
A GPU Implementation of Clipping-Free
Halftoning using the Direct Binary Search

Hiroaki Koge, Yasuaki Ito, and Koji Nakano

Department of Information Engineering, Hiroshima University,
Kagamiyama 1-4-1, Higashi Hiroshima 739-8527, Japan

{kouge,yasuaki,nakano}@cs.hiroshima-u.ac.jp

Abstract. Halftoning is an important process to convert a gray scale
image into a binary image with black and white pixels. The clipping-free
DBS (Direct Binary Search)-based halftoning is one of the halftoning
methods that can generate high quality binary images. However, consid-
ering the computing time, it is not realistic for most applications such
as printing purpose. The main contribution of this paper is to show a
new GPU implementation for the clipping-free DBS-based halftoning.
We have considered programming issues of the GPU architecture to im-
plement the method on the GPU. The experimental result shows that our
GPU implementation on NVIDIA GeForce GTX 780 Ti for a 4096×3072
gray scale image runs in 7.240 seconds, while the CPU implementation
runs in 346.6 seconds. Thus, our GPU implementation attains a speed-up
factor of 47.82.

Keywords: Image processing, Halftoning, Direct binary search, Clipping-
free, GPGPU

1 Introduction

Recent Graphics Processing Units (GPUs), which have a lot of processing units,
can be used for general purpose parallel computation. Since GPUs have very
high memory bandwidth, the performance of GPUs greatly depends on memory
access. CUDA (Compute Unified Device Architecture) [19] is the architecture for
general purpose parallel computation on GPUs. Using CUDA, we can develop
parallel algorithms to be implemented in GPUs. Therefore, many studies have
been devoted to implement parallel algorithms using CUDA [5, 6, 8, 16, 22, 28,
29].

A gray scale image is a two dimensional matrix of pixels taking a real number
in the range [0, 1]. Usually a gray scale image has 8-bit depth, that is, each
pixel takes one of the real numbers 0

255 , 1
255 , . . . , 255

255 , which correspond to pixel
intensities. A binary image is also a two dimensional matrix of pixels taking a
binary value 0 (black) or 1(white). Halftoning is an important process to convert
a gray scale image into a binary image [2, 13, 17]. This process is necessary when
a monochrome or color image is printed by a printer with limited number of ink
colors.



2 Hiroaki Koge, Yasuaki Ito, Koji Nakano

Many halftoning techniques including Error Diffusion [7], Dot Diffusion [12],
Ordered Dither using the Bayer threshold array [3] and the Void-and-Cluster
threshold array [26], Direct Binary Search (DBS) [1, 14], Local Exhaustive Search
(LES) [10, 11], have been presented.

The Ordered Dither [3] uses a threshold array to generate a binary image
from an original gray scale image. Each pixel of the original gray scale image
is compared with an element of the threshold array. From the result of the
comparison, the pixel value of the corresponding pixel of the binary image is
determined. Binary images generated by the Ordered Dither method using the
Bayer threshold array [3] have artifacts with periodic dots arranged in a two
dimensional grid [27].

It is known that, in many cases, the DBS [1, 14] generates better quality
images. The key idea of the DBS is to find a binary image whose projected
image onto human eyes is very close to the original image. The projected image
is computed by applying a Gaussian filter, which approximates the characteristic
of the human visual system. Let the total error of the binary image be the sum
of the differences of the intensity levels over all pixels between the original image
and the projected image. In the DBS, a pixel value is toggled if the resulting
image has smaller total error. Also, neighboring pixel values are swapped if the
total error of the resulting image decreases. The DBS generates a sharp binary
image, especially, for middle tone areas. However, the generated binary image
by the DBS has no tone in highlights and shadows. Fig. 1 and 2 show the
binary images generated by the DBS. The resulting image has clippings, that is,
highlights and shadows have no minority pixels and lose the tone of the original
image. For example, several columns from the leftmost of Fig. 1 have no white
pixel, although the original image has tone. Also, there is no black pixel in several
columns from the rightmost and a pseudo border line appears.

For most printing devices, black pixels gain by dot-gain [11]. In other words,
the average intensity level of the actual printed image is smaller than that of
a binary image used for printing. If this is the case, the intensity levels of an
original gray scale image are calibrated such that the actual printed image re-
produces the intensity of the original gray scale image correctly. For example,
suppose that intensity level 254/255 of an original gray scale image is adjusted to
1023/1024. After that, the adjusted gray scale image is converted to the binary
image. Clearly, the binary image thus obtained have fewer black pixels and the
average intensity is 1023/1024. However, black pixels gain by dot-gain, and the
intensity level of the actual printed image will increase to 254/255. This means
that, halftoning methods are required to generate the binary image with average
intensity level 1023/1024. If this is not possible, actual printed images cannot
reproduce intensity level 254/255, and should have tone jumps.

To avoid the clipping generated by the DBS, in [30], a DBS-based halftoning
method, called the clipping-free DBS-based halftoning was proposed. The method
is based on the DBS and can generate clipping-free binary images. The key idea
of the method is to apply the Ordered Dither method using a threshold array
generated by the DBS to highlights and shadows of an original gray scale image.



A GPU Implementation of Clipping-Free Halftoning using the DBS 3

(1) The Original ramp gray scale image

(2) A binary image generated by the standard DBS

(3) A binary image generated by the clipping-free DBS-based halftoning

Fig. 1. The resulting halftone images for the ramp image

In the method, minority pixels are preserved, that is, black pixels in the high-
lights and white pixels in the shadow areas, and apply DBS to the whole image.
The resulting binary images have no clipping and reproduce the original tones
very well. Further, the DBS-based halftoning preserves the linearity of intensity
levels. In general, visually pleasing halftone textures are perceived as smooth,
contain a large variety of patterns, and exhibit accurate tone rendition [15]. In
other words, the resulting binary images also have high texture quality.

The resulting halftoned images generated by the DBS halftoning and the
clipping-free DBS-based halftoning have high texture quality. However, com-
pared with other well-known halftone methods, such as the Error diffusion, much
more computing time is necessary. To accelerate the computation, therefore, sev-
eral GPU implementations of the DBS has been proposed [4, 24, 25]. In [25], a
GPU implementation of the DBS were proposed. Also, the implementation was
extended to halftoning for color images [4] and multi-toning [24]. However, as far
as we know, there is no implementation of the clipping-free DBS-based halfton-
ing. The main contribution of this paper is to show a new GPU implementation
for the clipping-free DBS-based halftoning. We have considered programming
issues of the GPU architecture to implement the method. The experimental re-
sult shows that our GPU implementation on NVIDIA GeForce GTX 780 Ti for
a 4096× 3072 gray scale image runs in 7.240 seconds, while the CPU implemen-
tation runs in 346.6 seconds. Thus, our GPU implementation attains a speed-up
factor of 47.82. Considering the computing time and the resulting clipping-free
binary images, our GPU implementation is more realistic for most applications
such as printing purpose.



4 Hiroaki Koge, Yasuaki Ito, Koji Nakano

2 Review of the Clipping-free DBS-based halftoning

The main purpose of this section is to introduce the Ordered Dither [3, 26] and
the Direct Binary Search [1, 14], and review the clipping-free DBS-based halfton-
ing method with them as key ingredients [30].

2.1 The Ordered Dither and the Direct Binary Search

Suppose that an original gray scale image A = (ai,j) of size n × n is given1,
where ai,j denotes the intensity level at position (i, j) (0 ≤ i, j ≤ n− 1) taking a
real number in the range [0, 1]. The goal of halftoning is to find a binary image
B = (bi,j) of the same size that reproduces the original image A, where each
bi,j is either 0(black) or 1(white). The Ordered Dither uses a threshold array
T = (ti,j) of size m × m, with each element taking a real number 0

255 , 1
255 , . . .,

or 254
255 . More specifically, the pixel value of each pixel bi,j is determined by the

following formula:

bi,j =
{

0 if ai,j ≤ ti mod m,j mod m

1 if ai,j > ti mod m,j mod m

Note that since bi,j is always 0 if ti mod m,j mod m = 255
255 , the threshold value

never takes 255
255 . The Bayer halftoning uses the Bayer threshold array which is

defined recursively [3].
The idea of the DBS is to measure the goodness of the output binary image

B using the Gaussian filter that approximates the characteristic of the human
visual system. Let V = (vk,l) denote a Gaussian filter, i.e. a 2-dimensional sym-
metric matrix of size (2w + 1)× (2w + 1), where each non-negative real number
vk,l (−w ≤ k, l ≤ w) is determined by a 2-dimensional Gaussian distribution
such that their sum is 1. In other words,

vk,l = c · e−
k2+l2

2σ2 , (1)

where σ is a parameter of the Gaussian distribution and c is a fixed real number
to satisfy

∑
−w≤k,l≤w vk,l = 1. Let R = (ri,j) be the projected gray scale image

of a binary image B = (bi,j) obtained by applying the Gaussian filter as follows:

ri,j =
∑

−w≤k,l≤w

vk,lbi+k,j+l (0 ≤ i, j ≤ n − 1). (2)

Clearly, from
∑

−w≤k,l≤w vk,l = 1 and vk,l is non-negative, each ri,j takes a real
number in the range [0, 1] and thus, the projected image R is a gray scale image.
We can say that a binary image B is a good approximation of original image A
if the difference between A and R is small enough. Hence, we define the error of
B as follows. The error ei,j at each pixel location (i, j) is defined by

ei,j = ai,j − ri,j (3)
1 For simplicity, we assume that images are square.



A GPU Implementation of Clipping-Free Halftoning using the DBS 5

and the total error is defined by

Error(A,B) =
∑

0≤i,j≤n−1

|ei,j |2. (4)

Since the Gaussian filter approximates the characteristics of the human visual
system, we can think that image B reproduces original gray scale image A if
Error(A, B) is small enough. The best binary image that reproduces A is a
binary image B which is given by the following formula:

B∗ = arg min
B

Error(A,B). (5)

It is very hard to find the optimal binary image B∗ for a given gray scale
image A. The idea of the DBS is to find a near optimal binary image B such that
Error(A, B) is sufficiently small. For this purpose, the DBS repeats improvement
of binary image B. The value of a particular pixel bi,j is modified by the following
two operations:

Toggling This operation is to toggle the value of bi,j , that is, bi,j ↔ 1 − bi,j .
The value of bi,j is toggled if Error(A,B) decreases.

Swapping Let bi′,j′ be a neighbor pixel of bi,j , that is, both |i − i′| ≤ 1 and
|j−j′| ≤ 1 hold. This operation is to exchange the values of bi,j and bi′,j′ , that
is bi,j ↔ bi′,j′ . Swapping operation is performed if Error(A,B) decreases.

Clearly, toggling and swapping operations do not increase the error and im-
prove the binary image B. In the DBS, these operations are executed in the
raster order. Further, this raster order improvement is repeated until no more
improvement by toggling or swapping operations is possible.

Although the DBS generates high-quality binary images, it does not work
well in highlights and shadows. It has clippings, that is, the highlight and the
shadow areas have no dots and lose the tone of the original image. Fig. 1 shows
the resulting binary images by the DBS. The left shadow area has no white dots
and the tone is lost. Similarly, in the right highlight area, black dots disappear.
Fig. 2 shows the resulting binary image generated by the DBS. Black dots in the
woman’s face are lost and pseudo borders appear. Also, white dots in her hair
are removed. In [30], the detailed explanation about the reason of clippings by
the DBS is shown.

2.2 The Clipping-free DBS-based halftoning

In the following, we review the clipping-free DBS-based halftoning proposed
in [30]. The key idea of this DBS-based halftoning method is to use the Ordered
Dither for the pixels with intensity smaller than D or larger than 1−D and then
use the DBS.

First a threshold array T = (ti,j) of size m × m used for shadows is deter-
mined. Since this T is used for the pixel values no more than D, it is not necessary



6 Hiroaki Koge, Yasuaki Ito, Koji Nakano

to determine threshold value larger than D. Thus, for each i (0 ≤ i ≤ D), m2

255 el-
ements in T takes value i

255 . For highlight pixel with intensity larger than 1−D,
we can use a threshold array T ′ = (t′i,j) such that t′i,j = 1 − ti,j .

The goal of determining T is to distribute the threshold values in T uniformly.
The uniformity is defined as follows. Let u(i, j) denote the Euclidean distance
to a closest threshold value no more than ti,j . In other words,

u(i, j) = min{
√

(i − i′)2 + (j − j′)2 | ti′,j′ ≤ ti,j}.

The uniformity u(T ) of T is the sum of ui,j , that is,

u(T ) =
∑

0≤i,j≤m−1

u(i, j).

Clearly, if threshold value distributed more uniformly, the uniformity u(T ) is
larger.

The threshold value is assigned 0
255 to m2

255 elements in T . For this purpose,
we select m2

255 elements in T at random and assign 0
255 to them. After that,

we move each 0
255 to a neighbor element if the uniformity u(T ) increases. The

reader should have no difficulty to confirm that, this operation is very similar
to swapping operation of the DBS. This swapping operation is repeated until
no more improvement on u(T ) is possible. Next, we assign threshold value 1

255

to m2

255 elements in T . Similarly, we select m2

255 elements that were not assigned
0

255 and assign 1
255 to them. After that, the swapping operation is performed

for these elements with threshold value 1
255 . The same procedure is repeated

until threshold values from 0
255 to D are determined. If T is small, the generated

binary image may have periodic artifact with frequency m × m pixels. Thus, T
should be as large as possible. In the experiment [30] a threshold array of size
512 × 512 is large enough.

We are now in position to explain the clipping-free DBS-based halftoning.
Suppose that a gray scale image A = (ai,j) to be halftoned is given. We first apply
the threshold array T to pixels ai,j of A such that ai,j < D or ai,j > 1−D, and
obtain a binary image B = (bi,j). Next, we assign label determined/undetermined
to every pixel as follows:

bi,j is determined, if (ai,j < D and bi,j = 1) or (ai,j > 1−D and bi,j = 0),
and
bi,j is undetermined, otherwise.

In other words, if bi,j is minority pixel in shadows or in highlights, then it is a
determined pixel. After that, the DBS is executed for all undetermined pixels,
that is, toggling and swapping operations repeated in the raster scan order until
no more improvement of the error is possible.

According to the above, the outline of the clipping-free DBS-based halftoning
that computes a halftoned binary image of an original gray scale image A is as
follows:
[The clipping-free DBS-based halftoning]



A GPU Implementation of Clipping-Free Halftoning using the DBS 7

Step 1: Initialization
We first assign label determined/undetermined to every pixel by applying a
threshold array T . We obtain a binary image B = (bi,j) such that

if label is determined, bi,j is halftoned by a threshold array T , and
if label is undetermined, bi,j is halftoned by the random dither method.

In the random dither method, a binary pixel takes value 1 with probability p
if the pixel value of the corresponding pixel of an original image is p (∈ [0, 1]).
Thus, bi,j = 1 with probability ai,j for every i and j except determined
pixels. In Step 2, determined pixels are fixed and the DBS is performed for
undetermined pixels.

Step 2: DBS
We pick an undetermined pixel bi,j in B one by one from the top-left corner
to the bottom-right corner in the raster scan order. We select one of the op-
erations toggling and swapping, which minimizes the total error, and update
pixels by such operation. This update procedure by the raster scan order is
repeated until one round of raster scan search from the top-left corner to the
bottom-right corner does not update pixels and the error is not improved.

Fig. 1 and 2 show the resulting binary images. To obtain these images, we
have generated a threshold array of size 512×512. We have also used the Gaussian
filter with parameter σ = 1.2 and w = 4, and the threshold value D = 9

255 is
used. We can see clearly the original tone is preserved in shadows and highlights.
The resulting images look smooth and contain more variety of patterns. They
take on good visual texture.

3 Implementation of the clipping-free DBS-based
halftoning

Before explaining our GPU implementation of the clipping-free DBS-based halfton-
ing, in this section, we show how the clipping-free DBS-based halftoning is im-
plemented as a sequential implementation.

In Step 1, we first assign label determined/undetermined to every pixel using
a threshold array T and make a label map L = (li,j) of size n × n such that if
li,j = 1 if label determined is assigned to pixel (i, j), and li,j = 0, otherwise.
Referring L, we obtain a binary image B for determined pixels and undetermined
pixels by thresholding with T and the random dither method, respectively.

In Step 2, we first compute the projected gray scale image R = (ri,j) of the
binary image B by computing formula (2). We compute the error matrix E by
computing formula (3) and the total error from formula (4). In Step 2, we need
to perform local search by toggling and swapping that minimize the total error.
It is sufficient to compute the total error of the affected region that includes the
neighboring 8 pixels. The affected region is a region of the image B such that
the Gaussian filter for bi,j and its neighboring 8 pixels affects the pixel values of
the blurred image. More specifically, the affected region is a set Ai,j of positions
in the image such that

Ai,j = {(i′, j′)|i − w − 1 ≤ i′ ≤ i + w + 1, j − w − 1 ≤ j′ ≤ j + w + 1}.



8 Hiroaki Koge, Yasuaki Ito, Koji Nakano

(1) A binary image generated (2) A binary image generated
by the standard DBS by the clipping-free DBS

Fig. 2. The resulting binary images (partial enlargement) for a woman image [9]



A GPU Implementation of Clipping-Free Halftoning using the DBS 9

Since the size of the Gaussian filter is (2w + 1) × (2w + 1), that of the affected
region is (2w + 3) × (2w + 3). Therefore, in the local search by toggling and
swapping, we compute the total error at pixel location (i, j) by evaluating the
following formula: ∑

(i′,j′)∈Ai,j

|ei′,j′ |2. (6)

We evaluate this formula for each operation of toggling and swapping, and re-
place pixels with the minimum total error.

To perform the local search by toggling and swapping, we need to compute
the convolution in formula (2) for each operation of toggling and swapping. Since
pixel values of B are 0 or 1, ri,j can be computed by adding/subtracting the val-
ues of the Gaussian filter vk,l to/from ri,j in Ai,j . For example, when a pixel bi,j

is changed from 0 to 1 by toggling, the values of the Gaussian filter vk,l are only
added to ri,j in Ai,j . We note that once the total error E is computed, the up-
date of E by toggling and swapping can be also computed by adding/subtracting
the values of the Gaussian filter. It can be performed without the update of the
projected image R. Therefore, in our implementation, we directly update the
total error E.

To obtain further acceleration, we use an update map. In Step 2, a round of
the raster scan order search is repeated. It is possible that an area of a binary
image is fixed in an earlier round, and no pixels in the area are not updated
until Step 2 terminates. Hence, it makes sense to perform the local search by
toggling and swapping for which pixels might be updated, we use an update
map M = (mi,j) of size n × n. Before a round of the raster scan order search,
all values in M is initialized by 0. We set mi,j = 1 if the operation updates pixel
bi,j , that is, the value of bi,j is changed from 0 to 1 or from 1 to 0. Clearly, at
the end of the round, mi,j = 1 if bi,j has been updated in this period. Further,
the affected region in which pixels might be updated in the next round consists
of (i, j) such that mi,j or its neighbor takes value 1.

4 GPU Implementation

The main purpose of this section is to show our GPU implementation of the
clipping-free DBS-based halftoning.

We briefly explain CUDA architecture that we will use. NVIDIA provides
a parallel computing architecture called CUDA on NVIDIA GPUs. CUDA uses
two types of memories in the NVIDIA GPUs: the global memory and the shared
memory [20]. The global memory is implemented as an off-chip DRAM of the
GPU, and has large capacity, say, 1.5-6 Gbytes, but its access latency is very long.
The shared memory is an extremely fast on-chip memory with lower capacity,
say, 16-48 Kbytes. Fig. 3 illustrates the CUDA hardware architecture.

CUDA parallel programming model has a hierarchy of thread groups called
grid, block and thread. A single grid is organized by multiple blocks, each of



10 Hiroaki Koge, Yasuaki Ito, Koji Nakano

Fig. 3. CUDA hardware architecture

which has equal number of threads. The blocks are allocated to streaming mul-
tiprocessors such that all threads in a block are executed by the same streaming
multiprocessor in parallel. All threads can access to the global memory. However,
threads in a block can access to the shared memory of the streaming multipro-
cessor to which the block is allocated. Since blocks are arranged to multiple
streaming multiprocessors, threads in different blocks cannot share data in the
shared memories.

We are now in a position to explain how we implement the clipping-free DBS-
based halftoning. We assume that an original gray scale image A of size n×n to
be halftoned is stored in the global memory in advance, and the implementation
writes the resulting binary image B′ in the global memory. Further, we assume
that the threshold array T is also stored in the global memory. In the following,
to perform the computation in parallel, basically we divide an input image into
subimages whose size is k × k and perform halftoning for each subimage in
parallel. In our implementation, the size of the subimage is n

k × n
k .

To implement Step 1, n2

k2 CUDA blocks are invoked one for subimages of
size n

k × n
k . Each CUDA block is responsible for generating an initial binary im-

age B = (bi,j) and computing the error matrix E = (ei,j) of the corresponding
subimage using the shared memory. For this purpose, each block copies pixel val-
ues in A of their affected region Ai,j in the subimage to the shared memory. After
that, threads in each block concurrently assign label determined/undetermined
to every pixel and generate an initial binary image for determined/undetermined
pixels by thresholding with T and the random dither method, respectively. Fi-
nally, the error matrix E = (ei,j) of the corresponding block is computed from
the blurred image of B and pixel values in A of the affected region Ai,j . The
error matrix E of the resulting block is copied to the global memory.

In Step 2, a kernel is invoked for each round in the DBS. In each kernel,
the DBS to evaluate formula (5) is performed in parallel using multiple CUDA



A GPU Implementation of Clipping-Free Halftoning using the DBS 11

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Fig. 4. Groups of blocks

blocks. Each CUDA block is responsible for executing the DBS of the corre-
sponding subimage. The local search in the DBS is performed for pixels that are
assigned to label undetermined and might be updated by referring label map L
and update map M .

However, the operations toggling and swapping for adjacent blocks cannot be
executed in parallel, because the application of the Gaussian filter to adjacent
blocks affects each other. Thus, we partition blocks into four groups such that
Group 1: even columns and even rows, Group 2: odd columns and even rows,
Group 3: even columns and odd rows, and Group 4: odd columns and odd rows.
The reader should refer to Fig. 4 illustrating the groups. We use 4n2

k2 CUDA
blocks, and perform the local search in all blocks of each group. Note that, if
k ≥ 2w then the Gaussian filter of two blocks in a group never affect each other,
where the subimage is k×k and the size of the Gaussian filter is (2w+1)×(2w+1).
In other words, the affected regions of a particular group do not overlap each
other. Actually, in our experiment, we choose k = 32 and w = 4. Step 2 performs
the local search for Group 1, Group 2, Group 3, and Group 4, in turn. A CUDA
block is invoked for each block of a group. The CUDA block copies the error
matrix corresponding to the affected region in the global memory to the shared
memory.

After that, each CUDA block performs the local search by toggling and swap-
ping for the corresponding subimage in raster scan order to obtain the best
combination of pixels in B. Concretely, multiple threads in a block perform the
local search pixel by pixel for the corresponding subimage in the raster scan
order. In the local search, formula (6) is evaluated for each operation of toggling
and swapping. In our implementation, we utilize a summing technique by binary
reduction proposed in [18] to evaluate the formula.

Finally, the updated binary image and the error matrix are copied to the
global memory. Some readers may think that since the local search is concur-



12 Hiroaki Koge, Yasuaki Ito, Koji Nakano

rently performed using the partition shown in Fig. 4, the total error by computing
formula (4) increases compared with that by the sequential one. However, in our
experiment, the total errors are almost the same and the quality of the resulting
binary images cannot be distinguished.

5 Experimental results

The main purpose of this section is to show the experimental results. We have
used three gray scale images, Lena [23], Woman [9], and Flower basket [9], of size
512×512, 2048×2560, and 4096×3072, respectively. We use the Gaussian filter
with parameter σ = 1.2 and w = 4. In the clipping-free DBS-based halftoning,
we have generated a threshold array of size 512 × 512 and the threshold value
D = 9

255 is used.
In order to evaluate the computing time for generating the halftoned images,

we have used NVIDIA GeForce GTX 780 Ti, which has 2880 processing cores
in 15 SMX units [21]. We have also used Intel PC using Xeon X7460 running in
2.66GHz to evaluate the implementation by sequential algorithms. Table 1 shows
the computing time for generating the binary images. The computing time is
average of 10 times execution and the computing time of the GPU includes data
transfer time between the main memory and the device memory in the GPU.
Using the GPU, the computing time can be reduced by a factor of 35.88-47.82.
Even if the large image is halftoned, the computing time is 7.240s by the GPU
acceleration. This computing time is acceptable for most applications such as
printing purpose.

Table 1. Computing time (in seconds) of the clipping-free DBS-based halftoning

Image Lena Woman Flower basket
(size) (512 × 512) (2048 × 2560) (4096 × 3072)

Intel CPU 8.351 113.3 346.6
NVIDIA GPU 0.2138 3.158 7.248

Speed-up 39.06 35.88 47.82

Additionally, according to the result of an existing GPU implementation of
the original DBS, they reported that the execution time for two gray scale images
of size 194 × 270 and 1536 × 1920 was 9.36s and 127s, respectively [25]. Since
utilized GPUs and images differ and their implementation does not support
clipping-free halftoning, it is difficult to compare their results with our results
directly. Considering the computing time, however, it is clear that our GPU
implementation is better than that of [25].



A GPU Implementation of Clipping-Free Halftoning using the DBS 13

6 Conclusions

In this paper, we have proposed an implementation of the clipping-free DBS-
based halftoning. In our implementation, we have considered programming is-
sues of the GPU architecture. We have implemented it on NVIDIA GeForce
GTX 780 Ti. The experimental result shows that our GPU implementation on
NVIDIA GeForce GTX 780 Ti for a 4096× 3072 gray scale image runs in 7.240
seconds, while the CPU implementation runs in 346.6 seconds. Thus, our GPU
implementation attains a speed-up factor of 47.82. According to the results, we
think that the computing time of our GPU implementation is realistic for most
applications such as printing purpose.

References

1. Analoui, M., Allebach, J.: Model-based halftoning by direct binary search. In: Proc.
SPIE/IS&T Symposium on Electronic Imaging Science and Technology. vol. 1666,
pp. 96–108 (1992)

2. Asano, T., Nakano, K.: Halftoning through optimization of restored images – a
new approach with hardware acceleration. Tech. rep., The Institute of Electronics
Information and Communication Engineers, COMP2002-75 (March 2003)

3. Bayer, B.: An optimum method for two-level rendition of continuous-tone pictures.
In: IEEE International Conference on Communications. pp. 11–15 (1973)

4. Chandu, K., Stanich, M., Trager, B., Wu, C.W.: A GPU implementation of color
digital halftoning using the Direct Binary Search algorithm. In: Proc. of IEEE
International Symposium on Circuits and Systems. pp. 185–188 (2012)

5. Diaz, J., Muñoz-Caro, C., Niño, A.: A survey of parallel programming models
and tools in the multi and many-core era. IEEE Transactions on Parallel and
Distributed Systems 23(8), 1369–1386 (August 2012)

6. Farivar, R., Rebolledo, D., Chan, E., Campbell, R.H.: A parallel implementation
of k-means clustering on GPUs. In: Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications. pp. 340–345
(July 2008)

7. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial gray scale. In: Proc.
of International Symposium Digest of Technical Papers, Society for Information
Displays. pp. 36–37 (1975)

8. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Proceedings of the 14th International Conference on High Performance
Computing. pp. 197–208 (2007)

9. ISO/IEC International Standard 12640: Graphic technology – prepress digital data
exchange – CMYK standard colour image data (CMYK/SCID) (1997)

10. Ito, Y., Nakano, K.: FM screening by the local exhaustive search with hardware
acceleration. International Journal on Foundations of Computer Science 16(1), 89–
104 (2005)

11. Ito, Y., Nakano, K.: A new FM screening method to generate cluster-dot binary
images using the local exhaustive search with FPGA acceleration. International
Journal on Foundations of Computer Science 19(6), 1373–1386 (2008)

12. Knuth, D.: Digital halftones by dot diffusion. ACM Transactions on Graphics 6(4),
245–273 (1987)



14 Hiroaki Koge, Yasuaki Ito, Koji Nakano

13. Lau, D.L., Arce, G.R.: Modern Digital Halftoning. Marcel Dekker (2001)
14. Lieberman, D.J., Allebach, J.P.: Efficient model based halftoning using direct bi-

nary search. In: Proc. of International Conference on Image Processing. vol. 1, pp.
775–778 (1997)

15. Lieberman, D.J., Allebach, J.P.: A dual interpretation for direct binary search and
its implications for tone reproduction and texture quality. IEEE Transactions on
Image Processing 9(11), 1950–1963 (2000)

16. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of parallel
computation of Euclidean distance map in multicore processors and GPUs. In:
Proceedings of International Conference on Networking and Computing. pp. 120–
127 (2010)

17. Nakano, K.: Various screening methods. Convertech 36(1), 72–77 (2008)
18. Nakano, K.: Optimal parallel algorithms for computing the sum, the prefix-sums,

and the summed area table on the memory machine models. IEICE Transactions
on Information and Systems E96-D(12), 2626–2634 (December 2013)

19. NVIDIA Corporation: CUDA ZONE. http://www.nvidia.com/page/home.html
20. NVIDIA Corporation: CUDA C Programming Guide Version 5.5 (2013)
21. NVIDIA Corporation: NVIDIA next generation CUDA compute architecture: Ke-

pler GK110 whitepaper (2013)
22. Ogawa, K., Ito, Y., Nakano, K.: Efficient Canny edge detection using a GPU. In:

International Workshop on Advances in Networking and Computing. pp. 279–280
(Nov 2010)

23. Po, L.M.: Lenna 97: A complete story of Lenna. http://www.ee.cityu.edu.hk/
~lmpo/lenna/Lenna97.html (2001)

24. Trager, B., Chandu, K., Wu, C.W., Stanich, M.: A GPU based implementation
of Direct Multi-bit Search (DMS) screen algorithm. In: IS&T/SPIE Electronic
Imaging. vol. 8655, pp. 86550Z–1–86550Z–10 (2013)

25. Trager, B., Wu, C.W., Stanich, M., Chandu, K.: GPU-enabled parallel processing
for image halftoning applications. In: Proc. of IEEE International Symposium on
Circuits and Systems. pp. 1528–1531 (2011)

26. Uichney, R.: The void-and-cluster method for dither array generation. In:
IS&T/SPIE’s Symposium on Electronic Imaging: Science and Technology. pp. 332–
343. International Society for Optics and Photonics (1993)

27. Ulichney, R.: Halftone characterization in the frequency domain. In: Proc. of
IS&T’s 4th Annual Conference. pp. 464–467 (1994)

28. Wang, S., Cheng, S., Wu, Q.: A parallel decoding algorithm of LDPC codes using
CUDA. In: Proceedings of Asilomar Conference on Signals, Systems, and Comput-
ers. pp. 171–175 (October 2008)

29. Wei, Z., JaJa, J.: Optimization of linked list prefix computations on multithreaded
GPUs using CUDA. In: Proceedings of International Parallel and Distributed Pro-
cessing Symposium (2010)

30. Zhuge, X., Nakano, K.: Clipping-free halftoning and multitoning using the direct
binary search. IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences E92-A(4), 1192–1201 (2009)


