285 GPU. The experimental results show that
the GCDs for 131072 pairs of 1024-bit numbers can be computed in 1.431932
seconds. Hence, his implementation runs 10.9µs per one 1024-bit GCD compu-
tation. Scharfglass et al. [14] have presented a GPU implementation of Binary
Euclidean algorithm. It performs the GCD computation of all 199990000 pairs
of 20000 RSA moduli with 1024 bits in 2005.09 seconds using GeForce GTX
480 GPU. Thus, their implementation performs each 1024-bit GCD computa-
tion in 10.02µs. Later, White [15] has showed that the same computation can
be performed in 63.0 seconds on Tesla K20Xm. It follows that it computes each
1024-bit GCD in 3.15µs. Quite recently, Fujita et al. have presented new Eu-
clidean algorithm called Approximate Euclidean algorithm and implemented it
in the GPU [6]. Approximate Euclidean algorithm performs perform each 1024-
bit GCD computation in 0.346µs on GeForce GTX 780Ti and 28.6µs on Intel
Xeon X7460 (2.66GHz) CPU. Our implementation of the Hardware Binary Eu-
clidean algorithm performs one 1024-bit GCD computation in 0.057µs which is
6.0 times faster than the GPU and 500 times faster than the CPU.

2 Euclidean Algorithms for computing GCD

This section first reviews Fast Binary Euclidean algorithm for computing the
GCD of two numbers X and Y . Please see [6] for the details. We then show
Hardware Binary Euclidean algorithm by modifying Fast Binary Euclidean al-
gorithm, which will be implemented it in an FPGA.

We assume that both input numbers X and Y are odd and X ≥ Y holds.
Hence, the GCD of X and Y is always odd. If one of them is odd and the other
is even, say X is odd and Y is even, then gcd(X,Y )=gcd(X, Y2 ) holds. Thus, we
can convert Y into odd numbers by removing consecutive 0 bits from the least
significant bit of Y . Also, from gcd(X,Y )=2· gcd(X2 ,

Y
2 ), we can obtain a factor

of 2 in the GCD of X and Y if both X and Y are even. Thus, it should have no
difficulty to modify GCD algorithms shown in this paper to handle even input
numbers.

Let swap(X ,Y ) denote a function to exchange the values ofX and Y . Further,
let rshift(X) be a function returning the number obtained by removing consec-
utive 0 bits from the least significant bit of X . For example, if X = 11010100
in binary system, then rshift(X)= 110101. Using swap and rshift functions, we
can write Fast Binary Euclidean algorithm as follows:

[Fast Binary Euclidean algorithm]
gcd(X ,Y ){

do {
X ←rshift(X − Y );
if(X < Y ) swap(X,Y )



4 Parallel FDFM Approach for Computing GCDs Using the FPGA

} while (Y 6= 0)
return(X);

}

We will modify Fast Binary Euclidean algorithm to be implemented in the
FPGA. We need to read all bits of X and Y to exchange them if we implement
function swap as it is. Also, rshift function needs a large barrel shifter. Hence,
we should avoid direct implementations of these functions in the FPGA. Instead
of function rshift(X), we use rshiftk(X), which removes at most k consecutive
0 bits from the least significant bit of X . In other words, if X has at most k
consecutive 0 bits from the least significant bit, all of them are removed. If it
has more than k 0 bits, then k 0 bits from the least significant bits are removed.
For example, rshift2(11011000)= 110110 and rshift2(11011010)= 1101101 hold.
If k is small, rshiftk(X) can be implemented using a small barrel shifter. Using
rshiftk(X), we can design an Euclidean-based GCD algorithm for FPGAs as
follows:

[Hardware Binary Euclidean algorithm]
gcd(X ,Y ){

do {
if(X is even) X ←rshiftk(X);
else if (Y is even) Y ←rshiftk(Y );
else if(X ≥ Y ) X ←rshiftk(X − Y );
else Y ←rshiftk(Y −X); // X < Y

} while (X 6= 0 and Y 6= 0)
if(X 6= 0) return(X);
else return(Y );

}

Note that rshiftk function may return an even number. Hence, one of X or Y can
be an even number. If this is the case, either X ←rshiftk(X) or Y ←rshiftk(Y )
is executed until both of them are odd. Hence, both X and Y are odd, whenever
rshiftk(X − Y ) is executed, Thus, the argument of rshiftk is always even when
it is executed.

If these Binary Euclidean algorithms are executed for two s-bit RSA moduli,
the GCD is 1 or s

2 -bit prime number. Hence, when either X or Y has less than
s
2 bits during the execution of these Euclidean algorithms, the GCD must be 1.
Thus, we can terminate the do-while loop when one of X or Y has less than s

2
bits. We call this early-terminate technique.

Table 1 shows the average number of iterations of the do-while loop 1024-bit
RSA moduli for each values of k of rshiftk. Note that k = ∞ corresponds to
Fast Binary Euclidean algorithm, which performs rshift function that removes
all consecutive 0 bits. We can see that the early-terminate technique can reduce
the number of iterations by half. Clearly, the number of iterations is smaller for
large k. However, rshiftk(X) needs a large barrel shifter for large k. We should
select an appropriate value of k that balances the computing time and the used



Parallel FDFM Approach for Computing GCDs Using the FPGA 5

hardware resources. For our FPGA implementation that we will show later, we
have selected k = 4.

Table 1. The number of iterations of the do-while loop for 1024-bit RSA moduli

Hardware Binary Euclidean Fast Binary
k 1 2 3 4 5 6 7 8 Euclidean

Non-terminate 1445.8 964.3 827.0 772.0 747.1 735.3 729.7 726.8 723.9
Early-terminate 721.1 481.1 412.7 385.2 372.9 367.0 364.2 362.8 361.4

3 A GCD processor for computing the GCD

This section presents a GCD processor, which computes the GCD of two moduli
by Hardware Binary Euclidean algorithm.

DOA

9

18

10

DIA

ADDRA

DIB

ADDRB

CLKA

WEB

CLKB

36

36

18k-bit block RAM

A

B

X0

X1

X2

X3

X4

0

1

2

3

4

Y0

Y1

Y2

Y3

Y4

36 bits

X0

Y0

X1

Y2

X3

0

1

2

3

4

18 bits

address of port A address of port B

Fig. 1. A block RAM and the memory configuration

Our GCD processor uses one 18k-bit block RAM and one DSP slice in the
FPGA. We use a block RAM as a simple dual-port memory [18] with ports A and
B as illustrated in Figure 1. Ports A and B are configured as read-only 36-bit
mode and write-only 18-bit mode, respectively. In other words, the block RAM
is a 512×36-bit memory for port A and 1024×18-bit for port B. Using these
ports, we can read 36-bit data and write 18-bit data for different addresses at
the same time. Two numbers X and Y of Hardware Binary Euclidean algorithm
are stored as 18-bit words. If each of them has 1024 bits each, it is stored in
⌈ 102418 ⌉ = 57 words. Let X56X55 · · ·X0 denote 57 words representing X such that

X =
∑56

i=0 Xi · 2
18i holds. Similarly, let Y56Y55 · · ·Y0 denote those representing

Y . In the 18-bit mode, 18-bit data Xi and Yi can be written in addresses 2i and
2i + 1 (0 ≤ i ≤ 56), respectively, using port B, as illustrated in Figure 1. They
can be read from 36-bit port A such that 36-bit data YiXi (0 ≤ i ≤ 56) is read
from address i.



6 Parallel FDFM Approach for Computing GCDs Using the FPGA

Figure 2 shows the architecture of a processor for computing the GCD by
Hardware Binary Euclidean algorithm. The 36-bit output of the block RAM
are connected to the DSP slice through multiplexers. The DSP slice has 18-bit
two ports A and B. By two multiplexers, one of X and Y is given to port A,
and one of X , Y , and zero (0) is given to port B. Since DSP computes the
subtraction A−B, it can outputs one of X−Y , Y −X , X− 0 (= X), and Y − 0
(= Y ). The subtraction is performed sequentially word-by-word. For example,
suppose that we need to compute Z = X−Y . Let Z56Z55 · · ·Z0 denote 57 words
representing Z and show how X − Y are computed. First, X0 and Y0 read from
the block RAM are transferred to ports A and B of the DSP slice, and X0 − Y0

is computed and stored in 19-bit register P . The MSB P [18] corresponds to the
borrow of the subtraction and the remaining 18 bits of P is equal to Z0. After
that, X1 − Y1 − P [18] is computed and stored in P . This value is equal to Z1.
Repeating the same operation, the DSP slice outputs all words of Z one by one.

Note that, the resulting value of Z = X − Y must be right-shifted appropri-
ately, when it is stored in X or Y . We use a 4-bit shifter which can right-shift Z
by 1 bit, 2 bits, 3 bits, or 4 bits. Function rshift4 can be implemented as follows.
We use a 17-bit register to store the output of P , which stores the value of Z.
For example, let Z0 = z17z16 · · · z0 and Z1 = z35z34 · · · z18 be the first and the
second outputs of P . In the next clock cycle just after Z0 is stored in P , the
register stores 17-bit z17z15 · · · z1. In the same time P stores Z1. Hence, we can
have 21 consecutive bits z21z20 · · · z1 of Z by picking four bits in z21z20z19z18 in
Z1. The 4-bit shifter selects consecutive 18 bits in 21 bits. For example, it selects
z18z17 · · · z1 for 1-bit shift and z21z20 · · · z4 for 4-bit shift. It should be clear that
the 4-bit shifter outputs rshift4(X − Y ). This value is transferred to port B of
the block RAM, and the value of X is updated.

0

input

4-bit
shifter

output

18k-bit block RAM

B

B

Y

X

DSP slice

A

P

P [18]

A−B − P [18]

Fig. 2. The architecture of a GCD processor

Let us briefly confirm that the GCD processor can execute Hardware Binary
Euclidean algorithm. It should be clear that, by configuring two multiplexers
connecting the block RAM and the DSP, we can compute one of rshift4(X −
Y ), rshift4(Y −X), rshift4(X), and rshift4(Y ). Also, the resulting value can be



Parallel FDFM Approach for Computing GCDs Using the FPGA 7

overwritten in X or Y through port B of the block RAM. The conditions “X
is even” and “Y is even” can be determined by reading X0 and Y0 in the block
RAM. Also, “X ≥ Y ” can be decided by reading X and Y from the MSB. More
specifically, we check if X56 > Y56 holds, then “X ≥ Y ” is true. If X56 < Y56, it
is false. If X56 = Y56, then we need to read and compare X55 and Y55. The same
operation is repeated until “X ≥ Y ” can be determined. We should note that,
with high probability, “X ≥ Y ” can be determined by reading several words of X
and Y . Also, during the computation of Hardware Binary Euclidean algorithm,
the number of bits of X and Y is decreased. Hence, we use registers to store the
current numbers of bits of X and Y . By using them, we can easily determine if
X 6= 0 and Y 6= 0. Further, for early-terminate, we can determine if the number
of bits is less than s

2 .

4 Hierachical GCD cluster

This section presents a hierarchical parallel architecture that we call hierarchical
GCD cluster. Since we can embed more than one thousand GCD processors in
an FPGA, it makes sense to use multiple servers, each of which controls approx-
imately one hundred GCD processors. The hierarchical GCD cluster consists of
multiple GCD clusters, each of which involves multiple GCD processors as illus-
trated in Figure 3. A single central server controls local servers, each of which
maintains GCD processors in the same GCD cluster.

block
RAM

block
RAM

block
RAM

block
RAMs

GCD processorGCD processorGCD processor

GCD cluster cluster cluster cluster

cluster server

block
RAMs

central server

host PC

Fig. 3. The architecture of the Hierarchical GCD Cluster

We show how the hierarchical GCD cluster is used to break weak RSA keys.
Suppose that we have a lot of moduli collected from the Web and they are stored
in the main memory of the host PC. Our goal is to compute all pair of moduli
using the hierarchical GCD cluster in an FGPA. For this purpose, we partition



8 Parallel FDFM Approach for Computing GCDs Using the FPGA

all moduli into groups with m moduli each. The host PC picks two groups and
sends them to the central server in the FPGA. Let N = {n0, n1, . . . nm−1} and
N ′ = {n′

0, n
′

1, . . . n
′

m−1} denote two groups of m moduli each that the central
server in the FPGA has been received. The hierarchical GCD cluster computes
gcd(ni, n

′

j) for all pairs of i and j (0 ≤ i, j ≤ m − 1), and reports the GCDs
larger than 1.

Next, we will show how the hierarchical GCD cluster computes the GCDs
of N and N ′ using GCD clusters. Each group of m moduli is partitioned into
b blocks of k moduli each, where m = bk. Let Ni = {nik, nik+1, . . . , n(i+1)k−1}
and N ′

i = {n
′

ik, n
′

ik+1, . . . , n
′

(i+1)k−1} (0 ≤ i ≤ b− 1) be two sets of k moduli in

the i-th groups of sets N and N ′, respectively. Each cluster is assigned a task
to compute the GCDs of all pairs X (∈ Ni) and Y (∈ N ′

j) for a pair i and
j (0 ≤ i, j ≤ b − 1). For this purpose, all moduli in Ni and in N ′

j are copied
from the block RAM in the central server to that in the local server of a GCD
cluster. After the local server receives all moduli, the cluster starts computing
the GCDs of all pairs X (∈ Ni) and Y (∈ N ′

j). The local server then picks a
pair X and Y and copies them to the block RAM of a GCD processor. Upon
completion of the copy, the GCD processor starts computing the GCD of X and
Y by the Hardware Binary Euclidean algorithm. This procedure is repeated for
all GCD processors. If a GCD processor terminates the GCD computation, the
local server sends a new pair to it. In this way, the GCDs of all pairs in Ni

and N ′

j are computed by a GCD cluster. When a GCD cluster completes the
computation of all GCDs of a given pair of two groups, the central server picks
a new pair i and j and sends all moduli in Ni and in N ′

j to the local server. The
same operation is repeated until the GCDs of all pairs N and N ′ are computed.

5 Implementation results in the FPGA

We have implemented a GCD processor for 1024-bit, 2048-bit, 4096-bit, and
8192-bit moduli in VC707 evaluation board [19] equipped with the Xilinx Virtex-
7 FPGA XC7VX485T-2. Note that one 18k-bit block RAMs can store up to
two 9216-bit moduli. Table 2 shows the implementation results. Slice Registers
and Slice LUTs (Look-Up-Tables) are hardware resources in CLB (Configurable
Logic Block) [17], which are used to implement sequential logics. We can see
that the used hardware resources are very few. In particular, we can confirm
that only one 18k-bit block RAM and one DSP slice are used. Also, the clock
frequency is about 350MHz, which is sufficiently high.

For breaking 1024-bit moduli, a GCD cluster with a local cluster with eight
18k-bit block RAMs and 128 GCD processors is used. Since four 18k-bit block
RAMs can store ⌊ 4·102457 ⌋ = 71 moduli with 1024 bits, each GCD cluster computes
the GCDs of 71× 71 = 5041 pairs of blocks stored in block RAMs. Hence, each
GCD processor computes the GCDs for expected 5041

128 = 39.4 pairs of 1024-bit
moduli. Also we arranged 64 block RAMs to the central server. Since a block of
moduli is stored in four block RAMs, we can think that the central server has
8 × 8 = 64 pairs of blocks. Thus, each cluster computes the GCDs for moduli



Parallel FDFM Approach for Computing GCDs Using the FPGA 9

Table 2. Implementation results of one GCD processor for 1024-bit, 2048-bit, 4096-bit,
and 8192-bit moduli

Slice Slice DSP 18kb block Clock
Registers LUTs slices RAMs Frequency

Available 607200 303600 2800 2060 (MHz)

1024-bit 155 179 1 1 345
2048-bit 160 185 1 1 355
4096-bit 165 192 1 1 343
8192-bit 170 230 1 1 350

in expected 64
11 = 5.8 pairs of blocks. Table 3 shows the implementation results

of clusters. Since a cluster server uses eight 18k-bit block RAMs, each GCD
cluster with 128 GCD processors involves 128 + 8 = 136 block RAMs. We have
succeeded in implementing a hierarchical GCD luster with 11 GCD clusters and
the central server, which uses 11 ·128 = 1408 DSP slices and 11 ·136+64 = 1560
block RAMs. Unfortunately, due to the overhead for the connection between the
central server and GCD clusters, the clock frequency is decreased to 271MHz.

Table 3. Implementation results of the GCD cluster and the hierarchical GCD cluster
for 1024-bit moduli

Slice Slice DSP 18kb block Clock
Registers LUTs slices RAMs Frequency

Available 607200 303600 2800 2060 (MHz)

GCD cluster 20548 26306 128 136 320
hierarchical GCD cluster 225176 288215 1408 1560 271

We have evaluated the number of clock cycles to compute all GCDs of 71×
71 = 5041 pairs of 1024-bit moduli by one GCD cluster. For this purpose, we
have used RSA moduli generated by OpenSSL Toolkit. By simulation, we have
that it takes 859468 clock cycles to compute the GCDs of 5041 pairs. If a GCD
cluster operates in 271 MHz as shown in Table 3, the expected computing time
is 859468/271MHz =3.17ms. Also, it takes about 71×2×57 = 8094 clock cycles
to transfer a pair of two blocks of 71 moduli each and this overhead is negligible.
Since the hierarchical GCD cluster can have up to 11 clusters, we can expect
that the GCDs of 5041× 11 = 55451 pairs in the same time. Thus, we can write
that one GCD can be computed in expected 3.17ms/55451 = 0.057µs.

6 Conclusions

We have presented an Euclidean-based hardware algorithm for computing the
GCD. It was implemented in an FPGA using the FDFM approach such that
each of 1408 GCD processors computes the GCD of 1024-bit moduli in RSA
keys independently. From the implementation results, it can compute the GCD



10 Parallel FDFM Approach for Computing GCDs Using the FPGA

of two 1024-bit RSA moduli in expected 0.057µs on a Xilinx Virtex-7 family
FPGA XC7VX485T-2.

References

1. Ago, Y., Ito, Y., Nakano, K.: An FPGA implementation for neural networks with
the FDFM processor core approach. International Journal of Parallel, Emergent
and Distributed Systems 28(4), 308–320 (2013)

2. Bordim, J.L., Ito, Y., Nakano, K.: Accelerating the CKY parsing using FPGAs.
IEICE Transactions on Information and Systems E86-D(5), 803–810 (May 2003)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein., C.: Introduction to Algorithms.
MIT press (2001)

4. Devi, R., Singh, J., Singh, M.: VHDL implementation of GCD processor with built
in self test feature. International Journal of Computer Applications 25(2), 50–54
(July 2013)

5. Fujimoto, N.: High throughput multiple-precision GCD on the CUDA architec-
ture. In: Proc. of International Symposium on Signal Processing and Information
Technology. pp. 507–512 (Dec 2009)

6. Fujita, T., Nakano, K., Ito, Y.: Bulk gcd computation using a gpu to break weak
rsa keys. In: Proc. of International Parallel and Distributed Processing Symposium
Workshops. pp. 385–394 (May 2015)

7. Ito, Y., Nakano, K., Bo, S.: The parallel FDFM processor core approach for crt-
based rsa decryption. International Journal of Networking and Computing 2(1),
79–96 (Jan 2012)

8. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Al-
gorithms. Addison-Wesley (1997)

9. Kohale, S.D., Jasutkar, R.W.: Power optimization of GCD processor using low
power Spartan 6 FPGA family. International Journal of Conceptions on Electronics
and Communication Engineering 2(1), 1–6 (June 2014)

10. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, Whit is right. Cryptology ePrint Archive, Report 2012/064 (2012),
http://eprint.iacr.org/

11. Nakano, K., Yamagishi, Y.: Hardware n choose k counters with applications to
the partial exhaustive search. IEICE Trans. on Information & Systems E88-D(7),
1350–1359 (2005)

12. Nakano, K., Kawakami, K., Shigemoto, K.: RSA encryption and decryption using
the redundant number system on the FPGA. In: Proc. of International Symposium
on Parallel and Distributed Processing Workshops. pp. 1–8 (May 2009)

13. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120 – 126 (1978)

14. Scharfglass, K., Weng, D., White, J., Lupo, C.: Breaking weak 1024-bit RSA keys
with CUDA. In: Proc. of Internatinal Conference on Parallel and Distributed Com-
puting, Applications and Technologies. pp. 207 – 212 (Dec 2012)

15. White, J.R.: PARIS: A PARALLEL RSA-PRIME INSPECTION TOOL. Ph.D.
thesis, California Polytechnic State University - San Luis Obispo (June 2013)

16. Xilinx Inc.: 7 Series DSP48E1 Slice User Guide (Nov 2014)
17. Xilinx Inc.: 7 Series FPGAs Configurable Logic Block User Guide (Nov 2014)
18. Xilinx Inc.: 7 Series FPGAs Memory Resources User Guide (Nov 2014)
19. Xilinx Inc.: VC707 Evaluation Board for the Virtex-7 FPGA User Guide (2014)


