
VOL. E97-D NO. 12
DECEMBER 2014

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

3052
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

PAPER Special Section on Parallel and Distributed Computing and Networking

Offline Permutation on the CUDA-enabled GPU

Akihiko KASAGI†, Student Member, Koji NAKANO†a), and Yasuaki ITO†, Members

SUMMARY The Hierarchical Memory Machine (HMM) is a theoreti-
cal parallel computing model that captures the essence of computation on
CUDA-enabled GPUs. The offline permutation is a task to copy numbers
stored in an array a of size n to an array b of the same size along a permuta-
tion P given in advance. A conventional algorithm can complete the offline
permutation by executing b[p[i]]← a[i] for all i in parallel, where an array
p stores the permutation P. We first present that the conventional algorithm
runs Dw(P) + 2 n

w + 3L − 3 time units using n threads on the HMM with
width w and latency L, where Dw(P) is the distribution of P. We next show
that important regular permutations including transpose, shuffle, and bit-
reversal permutations run 2 n

w + 2 n
kw + 2L − 2 time units on the HMM with

k DMMs. We have implemented permutation algorithms for these regular
permutations on GeForce GTX 680 GPU. The experimental results show
that these algorithms run much faster than the conventional algorithm. We
also present an offline permutation algorithm for any permutation running
in 16 n

w + 16 n
kw + 16L − 16 time units on the HMM with k DMMs. Quite

surprisingly, our offline permutation algorithm on the GPU achieves better
performance than the conventional algorithm in random permutation, al-
though the running time has a large constant factor. We can say that the
experimental results provide a good example of GPU computation show-
ing that a complicated but ingenious implementation with a larger constant
factor in computing time can outperform a much simpler conventional al-
gorithm.
key words: memory machine models, offline permutation, GPU, CUDA

1. Introduction

Offline permutation is a task to move numbers along a per-
mutation given beforehand. More specifically, for given two
arrays a and b of size n, and a permutation P, the value of
each a[i] (0 ≤ i ≤ n−1) is copied to b[P(i)]. A conventional
algorithm can complete the offline permutation by executing
b[p[i]]← a[i] for all i (0 ≤ i ≤ n−1) in parallel, where an ar-
ray p stores the permutation P. Accelerating offline permu-
tation is very important, because it has many applications.
For example, matrix transpose, which is one of the impor-
tant permutations, is frequently used in matrix computation.
It is known that the computation of FFT can be done by a
multistage network in which each stage involves permuta-
tion [1]. Sorting network such as bitonic sorting [2], [3] also
involves permutation in each stage. Further, communica-
tion on processor networks such as hypercubes, meshes, and
so on can be emulated by permutation on the shared mem-
ory. Thus, parallel algorithms on processor networks can
be simulated on the shared memory machine by data per-

Manuscript received December 26, 2013.
Manuscript revised May 10, 2014.
†The authors are with the Department of Information Engineer-

ing, Hiroshima University, Higashihiroshima-shi, 739–8527 Japan.
a) E-mail: nakano@cs.hiroshima-u.ac.jp

DOI: 10.1587/transinf.2014PAP0010

mutations. If a parallel algorithm performs offline permuta-
tions frequently, the acceleration of offline permutations has
a large impact. Some algorithms frequently execute offline
permutation. For example, bitonic merging [3] can be im-
plemented using the perfect shuffle permutation [4] and the
compare-exchange of adjacent values. The implementation
repeatedly performs the alternation of data movement along
the perfect shuffle permutation and the compare-exchange.
Since the compare-exchange of adjacent values is a light-
weight task with conflict-free memory access, the accelera-
tion of perfect shuffle permutation will give a large impact
on the running time of the bitonic sorting.

The main purose of this paper is to show an optimal
algorithm for offline permutation on the GPU. The GPU
(Graphics Processing Unit), is a specialized circuit designed
to accelerate computation for building and manipulating im-
ages [5]–[7]. Latest GPUs are designed for general pur-
pose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application develop-
ers [5]. NVIDIA provides a parallel computing architecture
called CUDA (Compute Unified Device Architecture) [8],
the computing engine for NVIDIA GPUs. CUDA gives de-
velopers access to the virtual instruction set and memory of
the parallel computational elements in NVIDIA GPUs. In
many cases, GPUs are more efficient than multicore proces-
sors [9], since they have hundreds of processor cores and
very high memory bandwidth.

In our previous paper [10], we have presented a
conflict-free offline permutation algorithm running in O(n

w
+

nl
p + l) time units using p threads on the Discrete Memory
Machine (DMM) with width w and latency l, which is a the-
oretical model for computation using the shared memory of
a streaming processor on a CUDA-enabled GPU. Later, we
have implemented the conventional offline permutation al-
gorithm and this conflict-free permutation algorithm on a
single streaming multiprocessor of GeForce GTX 680 GPU
and evaluated the performance [11]. The experimental re-
sults showed that the conventional permutation algorithm
and the conflict-free permutation algorithm run in 246ns
and in 165ns, respectively, for the random permutation of
1024 float (32-bit) numbers. Hence, the conflict-free per-
mutation algorithm is 1.5 times faster. However, since the
shared memory has only 48Kbits, it is not possible to per-
mute larger arrays than 4096 float (32-bit) numbers.

We first show that an optimal permutation algorithm for
larger arrays on the global memory of the Hierachical Mem-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

KASAGI et al.: OFFLINE PERMUTATION ON THE CUDA-ENABLED GPU
3053

ory Machine (HMM), which is a theoretial model for com-
putation using all streaming processors of a CUDA-enabled
GPU. It performs three step permutations, row-wise per-
mutation, column-wise permutation, and row-wise permu-
tation, each of which is performed in DMMs of the HMM
in parallel. Each step uses a conflict-free offline permuta-
tion algorithm presented in our previous paper [11]. It runs
16 n
w
+ 16 n

kw + 16L − 16 time units using n threads on the
HMM with width w and global memory latency L. This al-
gorithm is time optimal in the sense that permutation takes
at least Ω(n

w
+ L) time units. We also show that the con-

ventional algorithm runs in Dw(P)+ 2 n
w
+ 3L − 3 time units,

where Dw(P) is the distribution of P, which takes a value be-
tween n

w
and n. Intuitively, Dw(P) is large if the distribution

of contiguous w values in P is large. Hence the computing
time of the conventional algorithm is between 3 n

w
+ 3L − 3

and n + 2 n
w
+ 3L − 3 time units.

The readers may think that, our scheduled permutation
algorithm is not practically fast on GPUs, although it is time
optimal from the theoretical point of view. The constant
factor 16 in the running time seem too large to achieve bet-
ter performance than the conventional algorithm with small
constant factors in the computing time. However, contrary
to this instinct, our scheduled permutation algorithm can run
faster than the conventional algorithm. To show this fact,
we have implemented our scheduled offline permutation al-
gorithm on GeForce GTX 680 GPU and evaluate the perfor-
mance for various permutations. The experimental results
show that, the running time of our scheduled offline permu-
tation algorithm terminates in constant time for any permu-
tation of the same size. In other words, the computing time
depends on the size of the input array, but is independent
of permutation P. On the other hand, the computing time
of the conventional algorithm depends on the permutation.
The experimental results also show that, for permutations
with large distribution, our scheduled permutation algorithm
runs faster than the conventional algorithm whenever n ≥
256K (= 218). For example, our offline permutation algo-
rithm runs in 780ms for any permutation of 4M (= 222) float
(32-bit) numbers. The conventional algorithm takes 2328ms
for the bit-reversal permutation.

We also show that some regular permutations can be
done efficiently. More specifically, we present permutation
algorithms for transpose, shuffle, and bit-reversal permuta-
tions on the HMM, which run 4 n

w
+ 2L − 2 time units. We

have implemented these algorithms on the GPU and evalu-
ate the performance on GeForce GTX 680. Our implemen-
tation runs in 157ms for bit-reversal permutations of 4M
(= 222) float (32-bit) numbers, which is 14.8 times faster
than the conventional algorithm.

This paper is organized as follows. First, we briefly
explain CUDA architecture and define three memory ma-
chines, DMM, UMM, and HMM in Sect. 2. In Sect. 3, we
define three memory access operations, casual memory ac-
cess, coalesced memory access, and conflict-free memory
access and evaluate the running time. Section 4 defines
the offline permutation and shows two conventional permu-

tation algorithms, destination-designated permutation algo-
rithm and source-designated permutation algorithm. Sec-
tion 5 presents permutation algorithms for transpose, shuf-
fle, and bit-reversal permutations. Section 6 shows algo-
rithms for row-wise permutation and column-wise permuta-
tion of a matrix. In Sect. 7, we present our scheduled per-
mutation algorithm and show the optimality. Finally, Sect. 8
shows experimental results for comparing the conventional
permutation algorithms and our scheduled permutation al-
gorithm. Section 9 concludes our work.

2. CUDA Architecture and the Memory Machine Mod-
els

The main purpose of this section is to explain CUDA archi-
tecture [8] and to define three memory machine models: the
Discrete Memory Machine (DMM), the Unified Memory
Machine (UMM), and the Hierarchical Memory Machine
(HMM).

NVIDIA GPUs have streaming multiprocessors (SMs)
each of which executes multiple threads in parallel. CUDA
uses two types of memories of the NVIDIA GPUs: the
shared memory and the global memory [8]. Each SM has
the shared memory, an extremely fast on-chip memory with
lower capacity, say, 16-48 Kbytes, and low latency. Every
SM shares the global memory implemented as an off-chip
DRAM, and has large capacity, say, 1.5-6 Gbytes, but its
access latency is high. The efficient usage of the shared
memory and the global memory is a key for CUDA devel-
opers to accelerate applications using GPUs. In particular,
we need to consider the bank conflict of the shared memory
access and the coalescing of the global memory access [6],
[9], [12], [13]. The address space of the shared memory is
mapped into several physical memory banks. If two or more
threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize
the memory access performance, threads of CUDA should
access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory.

In our previous paper [10], we have introduced two
models, the Discrete Memory Machine (DMM) and the Uni-
fied Memory Machine (UMM), which extract the essential
features of the shared memory and the global memory of
CUDA-enabled GPUs. Since the DMM and the UMM are
promising as theoretical computing models for GPUs, we
have published several efficient algorithms on the DMM and
the UMM [14]–[17]. The DMM and the UMM have three
parameters: the number p of threads, width w, and memory
access latency l. Figure 1 illustrates the outline of the archi-
tectures of the DMM and the UMM with p = 20 threads and
width w = 4. The p threads are partitioned into p

w
groups of

w threads each called warp. The p
w

warps are dispatched for
memory access in turn, and w threads in a dispatched warp

3054
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

send memory access requests to the memory banks (MBs)
through the memory management unit (MMU). We do not
discuss the architecture of the MMU, but we can think that it
is a multistage interconnection network [18] in which mem-
ory access requests are moved to destination memory banks
in a pipeline fashion. Note that the DMM and the UMM
with width w has w memory banks and each warp has w
threads. For example, the DMM and the UMM in Fig. 1
have 4 threads in each warp and 4 MBs.

Let us define the Discrete Memory Machine (DMM) of
width w and latency l. Let m[i] (i ≥ 0) denote a memory
cell of address i in the memory. Let B[j] = {m[j],m[j +
w],m[j + 2w],m[j + 3w], . . .} (0 ≤ j ≤ w − 1) denote the
j-th bank of the memory. Clearly, a memory cell m[i] is
in the (i mod w)-th memory bank. We assume that memory
cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in a
time unit. Also, we assume that l time units are necessary

Fig. 1 The architectures of the DMM and the UMM with width w = 4.

Fig. 2 Examples of memory access on the DMM and the UMM.

to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU.

Recall that p threads are partitioned into p
w

groups of
w threads called warps. More specifically, p threads T (0),
T (1), . . ., T (p − 1) are partitioned into p

w
warps W(0),W(1),

. . ., W(p
w
−1) such that W(i) = {T (i ·w),T (i ·w+1), . . . ,T ((i+

1) · w − 1)} (0 ≤ i ≤ p
w
− 1). Warps are dispatched

for memory access in turn, and w threads in a warp try
to access the memory at the same time. In other words,
W(0),W(1), . . . ,W(p

w
− 1) are dispatched in a round-robin

manner if at least one thread in a warp requests memory ac-
cess. If no thread in a warp needs memory access, such warp
is not dispatched for memory access. When W(i) is dis-
patched, w threads in W(i) send memory access requests, at
most one request per thread, to the memory. We also assume
that a thread cannot send a new memory access request until
the previous memory access request is completed. Hence, if
a thread sends a memory access request, it must wait at least
l time units to send a new memory access request.

We next define the Unified Memory Machine (UMM)
of width w as follows. Let A[j] = {m[j · w],m[j · w +
1], . . . ,m[(j + 1) · w − 1]} denote the j-th address group. We
assume that memory cells in the same address group are pro-
cessed at the same time. However, if they are in the different
groups, one time unit is necessary for each of the groups.
Also, similarly to the DMM, p threads are partitioned into
warps and each warp accesses the memory in turn.

Figure 2 shows examples of memory access on
the DMM and the UMM. We assume that each mem-
ory access request is completed when it reaches the last
pipeline stage. Two warps W(0) and W(1) access to
〈m[7],m[5],m[15],m[0]〉 and 〈m[10],m[11],m[12],m[9]〉,
respectively. In the DMM, memory access requests by W(0)
are separated into two pipeline stages, because m[7] and
m[15] are in the same bank B(3). Those by W(1) occupy one
stage, because all requests are in distinct banks. Thus, the
memory requests occupy three stages, it takes 3 + 5 − 1 = 7
time units to complete the memory access. In the UMM,

KASAGI et al.: OFFLINE PERMUTATION ON THE CUDA-ENABLED GPU
3055

Fig. 3 The architecture of the HMM with k = 3 DMMs and width w = 4.

memory access requests by W(0) are destined for three ad-
dress groups. Hence the memory requests occupy three
stages. Similarly, those by W(1) occupy two stages. Hence,
it takes 5 + 5 − 1 = 9 time units to complete the memory
access.

Quite Recently, we have introduced the Hierarchical
Memory Machine (HMM) [19], [20], which is a hybrid of
the DMM and the UMM. The HMM is a more practical
parallel computing model that extracts the architecture of
GPUs. Figure 3 illustrates the architecture of the HMM.
The HMM consists of multiple DMMs and a single UMM.
Each DMM has w memory banks and the UMM also has w
memory banks. We call the memory banks of each DMM
the shared memory and those of the UMM the global mem-
ory after those of CUDA-enabled GPUs. Each DMM can
work independently and can perform the computation using
its shared memory. Also, all threads of DMMs work as a sin-
gle UMM and can access to the global memory. If multiple
DMMs try to access the global memory, they are dispatched
in turn. Thus, it makes sense that the global memory also
has w banks. The latency of the shared memory of NVIDIA
GPUs is several clock cycles. On the other hand, that of the
global memory is several hundred clock cycles [8]. Hence,
for simplicity, we assume that those of the HMM are 1 and
L, respectively, although we may use parameter l to denote
the latency of the shared memory access [20].

3. Coalesced, Conflict-Free, and Casual Memory Ac-
cess

This section first defines a round of memory access by
threads. We also define offline permutation and show con-
ventional algorithms for this task.

We can evaluate the performance of algorithms on the
HMM by the number of rounds of memory access. A round
of memory access is an operation such that all threads per-
form a single memory access to the shared memory or the
global memory. For example, the conventional permutation
algorithm performing b[p[i]] ← a[i] involves one reading
round for a and p each, and one writing round for b.

Next, we define coalesced and conflict-free memory
access rounds. A round of memory access by a warp of w
threads is coalesced if all memory access by a warp destined
for the same address group of the global memory. Also, that
by a warp is conflict-free if all memory access by a warp des-
tined for the distinct memory banks of the shared memory.
More specifically, a round of the memory access by a warp
is coalesced if �m(0)

w
	 = �m(1)

w
	 = · · · = �m(w−1)

w
	, where m(i)

(0 ≤ i ≤ w − 1) is the address accessed by thread T (i) in the
warp. A round of the memory access by a warp is conflict-
free if, for all pair i and j (0 ≤ i < j ≤ w − 1), m(i) = m(j)
or m(i) � m(j) (mod w). We also say that a round of the
memory access by all of the n threads is coalesced if mem-
ory access by all of the n

w
warps is coalesced. Also, that by

n threads is conflict-free if memory access by every warp
is conflict-free. For example, in the conventional permuta-
tion algorithm, a round of the memory access to a and p
are coalesced. However, that to b may not be coalesced or
conflict-free. Clearly, the memory access is conflict-free if
it is coalesced. We also say that a round of memory access
is casual if it is not guaranteed to be coalesced or conflict-
free. For example, a round of access to b in the conventional
permutation algorithm is casual because it may not be coa-
lesced.

Let us evaluate the time necessary for coalesced and
conflict-free memory access. Suppose that n threads per-
form a round of coalesced memory access to the global
memory. Since we have n

w
warps each of which sends w

memory requests to the same address group, it takes n
w

time
units to send all n memory requests. After that L − 1 time
units are necessary to complete the memory requests by the
last warp. Thus, it takes n

w
+ L − 1 time units to complete a

round of coalesced memory access by n threads. Similarly, a
round of conflict-free memory access for the shared memory
takes n

w
time units to send all memory requests. Since the la-

tency of the shared memory on the HMM is 1, the memory
access is completed in n

w
time units. Thus, we have,

Lemma 1: A round of coalesced memory access for the
global memory and that of conflict-free memory access for

3056
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Table 1 The number of rounds and the running time of algorithms on the HMM.

global memory shared memory
casual casual coalesced coalesced conflict-free conflict-free running time
reading writing reading writing reading writing

D-designated permutation - 1 2 - - - Dw(P) + 2 n
w + 3L − 3

S-designated permutation 1 - 1 1 - - Dw(P−1) + 2 n
w + 3L − 3

Transpose/Shuffle/Bit-reversal - - 1 1 1 1 2 n
w + 2 n

kw + 2L − 2
Row-wise permutation - - 3 1 2 2 4 n

w + 4 n
kw + 4L − 4

Column-wise permutation - - 5 3 4 4 8 n
w + 8 n

kw + 8L − 8
Our scheduled permutation - - 11 5 8 8 16 n

w + 16 n
kw + 16L − 16

the shared memory by n threads take n
w
+ L − 1 time units

and n
w

time units, respectively.

Note that casual memory access by n threads may be des-
tined for the different address group or the same memory
bank. If this is the case, it takes n time units to send n mem-
ory requests. Thus, the casual memory access to the global
memory and the shared memory may take n + L − 1 time
units and n time units, respectively.

4. Offline Permutation and Conventional Algorithms

Let us define the permutation of an array as follows. Sup-
pose that we have two arrays a and b of size n. Let
P be a permutation of (0, 1, . . . , n − 1). In other words,
P(0), P(1), . . . , P(n − 1) take distinct integers in the range
[0, n − 1]. Offline permutation along P is a task to copy
a[i] to b[P(i)] for all i (0 ≤ i ≤ n − 1). We assume that
P(0), P(1), . . . , P(n − 1) are stored in an array p of size n,
such that p[i] = P(i) for all i (0 ≤ i ≤ n − 1). The following
algorithm can perform the offline permutation:

[Destination-designated permutation algorithm]
for i← 0 to n − 1 do

T (i) performs b[p[i]]← a[i]

The Destination-designated (D-designated) permutation al-
gorithm involves three rounds of memory access: one round
of coalesced reading from a, one round of coalesced reading
from p, and one round of casual writing in b. Thus, we have

Lemma 2: The D-designated permutation algorithm per-
forms the offline permutation by memory access rounds in
Table 1.

We can design the Source-designated (S-designated)
permutation algorithm using the inverse permutation P−1 of
P such that P−1(P(i)) = i for all i (0 ≤ i ≤ n − 1). Suppose
that P−1(0), P−1(1), . . . , P−1(n−1) are stored in an array q of
size n, such that q[i] = P−1(i) for all i (0 ≤ i ≤ n − 1). The
following algorithm can perform the offline permutation:

[Source-designated permutation algorithm]
for i← 0 to n − 1 do

T (i) performs b[i]← a[q[i]]

Clearly, memory access to b and q are coalesced, while that
to a may not. Thus, we have

Lemma 3: The S-designated permutation algorithm per-
forms the offline permutation by memory access rounds in
Table 1.

Let us define several important permutations that will
be used to evaluate the performance of permutation algo-
rithms by experiments on the GPU.
Let n = 2m and umum−1 · · · u1 be the binary representation
of an integer u.
Identical: Permutation such that P(u) = u for every u
(0 ≤ u ≤ n − 1).
Random: One of all possible n! permutations is selected
uniformly at random.
Shuffle: Shuffle permutation is defined as P(umum−1 · · · u1)=
um−1 · · · u1um. Shuffle permutation is used for shuffle ex-
changing in sorting networks [2], [3].
Bit-reversal: Bit-reversal permutation is defined as
P(umum−1 · · · u1) = u1 · · · um−1um. Bit-reversal is used for
data reordering in the FFT algorithms [1], [21]
Transpose: Suppose that a and b are matrix with dimen-
sion

√
n × √n. Transpose corresponds to the data move-

ment such that a is read in row-major order and b is written
in column-major order. That is, P(i · √n + j) = j · √n + i
for every i and j (0 ≤ i, j ≤ √n − 1). In other words,
P(umum−1 · · · u1) = um/2um/2−1 · · · u1umum−1 · · · um/2+1.

For later reference, we define the distribution of a per-
mutation for conventional permutation algorithms. The dis-
tribution of a permutation P is the total number of address
groups of b accessed by all warps in D-designated permu-
tation algorithm. We can define the distribution Dw(P) of a
permutation P with respect to width w as follows:

Dw(P) =

n
w−1∑

j=0

|{�P(j · w)
w

	, �P(j · w + 1)
w

	, . . . ,

�P((j + 1) · w − 1)
w

	}|,

where |x| denote the number of unique elements in a set x.
It should be clear that the D-designated permutation algo-
rithm for P occupies Dw(P) pipeline registers for writing in
b. Hence, the casual writing in b takes Dw(P) + L − 1 time
units. Similarly, the S-designated permutation algorithm for
P takes Dw(P−1)+L−1 time units for reading from a. Thus,
we have,

Lemma 4: The D-designated permutation algorithm and

KASAGI et al.: OFFLINE PERMUTATION ON THE CUDA-ENABLED GPU
3057

the S-designated permutation algorithm for a permutation
P take time units shown in Table 1.

Clearly, Dw(identical) = n
w

and Dw(shuffle) = Dw(shuffle−1)
= 2 n

w
. Further, the values of Dw(bit-reversal), Dw(bit-

reversal−1), Dw(transpose), and Dw(transpose−1) are n.
Since the random permutation is not a fixed permutation,
Dw(random) is not a constant value.

5. In-Place Permutation Algorithms for Transpose,
Shuffle, and Bit-Reversal Permutations

The main purpose of this section is to show in-place per-
mutation algorithms for transpose, shuffle, and bit-reversal
permutations. Unlike the conventional algorithm, these al-
gorithms does not use an array p. Hence, we call them in-
place permutation algorithms. For simplicity, we show per-
mutation algorithms for n = 256 numbers and width w = 4.
The reader should have no difficulty to design these algo-
rithms for any n and w.

We assume that n
w2 = 16 DMMs are used for the permu-

tations. The outline of algorithms for the three permutations
are very simple.

• Each DMM with w2 = 16 threads is responsible to
perform the permutation of w2 = 16 numbers out of
n = 256 numbers.

• The w2 = 16 threads perform coalesced access to read
w2 = 16 numbers in the global memory and performs
conflict-free access to write them in the shared memory
(Step 1).

• The w2 = 16 threads perform conflict-free access to
read w2 = 16 numbers in the shared memory and
performs coalesced access to write them in the global
memory (Step 2).

For the purpose of avoiding bank conflicts, we use a matrix
α of size w × w in the shared memory of each DMM. We
write each element in α such that α[i, j] (0 ≤ i, j ≤ w − 1),
which is allocated in address i·w+(i+ j) mod w. We call such
arrangement the diagonal arrangement. Clearly, α[i, j] is in
bank B[(i + j) mod w]. Let αi (0 ≤ i ≤ 15) be such matrix
on the shared memory of the i-th DMM. Also, let Ti(j) be
the i-th thread of the j-th DMM.

The transpose can be done by the following algorithm:

[Transpose permutation]
for i4i3i2i1 ← 0 to 15 do in parallel
for j4 j3 j2 j1 ← 0 to 15 do in parallel

Step 1: Ti4i3i2i1 (j4 j3 j2 j1) performs
a[i4i3 j4 j3i2i1 j2i1]→ αi4i3i2i1 [j4 j3, j2 j1]

Step 2: Ti4i3i2i1 (j4 j3 j2 j1) performs
αi4i3i2i1 [j2 j1, j4 j3]→ b[i2i1 j4 j3i4i3 j2 j1]

Let us verify that this algorithm performs the transpose
permutation correctly. For this purpose, we will trace
the value stored in each a[u8u7u6u5u4u3u2u1]. In Step 1,
a[u8u7u6u5u4u3u2u1] → αu8u7u4u3 [u6u5, u2u1] is performed.
In Step 2, αu8u7u4u3 [u6u5, u2u1] → b[u4u3u2u1u8u7u6u5] is

performed. Thus, the transpose permutation algorithm cor-
rectly stores the transpose of a in b. Next, let us confirm
that the memory access to a and b is coalesced, and that
to α is conflict-free. The least significant two bits of in-
dexes of memory access to a and b are j2 j1. Since width
is w = 4, these memory access operations are coalesced.
In Step 1, each Ti4i3i2i1 (j4 j3 j2 j1) access αi4i3i2i1 [j4 j3, j2 j1]
is in bank B[(j4 j3 + j2 j1) mod 4]. Thus, memory access
by each warp is conflict-free. Similarly, memory access in
Step 2 is conflict-free, because αi4i3i2i1 [j2 j1, j4 j3] is in bank
B[(j2 j1 + j4 j3) mod 4].

The shuffle permutation can be done by the following
algorithm:

[Shuffle permutation]
for i4i3i2i1 ← 0 to 15 do in parallel
for j4 j3 j2 j1 ← 0 to 15 do in parallel

Step 1: Ti4i3i2i1 (j4 j3 j2 j1) performs
a[j4i4i3i2i1 j3 j2 j1]→ αi4i3i2i1 [j4 j3, j2 j1]

Step 2: Ti4i3i2i1 (j4 j3 j2 j1) performs
αi4i3i2i1 [j2 j4, j3 j1]→ b[i4i3i2i1 j4 j3 j1 j2]

Again, we will trace the value of each a[u8u7u6u5u4u3u2u1].
In Step 1, a[u8u7u6u5u4u3u2u1] → αu7u6u5u4 [u8u3, u2u1]
is performed. In Step 2, αu7u6u5u4 [u8u3, u2u1] →
b[u7u6u5u4u3u2u1u8] is performed. Thus, the shuffle per-
mutation algorithm is correct. Since the least significant
two bits of indexes of memory access to a and b are j2 j1
and j1 j2, respectively, these memory access operations are
coalesced. Similarly to the transpose permutation, mem-
ory access to αi4i3i2i1 [i4i3, i2i1] in Step 1 is conflict-free.
Memory access in Step 2 is also conflict-free, because
αi4i3i2i1 [j2 j4, j3 j1] is in bank B[(j2 j4 + j3 j1) mod 4].

The bit-reversal permutation can be done by the fol-
lowing algorithm:

[Bit-reversal permutation]
for i4i3i2i1 ← 0 to 15 do in parallel
for j4 j3 j2 j1 ← 0 to 15 do in parallel

Step 1: Ti4i3i2i1 (j4 j3 j2 j1) performs
a[j4 j3i4i3i2i1 j2 j1]→ αi4i3i2i1 [j4 j3, j2 j1]

Step 2: Ti4i3i2i1 (j4 j3 j2 j1) performs
αi4i3i2i1 [j2 j1, j4 j3]→ b[j3 j4i1i2i3i4 j1 j2]

Similarly, we will trace the value of each a[u8u7u6u5u4u3u2u1].
In Step 1, a[u8u7u6u5u4u3u2u1] → αu6u5u4u3 [u8u7, u2u1]
is performed. In Step 2, αu6u5u4u3 [u8u7, u2u1] →
b[u1u2u3u4u5u6u7u8] is performed. Thus, the bit-reversal
permutation algorithm is correct. Since the least significant
two bits of indexes of memory access to a and b are i2i1 and
i1i2, respectively, these memory access operations are coa-
lesced. Since memory access to each matrix α is the same
as the transpose permutation, it is conflict-free.

Clearly, the in-place permutation involves coalesced
read, conflict-free write, conflict-free read, and coalesced
write rounds. The coalesced read and the coalesced write
rounds take n

w
+ L − 1 time units each. The conflict-free

read and the conflict-free write to the shared memory is per-
formed in k DMMs in parallel. Hence, these rounds takes

3058
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Fig. 4 Data movement of permutation algorithms for shuffle, bit-reversal, and transpose permutations.

n
kw time units each. Thus, we have,

Lemma 5: In-place permutation algorithms for transpose,
shuffle, and bit-reversal permutations by memory access
rounds and running time in Table 1.

For the reader’s benefits, Fig. 4 illustrates the data
movement of permutation algorithms performed by the first
DMM with 16 threads. We can confirm that the permuta-
tions performed correctly, and memory access to the global
memory is coalesced and that to the shared memory is
conflict-free.

6. Row-Wise and Column-Wise Permutations

The main purpose of this section is to show efficient row-
wise permutation and column-wise permutation algorithms,
which are key ingredients of our scheduled permutation al-
gorithm on the HMM. The idea of row-wise permutation is
to execute the offline permutation on the DMM presented in
our paper [11] for each row independently in parallel.

Suppose that we have matrices a and b of size
√

n× √n
each stored in the global memory. Also,

√
n permutations

P0, P1, . . . , P√n−1 of (0, 1, . . . ,
√

n − 1) are given. The goal
of the row-wise permutation is to copy the value of each
a[i][j] (0 ≤ i, j ≤ √n) to b[i][Pi(j)].

Let Di and S i (0 ≤ i ≤ √n − 1) be permutations
such that Pi(S i(j)) = Di(j) is satisfied for all i and j
(0 ≤ i, j ≤ √n− 1). We show how Di and S i are determined

from Pi later. We assume that matrices s and d such that
each s[i][j] = S i(j) and d[i][j] = Di(j) are also stored in
the global memory. We use n threads, which are partitioned
into

√
n blocks of

√
n threads each. Let B0, B1, . . . , B√n−1

denote the
√

n blocks. Also, let Ti(j) (0 ≤ i, j ≤ √n) denote
the j-th thread of block Bi. Each Bi (0 ≤ i ≤ √n − 1) is
assigned to a row a[i] of a and works for the permutation of
a[i]. We assume that each block Bi (0 ≤ i ≤ √n−1) has two
arrays αi and βi of size

√
n each in the shared memory of

the DMM. Further, each Ti(j) (0 ≤ i, j ≤ √n) has two local
(register) variables Si, j andDi, j. The details of the row-wise
permutation are spelled out as follows:

[Row-wise permutation]
for i← 0 to

√
n − 1 do in parallel

for j← 0 to
√

n − 1 do in parallel
Step 1: Ti(j) performs a[i][j]→ αi[j]
Step 2: Ti(j) performs s[i][j]→ Si, j and d[i][j]→ Di, j

Step 3: Ti(j) performs αi[Si, j]→ βi[Di, j]
Step 4: Ti(j) performs βi[j]→ b[i][j]

It should be clear that b[i][Di(j)] stores a[i][S i(j)]. Hence,
b[i][Di(S −1

i (j))] stores a[i][S i(S −1
i (j))]. From Pi(S i(j)) =

Di(j), we have Pi(j) = Di(S −1
i (j)), and thus b[i][P(j)] stores

a[i][j]. Hence, this algorithm performs the row-wise per-
mutation correctly. We will show that Di and S i can be
determined from Pi such that Pi(S i(j)) = Di(j) holds and
memory access to αi and βi is conflict-free.

KASAGI et al.: OFFLINE PERMUTATION ON THE CUDA-ENABLED GPU
3059

Fig. 5 A regular bipartite graph with degree 4 painted by 4 colors.

We use the following graph theoretic result [22], [23]:

Theorem 6 (König): A regular bipartite graph with degree
ρ is ρ-edge-colorable.

Figure 5 illustrates an example of a regular bipartite graph
with degree 4 painted by 4 colors. Each edge is painted by
one of the 4 colors such that no node is connected to edges
with the same color. In other words, no two edges with the
same color share a node. The readers should refer to [22],
[23] for the proof of Theorem 6.

We will show how Di and S i are determined from per-
mutation Pi. We draw a bipartite graph G = (U,V, E) from
Pi as follows:

• U = {B[0], B[1], . . . , B[w− 1]} is a set of nodes each of
which corresponds to a bank of αi.

• V = {B[0], B[1], . . . , B[w − 1]} is a set of nodes each of
which corresponds to a bank of βi.

• For each pair source αi[j] and destination βi[P(j)], E
has a corresponding edge connecting B[j mod w](∈ U)
and B[Pi(j) mod w](∈ V).

Clearly, an edge (B[u], B[v]) (0 ≤ u, v ≤ w − 1) corresponds
to a number to be copied from bank B[u] of αi to B[v] of β j.
Also, G = (U,V, E) is a regular bipartite graph with degree√

n
w

. Hence, G is
√

n
w

-colorable from Theorem 6. Suppose

that all of the
√

n edges in E are painted by
√

n
w

colors 0, 1,

. . .,
√

n
w
− 1. We can determine integer values fi(j, k) (0 ≤

j ≤
√

n
w
− 1, 0 ≤ k ≤ w − 1, 0 ≤ fi(j, k) ≤ √n − 1) such that

an edge (B[fi(j, k) mod w], B[P(fi(j, k) mod w]) with color
j corresponds to a pair of source αi[fi(j, k)] and destination
βi[P(fi(j, k))]. It should have no difficulty to confirm that,
for each j,

• w banks B[fi(j, 0) mod w], B[fi(j, 1) mod w], . . .,
B[fi(j, w − 1) mod w] are distinct, and

• w banks B[P(fi(j, 0)) mod w], B[P(fi(j, 1)) mod w],
. . ., B[P(fi(j, w − 1)) mod w] are distinct.

It follows that,

• αi[fi(j, 0)], αi[fi(j, 1)], . . ., αi[fi(j, w − 1)] are in differ-
ent banks, and

• βi[P(fi(j, 0))], βi[P(fi(j, 1))], . . ., βi[P(fi(j, w − 1)] are
in different banks.

Hence, we define S i and Di from fi(j, k) such that S i(j ·
w + k) = fi(j, k) and Di(j · w + k) = P(fi(j, k)) for all j

and k (0 ≤ j ≤
√

n
w
, 0 ≤ k ≤ w − 1). For such S i and Di,

P(S i(j)) = Di(j) holds and the memory access to αi and βi

is conflict-free.
Let us evaluate the number of memory access rounds.

Step 1 performs one round of coalesced read from a and
one round of coalesced (conflict-free) write in α. Step 2
performs one round of coalesced read from s and d each.
Step 3 involves one round of conflict-free read from α and
one round of conflict-free write in β. Finally, Step 4 per-
forms one round of coalesced (conflict-free) read from β and
one round of coalesced write in b. Note that a, b, s, and d are
in the global memory, and α and β are in the shared memory.
Thus, we have,

Lemma 7: The row-wise permutation can be done by
memory access rounds and running time in Table 1.

It should be clear that, the column-wise permutation
can be done in three steps: transpose, row-wise permutation,
and transpose. Thus, from Lemmas 5 and 7 we have,

Lemma 8: The column-wise permutation can be done by
memory access rounds and running time in Table 1.

7. Our Scheduled Permutation Algorithm

The main purpose of this section is to show our scheduled
offline permutation algorithm on the HMM. The scheduled
permutation algorithm uses the row-wise permutation and
the column-wise permutation.

Suppose that arrays a and b of size n each are given.
Let P be a permutation of (0, 1, . . . , n− 1). For convenience,
we can think that both a and b are matrices of size

√
n× √n.

For simplicity, we assume that
√

n is a multiple of w. The
goal of permutation is to move a number stored in a[i][j] to
b[�P(i·w+ j)/

√
n][P(i·w+ j) mod

√
n] for every i and j (0 ≤

i, j ≤ w − 1). Note that, the permutation is defined for a 1-
dimensional array and our scheduled permutation algorithm
is not restricted to a square matrix.

Our scheduled permutation has three steps, row-wise
permutation (Step 1), column-wise permutation (Step 2),
and row-wise permutation (Step 3). We will show how we
determine three permutations performed in the three steps.
For a given permutation P on a matrix a, we draw a bipartite
graph G = (U,V, E) as follows:

• U = {R[0],R[1], . . . ,R[
√

n − 1]} is a set of nodes each
of which corresponds to a row of a.

• V = {R[0],R[1], . . . ,R[
√

n − 1]} is a set of nodes each
of which corresponds to a row of b.

• For each pair source a[i][j] and destination b[�P(i ·w+
j)/
√

n][P(i · w + j) mod
√

n], E has a corresponding
edge connecting R[i](∈ U) and R[�P(i · w + j)/

√
n](∈

V).

Clearly, G is a regular bipartite graph with degree
√

n.
From Theorem 6, the bipartite graph G thus obtained can be
painted using

√
n colors such that

√
n edges painted by the

same color never share a node. Thus, we have that (1) num-
bers in the same row are painted by different colors, and
(2) numbers painted by the same color have different row
destination. The readers should refer to Fig. 6 for illustrat-
ing how input numbers are painted.

3060
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Fig. 6 Illustrating how numbers are routed by the permutation algorithm.

In Step 1, row-wise permutation is performed such that
a number with color i (0 ≤ i ≤ √n − 1) in each row is trans-
ferred to the i-th column. From (1) above,

√
n numbers in

each row are painted by
√

n colors and thus, Step 1 is possi-
ble. Step 2 uses column-wise permutation to move numbers
to the final row destinations. From (2) above,

√
n numbers

in each column has different
√

n row destinations and Step 2
is possible. Finally, in Step 3, row-wise permutation is per-
formed to move numbers to the final column destinations.
The readers should refer to Fig. 6 for illustrating how num-
bers are routed by the permutation algorithm for

√
n = 4. In

this figure, (�P(i ·w+ j)/
√

n	, P(i ·w+ j) mod
√

n) is stored
in a[i][j] initially, and after the permutation algorithm ter-
minates, (i, j) is stored in b[i][j]. Also, Fig. 7 illustrates the
bipartite graph corresponding to the permutation in Fig. 6.
Each edge corresponds to an element of a matrix such that it
connects the source row and the destination row. For exam-
ple, elements (3, 0), (0, 0), (1, 1), and (2, 3) are painted by
the same color in the bipartite graph. Hence, they are in dis-
tinct rows in the input matrix. In Step 1, they are moved to
the same column by row-wise permutation. Step 2 performs
column-wise permutation such that they are in the destina-
tion rows. By row-wise permutation in Step 3, they can be
moved to the final destination.

Since the scheduled permutation algorithm on the
HMM performs row-wise permutation twice and the
column-wise permutation once, we have,

Theorem 9: Our scheduled permutation algorithm on the
HMM can be done by memory access rounds and running
time in Table 1.

We can prove Ω(n
w
+ L)-time lower bound for the per-

mutation on the HMM. Since all of the n numbers in a must
be read at least once and w numbers can be read in a time
unit, n

w
time units are necessary. Also, reading of one num-

ber takes L time units. Thus, Ω(n
w
+ L) time units are nec-

Fig. 7 The bipartite graph for offline permutation in Fig. 6.

essary for permutation of n numbers and our scheduled per-
mutation algorithm is optimal from the theoretical point of
view.

8. Experimental Results

The main purpose of this section is to show experimental
results on GeForce GTX 680. We have implemented D-
designated, S-designated, our scheduled algorithm and in-
place algorithm and evaluate the performance for various
size of array a both of float (32-bit) numbers and of double
(64-bit) numbers. Also, five permutations, identical, ran-
dom, transpose, shuffle, and bit-reversal permutations are
used to evaluate the performance.

We have invoked n
1024 CUDA blocks [8] of 1024

threads each for D-designated and S-designated permuta-
tion algorithms. In the D-designated algorithm, each block
is assigned to a row of a and works for the copy of the as-
signed row. Similarly, in the S-designated algorithm, each
block is assigned to a row of b. Also, arrays p and q used
in D-designated and S-designated are arrays of int (32-bit)
numbers, since at most log 40962 = 24 bits are necessary.

Recall that our scheduled permutation algorithm in-
volves three steps, row-wise permutation, column-wise per-
mutation, and row-wise permutation. Also, column-wise
permutation has three substeps, transpose, row-wise permu-
tation, and transpose. Thus, it has essentially five steps,
three for row-wise permutation and two for transpose. The
implementation of our scheduled algorithms performs five
sequential kernel calls for these five steps. For the row-wise
permutation,

√
n CUDA blocks are invoked. However, since

each CUDA block can have up to 1024 threads [8], each
block is assigned 1024 threads when

√
n ≥ 1024. If this

is the case, each thread works for
√

n
1024 numbers. Also, ar-

rays s and d used in our scheduled permutation algorithms
are 2-dimensional arrays of n short int (16-bit) numbers in
the global memory, since at most log 4096 = 12 bits are
necessary.

Table 2 shows the running time of the three permu-
tation algorithms for five permutations. Since the shared
memory of GeForce GTX680 has up to 48Kbytes, it is not
possible to implement our scheduled algorithm for 4096 ×

KASAGI et al.: OFFLINE PERMUTATION ON THE CUDA-ENABLED GPU
3061

Table 2 The running time (milliseconds) of D-designated, S-designated, our scheduled, and in-place
permutation algorithms for GeForce GTX 680.

(a) Permutation for float (32-bit) numbers

D-designated S-designated Our scheduled In-Place√
n 512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

identical 2.48 9.06 33.2 130 2.49 9.13 33.1 129 11.7 46.9 173 780 - - - -
random 15.1 93.9 425 1756 15.7 89.8 398 1644 11.7 47.0 173 780 - - - -

transpose 21.2 127 636 2850 17.8 87.0 370 2037 11.7 46.9 173 780 2.13 8.70 36.5 149
shuffle 3.05 11.5 44.7 186 2.47 9.09 33.6 133 11.7 46.9 174 780 2.44 9.28 38.9 146

bit-reversal 15.6 95.3 459 2328 20.8 96.6 414 1870 11.7 47.0 173 780 2.66 10.1 41.4 157

(b) Permutation for double (64-bit) numbers

D-designated S-designated Our scheduled In-Place√
n 256 512 1024 2048 256 512 1024 2048 256 512 1024 2048 256 512 1024 2048

identical 1.07 3.57 13.5 54.6 1.07 3.60 13.8 54.6 5.07 16.9 66.6 275 - - - -
random 2.98 21.6 104 452 3.40 21.3 100 424 5.09 17.0 66.6 275 - - - -

transpose 2.07 22.2 134 638 2.99 15.4 80.3 358 5.12 17.0 66.6 275 1.00 3.04 12.6 56.9
shuffle 1.44 5.14 19.7 82.2 1.08 3.57 13.6 54.6 5.09 17.0 66.7 275 0.92 3.29 12.5 51.7

bit-reversal 3.00 22.0 108 559 3.36 25.0 104 498 5.09 17.0 66.6 275 1.10 3.88 14.1 70.3

4096 double (64-bit) numbers. Thus, we evaluate the perfor-
mance up to 2048 × 2048 double (64-bit) numbers. Clearly,
for the D-designated and S-designated permutation algo-
rithms, the identical permutation is fastest, because it is just
a copy between two arrays. Note that, the running time of
our scheduled permutation algorithm does not include the
time for preliminary computation such as computation of
αi and βi in row-wise permutations. This makes sense be-
cause a permutation is offline and fixed, and the same per-
mutation is repeatedly performed in practical applications
such as FFT and bitonic sorting. From Table 2, we can
see that D-designated and S-designated permutation algo-
rithms take more time for permutation with larger distribu-
tion, while our scheduled permutation algorithm takes al-
most the same running time for each value of

√
n. Since the

identical and the shuffle permutation have very small distri-
bution, our scheduled permutation algorithm cannot be bet-
ter than the D-designated and S-designated permutation al-
gorithms. Since random, bit-reversal, and transpose permu-
tations have large distribution, our scheduled permutation
algorithm runs faster.

Let us compare the theoretical analysis in Table 1,
and the experimental results in Table 2. The global mem-
ory access latency of CUDA-enabled GPU has several hun-
dreds [8], we can ignore the latency overhead in Table 2
when n is so large that

√
n ≥ 256. Also, it makes sense to

use parameters w = 32 and k = 8 for Geforce GTX680, be-
cause each warp has 32 threads and it has 8 streaming multi-
processors. If this is the case, the running time of our sched-
uled permutation algorithm for any permutation is 16 n

w
+

16 n
kw =

18
32 n. Further, the running time of D-designated

and S-designated algorithms is n
w
+ 2 n

w
= 3

32 n for identi-
cal permutation, 2 n

w
+2 n
w
= 4

32 n for shuffle permutation, and
n+2 n

w
= 34

32 n for transpose and bit-reversal permutations. In
other words, our scheduled algorithm, D-designated algo-
rithm for shuffle permutation, and D-designated algorithm
for transpose and bit-reversal permutations are 6 times, 4

3
times, and 34

3 times slower than D-designated algorithm for
identical permutation. From Table 2, we can see that our

scheduled algorithm is approximately 5-6 times slower than
D-designated algorithm for identical. Hence, the theoretical
analysis on the HMM gives good approximation of the ex-
perimental results on Geforce GTX680. On the other hand,
D-designated algorithm for transpose and bit-reversal per-
mutations, is 5-20 times slower than D-designated algorithm
for identical. Hence, we can say that the theoretical analy-
sis and the experimental results have 50%-200% gaps. This
is because memory access requests to the global memory
on the GPU are routed through complicated Network-on-
Chip to the off-chip DRAM. Although the theoretical anal-
ysis and the experimental results have no small gap, we can
see that permutation with larger distribution takes more run-
ning time. Thus, it makes sense to optimize parallel algo-
rithms on the UMM for the purpose of obtaining efficient
implementation on CUDA-enabled GPUs.

Table 2 also shows the running time of our in-place per-
mutation algorithms for transpose, shuffle, and bit-reversal
permutations. Clearly, they are faster than all the other algo-
rithms. The in-place permutation algorithm for bit-reversal
permutation is slower than those for transpose and shuffle,
because it involves computation of bit-reverse. More specif-
ically, it need to compute i1i2 · · · im from im · · · i2i1, which
takes O(log m) arithmetic/logic operations. Note that in-
place permutation algorithm can be designed only if the per-
mutation is regular. Even if a permutation is regular, it may
be very hard to design in-place permutation algorithm for it.
In-place permutation can be designed only for very limited
permutations. Actually, it is not possible to design in-place
permutation algorithm for random permutations.

9. Conclusion

In this paper, we have presented an optimal offline permuta-
tion algorithm on the HMM, a theoretical model of CUDA-
enabled GPUs. We have implemented the optimal offline al-
gorithm and the conventional algorithms on GeForce GTX
680 GPU and evaluate their performance. The experimental
results showed that our schedule offline permutation algo-

3062
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

rithm is faster than the conventional permutation algorithm
for permutations with large distributions.

References

[1] J.D. Scott Parker, “Notes on shuffle/exchange-type switching net-
works,” IEEE Trans. Comput., vol.C-29, no.3, pp.213–222, March
1980.

[2] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge
University Press, 1988.

[3] K.E. Batcher, “Sorting networks and their applications,” Proc.
AFIPS Spring Joint Comput. Conf., pp.307–314, 1968.

[4] H.S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. Comput., vol.C-20, no.2, pp.153–161, Feb. 1971.

[5] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan
Kaufmann, 2011.

[6] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation
of computing Euclidean distance map with efficient memory ac-
cess,” Proc. International Conference on Networking and Comput-
ing, pp.68–76, Dec. 2011.

[7] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” Proc. Interna-
tional Conference on Networking and Computing, pp.153–159, Dec.
2011.

[8] NVIDIA Corporation, “NVIDIA CUDA C programming guide ver-
sion 5.0,” 2012.

[9] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-
tions of a parallel algorithm for computing euclidean distance map in
multicore processors and GPUs,” International Journal of Network-
ing and Computing, vol.1, no.2, pp.260–276, July 2011.

[10] K. Nakano, “Simple memory machine models for GPUs,” Proc. In-
ternational Parallel and Distributed Processing Symposium Work-
shops, pp.788–797, May 2012.

[11] A. Kasagi, K. Nakano, and Y. Ito, “Offline permutation algorithms
on the discrete memory machine with performance evaluation on the
GPU,” IEICE Trans. Inf. & Syst., vol.E96-D, no.12, pp.2617–2625,
Dec. 2013.

[12] NVIDIA Corporation, “NVIDIA CUDA C best practice guide ver-
sion 5.0,” 2012.

[13] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-
gramming for the optial poygon triangulation on the GPU,” Proc.
International Conference on Algorithms and Architectures for Par-
allel Processing (ICA3PP, LNCS 7439), pp.1–15, Sept. 2012.

[14] A. Kasagi, K. Nakano, and Y. Ito, “An implementation of conflict-
free off-line permutation on the GPU,” Proc. International Confer-
ence on Networking and Computing, pp.226–232, 2012.

[15] K. Nakano, “Asynchronous memory machine models with barrier
syncronization,” Proc. International Conference on Networking and
Computing, pp.58–67, Dec. 2012.

[16] K. Nakano, “Efficient implementations of the approximate string
matching on the memory machine models,” Proc. International Con-
ference on Networking and Computing, pp.233–239, Dec. 2012.

[17] K. Nakano, “An optimal parallel prefix-sums algorithm on the mem-
ory machine models for GPUs,” Proc. International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP,
LNCS 7439), pp.99–113, Springer, Sept. 2012.

[18] S.H. Hsiao and C.Y.R. Chen, “Performance evaluation of circuit
switched multistage interconnection networks using a hold strategy,”
IEEE Trans. Parallel Distrib. Syst., vol.3, pp.632–640, Sept. 1992.

[19] K. Nakano, “The hierarchical memory machine model for GPUs,”
Proc. International Parallel and Distributed Processing Symposium
Workshops, pp.591–600, May 2013.

[20] D. Man, K. Nakano, and Y. Ito, “The approximate string matching
on the hierarchical memory machine, with performance evaluation,”
Proc. International Symposium on Embedded Multicore/Many-core
System-on-Chip, pp.79–84, Sept. 2013.

[21] M. Rubio, R. Gónez, and K. Drouiche, “A new superfast bit reversal
algorithm,” Int. J. Adaptive Control and Signal Processing, vol.16,
no.10, pp.703–707, 2002.

[22] K. Nakano, “Optimal sorting algorithms on bus-connected processor
arrays,” IEICE Trans. Fundamentals, vol.E76-A, no.11, pp.2008–
2015, Nov. 1993.

[23] R.J. Wilson, Introduction to Graph Theory, 3rd ed., Longman, 1985.

Akihiko Kasagi received the BE and ME
from the Department of Information Engineer-
ing, Hiroshima University in 2012 and 2013.
Currently, he is a Ph.D student at the Depart-
ment of Information Engineering, Hiroshima
University.

Koji Nakano received the BE, ME and
Ph.D. degrees from Department of Computer
Science, Osaka University, Japan in 1987, 1989,
and 1992 respectively. In 1992-1995, he was a
Research Scientist at Advanced Research Lab-
oratory. Hitachi Ltd. In 1995, he joined De-
partment of Electrical and Computer Engineer-
ing, Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. He has also guest-edited several special issues in-
cluding IEEE TPDS Special issue on Wireless Networks and Mobile Com-
puting, IJFCS special issue on Graph Algorithms and Applications, and
IEICE Transactions special issue on Foundations of Computer Science.
He has organized conferences and workshops including International Con-
ference on Networking and Computing, International Conference on Par-
allel and Distributed Computing, Applications and Technologies, IPDPS
Workshop on Advances in Parallel and Distributed Computational Models,
and ICPP Workshop on Wireless Networks and Mobile Computing. His
research interests includes image processing, hardware algorithms, GPU-
based computing, FPGA-based reconfigurable computing, parallel comput-
ing, algorithms and architectures.

Yasuaki Ito received B.E. degree from
Nagoya Institute of Technology (Japan), M.S.
degree from Japan Advanced Institute of Sci-
ence and Technology in 2003, and D.E. degree
from Hiroshima University (Japan), in 2010. Dr.
Ito is currently with the School of Engineering,
at Hiroshima University, where he is currently
an Associate Professor at Hiroshima University.
His research interests include reconfigurable ar-
chitectures, parallel computing, computational
complexity and image processing.

