
VOL. E97-D NO. 12
DECEMBER 2014

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014
3063

PAPER Special Section on Parallel and Distributed Computing and Networking

An Optimal Implementation of the Approximate String Matching
on the Hierarchical Memory Machine, with Performance
Evaluation on the GPU

Duhu MAN†, Nonmember, Koji NAKANO†a), and Yasuaki ITO†, Members

SUMMARY The Hierarchical Memory Machine (HMM) is a theoret-
ical parallel computing model that captures the essence of computing on
CUDA-enabled GPUs. The approximate string matching (ASM) for two
strings X and Y of length m and n is a task to find a substring of Y most sim-
ilar to X. The main contribution of this paper is to show an optimal parallel
algorithm for the approximate string matching on the HMM and implement
it on GeForce GTX 580 GPU. Our algorithm runs in O(n

w +
mn
dw +

nL
p +

mnl
p)

time units on the HMM with p threads, d streaming processors, memory
band width w, global memory access latency L, and shared memory access
latency l. We also show that the lower bound of the computing time is
Ω(n
w +

mn
dw +

nL
p +

mnl
p) time units. Thus, our algorithm for the approximate

string matching is time optimal. Further, we implemented our algorithm on
GeForce GTX 580 GPU and evaluated the performance. The experimental
results show that the ASM of two strings of 1024 and 4M (= 222) characters
can be done in 419.6ms, while the sequential algorithm can compute it in
27720ms. Thus, our implementation on the GPU attains a speedup factor
of 66.1 over the single CPU implementation.
key words: memory machine models, approximate string matching, edit
distance, GPU, CUDA

1. Introduction

The GPU (Graphics Processing Unit), is a specialized cir-
cuit designed to accelerate computation for building and
manipulating images [1]–[5]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application de-
velopers [1]. NVIDIA provides a parallel computing archi-
tecture called CUDA (Compute Unified Device Architec-
ture) [6], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and
memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multi-
core processors [7], since they have hundreds of processor
cores and very high memory bandwidth.

NVIDIA GPUs has streaming multiprocessors (SMs)
each of which executes multiple threads in parallel. CUDA
uses two types of memories in the NVIDIA GPUs: the
shared memory and the global memory [6]. Each SM has
the shared memory, an extremely fast on-chip memory with
lower capacity, say, 16-48 Kbytes, and low latency. Every

Manuscript received December 26, 2013.
Manuscript revised May 13, 2014.
†The authors are with the Department of Information Engineer-

ing, Hiroshima University, Higashihiroshima-shi, 739–8527 Japan.
a) E-mail: nakano@cs.hiroshima-u.ac.jp

DOI: 10.1587/transinf.2014PAP0011

SM shares the global memory implemented as an off-chip
DRAM, and has large capacity, say, 1.5-6 Gbytes, but its ac-
cess latency is very large. The efficient usage of the shared
memory and the global memory is a key for CUDA devel-
opers to accelerate applications using GPUs. In particular,
we need to consider the bank conflict of the shared memory
access and the coalescing of the global memory access [3],
[7]–[9]. The address space of the shared memory is mapped
into several physical memory banks. If two or more threads
access the same memory banks at the same time, the ac-
cess requests are processed in turn. Hence, to maximize the
memory access performance, threads of CUDA should ac-
cess distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory.

In our previous paper [10], we have introduced three
parallel computing models, the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM), which
reflect the essential features of the shared memory and the
global memory of CUDA-enabled GPUs. The outline of
the architectures of the DMM and the UMM is illustrated
in Fig. 1. In both architectures, a set of threads (Ts) are
connected to the memory banks (MBs) through the memory
management unit (MMU). Each thread is a Random Access
Machine (RAM) [11], which can execute fundamental op-
erations in a time unit. Threads are executed in SIMD [12]
fashion, and the processors run on the same program and
work on the different data. MBs constitute a single address
space of the memory. A single address space of the mem-
ory is mapped to the MBs in an interleaved way such that
the word of data of address i is stored in the (i mod w)-th
bank, where w is the number of MBs. The main difference
of the two architectures is the connection of the address line
between the MMU and the MBs, which can transfer an ad-
dress value. In the DMM, the address lines connect the MBs
and the MMU separately, while a single address line from
the MMU is connected to the MBs in the UMM. Hence, in
the UMM, the same address value is broadcast to every MB,
and the same address of the MBs can be accessed in each
time unit. On the other hand, different addresses of the MBs
can be accessed in the DMM.

Quite recently, we have introduced the Hierarchical

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

3064
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Fig. 1 The architectures of the DMM and the UMM with w = 4.

Memory Machine (HMM) [13], which is a hybrid of the
DMM and the UMM. The HMM is a more practical parallel
computing model that reflects the hierarchical architecture
of CUDA-enabled GPUs. Figure 2 illustrates the architec-
ture of the HMM. The HMM consists of d DMMs and a sin-
gle UMM. Each DMM has w memory banks and the UMM
also has w memory banks. We call the memory banks of
each DMM the shared memory and those of the UMM the
global memory after CUDA-enabled NVIDIA GPUs. Each
DMM can work independently and can perform the compu-
tation using its shared memory. Also, all threads of DMMs
work as a single UMM and can access to the global memory.
While the memory access latency of the shared memory of
CUDA-enables GPUs is very low, that of the global memory
is several hundred clock cycles [6]. Hence, we use parame-
ters l and L that denote the memory access latencies of the
shared memory and the global memory, and assume l � L.

Suppose that two strings X and Y with length m and
n (m ≤ n), respectively, are given. The approximate string
matching (ASM) is a task to find a substring in Y most sim-
ilar to X. The similarity of two strings is measured by the
number of three operations, insertion, deletion, and replace-
ment of characters necessary to change one string into the
other. The ASM has a lot of applications in the areas of sig-
nal processing, bio-informatics, natural language process-
ing, among others. It is well known that the ASM can be
computed in O(mn) time [14] using the dynamic program-
ming technique. Many researchers have been devoted to do
research on variations of the ASM. For example, if the prob-
lem is to list substrings in Y with similarity no more than k,
the computing time can be reduced [15]. Also, if the com-
plicated bit operations of words is allowed, the ASM can be
accelerated [16]. Utan et. al [17] implemented an approxi-
mate regular expression matching algorithm on the FPGA
and the GPU.

Although a lot of work of sequential algorithms for the
ASM have been published, there is no significant work for

parallel algorithms for ASM. Since the computation of the
ASM involves long sequential operations, it is very hard
to parallelize it to run in poly-logarithmic time. Also, it
is not difficult to obtain a cost-optimal linear-time parallel
algorithm, which runs in O(n) time using m processors on
the PRAM. As a related result, a GPU implementation of
k-mismatch ASM has been shown in [18]. However, this
string matching is a task to find substrings with Hamming
distance no more than k, which is much simpler than ASM.
Quite recently, we have published optimal algorithm for the
ASM on the DMM and the UMM [19]. This implementa-
tion runs in O(mn

w
+ ml) time units on the DMM and on the

UMM using n threads. However, since at most w threads
perform computation in every time unit on the DMM and
the UMM, it is not possible to accelerate the computation a
factor of more than w.

The main contribution of this paper is to present an op-
timal implementation of the ASM algorithm on the HMM.
Our implementation on the HMM achieves more speed-up
than our previous work [19] on the DMM and the UMM.
Our implementation runs in O(n

w
+ mn

dw +
nL
p +

mnl
p) time

units on the HMM with d DMMs, width w, global mem-
ory latency L and shared memory latency l. The domi-
nant factor mn in the running time is accelerated by a fac-
tor of dw. We also discuss the lower bound of the com-
puting time for the ASM. More specifically, we prove four
lower bounds: Ω(n

w
)-time bandwidth limitation, Ω(mn

dw)-time
speed-up limitation, Ω(nL

p)-time global memory latency lim-

itation, and Ω(mnl
p)-time shared memory latency limitation.

Thus, our implementation of the ASM on the HMM is time
optimal. We also implemented our algorithm for the ASM
on GeForce GTX-580 GPU. The experimental results show
that the ASM of two strings of 1024 and 4M (= 222) charac-
ters can be computed in 419.6ms, while the sequential algo-
rithm can compute it in 27720ms. Thus, our implementation
on the GPU attains a speedup factor of 66.1 over the single
CPU implementation.

2. Memory Machine Models: The DMM, the UMM,
and the HMM

We first define the Discrete Memory Machine (DMM) [10],
[20], [21] of width w and latency l. Let m[i] (i ≥ 0) de-
note a memory cell of address i in the memory. Let B[j] =
{m[j],m[j + w],m[j + 2w],m[j + 3w], . . .} (0 ≤ j ≤ w − 1)
denote the j-th bank of the memory. Clearly, a memory cell
m[i] is in the (i mod w)-th memory bank. We assume that
memory cells in different banks can be accessed in a time
unit, but no two memory cells in the same bank can be ac-
cessed in a time unit. Also, we assume that l time units are
necessary to complete an access request and continuous re-
quests are processed in a pipeline fashion through the MMU.
Thus, it takes k+ l−1 time units to complete memory access
requests to k memory cells in a particular bank.

We assume that p threads are partitioned into p
w

groups
of w threads called warps. More specifically, p threads T (0),

MAN et al.: APPROXIMATE STRING MATCHING ON THE HIERARCHICAL MEMORY MACHINE
3065

Fig. 2 The architecture of the HMM with d = 3 DMMs and width w = 4.

T (1), . . ., T (p − 1) are partitioned into p
w

warps W(0),W(1),
. . ., W(p

w
−1) such that W(i) = {T (i ·w),T (i ·w+1), . . . ,T ((i+

1) · w − 1)} (0 ≤ i ≤ p
w
− 1). Warps are dispatched

for memory access in turn, and w threads in a warp try
to access the memory at the same time. In other words,
W(0),W(1), . . . ,W(p

w
− 1) are dispatched in a round-robin

manner if at least one thread in a warp requests memory ac-
cess. If no thread in a warp needs memory access, such warp
is not dispatched for memory access. When W(i) is dis-
patched, w threads in W(i) send memory access requests, at
most one request per thread, to the memory. We also assume
that a thread cannot send a new memory access request until
the previous memory access request is completed. Hence, if
a thread sends a memory access request, it must wait at least
l time units to send a new memory access request.

We next define the Unified Memory Machine (UMM)
[10], [22] of width w and latency L as follows. Let A[j] =
{m[j · w],m[j · w + 1], . . . ,m[(j + 1) · w − 1]} denote the j-th
address group. We assume that memory cells in the same
address group are processed at the same time. However,
if they are in the different groups, one time unit is neces-
sary for each of the groups. Also, similarly to the DMM,
p threads are partitioned into warps and each warp accesses
the memory in turn.

Figure 3 shows examples of memory access on the
DMM and the UMM. We assume that each memory ac-
cess request is completed when it reaches the last pipeline
stage. Two warps W(0) and W(1) access to 〈7, 5, 15, 0〉 and
〈10, 11, 12, 9〉, respectively. In the DMM, memory access
requests by W(0) are separated into two pipeline stages, be-
cause addresses 7 and 15 are in the same bank B(3). Those
by W(1) occupies 1 stage, because all requests are in dis-
tinct banks. Thus, the memory requests occupy three stages,
it takes 3 + 5 − 1 = 7 time units to complete the memory
access. In the UMM, memory access requests by W(0) are
destined for three address groups. Hence the memory re-
quests occupy three stages. Similarly those by W(1) occupy
two stages. Hence, it takes 5 + 5 − 1 = 9 time units to com-

plete the memory access.
Finally, we define the Hierarchical Memory Machine

(HMM). The HMM consists of d DMMs and a single UMM
as illustrated in Fig. 2. Each DMM has w memory banks
and the UMM also has w memory banks. We call the mem-
ory banks of each DMM the shared memory and those of
the UMM the global memory. Each DMM works inde-
pendently. Threads are partitioned into warps of w threads,
and each warp are dispatched for the memory access for the
shared memory in turn. Further, each warp of w threads in
all DMMs can send memory access requests to the global
memory. Figure 2 illustrates the architecture of the HMM
with d = 3 DMMs. Each DMM and the UMM has w = 4
memory banks. The shared memory of each DMM and
the global memory of the UMM correspond to “the shared
memory” of each streaming multiprocessor and “the global
memory” of CUDA-enabled GPUs.

3. Coalesced and Conflict-Free Memory Access

This section evaluate the performance of coalesced memory
access for the global memory and the conflict-free memory
access for the shared memory. These memory access opera-
tions are key ingredients of our ASM algorithm.

A round of memory access is an operation such that ev-
ery thread performs a single memory access to the shared
memory or the global memory. A round of memory ac-
cess by a warp of w threads is coalesced if all memory
access by a warp destined for the same address group of
the global memory. Also, that by a warp is conflict-free
if all memory access by a warp destined for the distinct
memory banks of the shared memory. More specifically,
a round of the memory access by a warp is coalesced if
� a(0)
w
	 = � a(1)

w
	 = · · · = � a(w−1)

w
	, where a(i) (0 ≤ i ≤ w − 1)

is the address accessed by thread T (i) in the warp. A round
of the memory access by a warp is conflict-free if, for all
pair i and j (0 ≤ i < j ≤ w − 1), a(i) = a(j) or a(i) � a(j)
(mod w). We also say that a round of the memory access by

3066
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Fig. 3 Examples of memory access on the DMM and the UMM.

all of the p threads is coalesced if memory access by all of
the p

w
warps is coalesced. Also, that by p threads is conflict-

free if memory access by every warp is conflict-free.
Let us evaluate the time necessary for coalesced and

conflict-free memory access. Suppose that p (≥ w) threads
perform a round of coalesced memory access to the global
memory. Since we have p

w
warps each of which sends w

memory requests to the same address group, it takes p
w

time
units to send all p memory requests. After that L − 1 time
units are necessary to complete the memory requests by the
last warp. Thus, it takes p

w
+ L − 1 time units to complete a

round of coalesced memory access by p threads. Similarly,
a round of conflict-free memory access for the shared mem-
ory takes p

w
time units to send all memory requests and l− 1

time units are necessary to complete the memory requests
by the last warp. Thus, a round of coalesced memory access
for the global memory and that of conflict-free memory ac-
cess for the shared memory by p threads take O(p

w
+ L) time

units and O(p
w
+ l) time units, respectively. Suppose that p

threads access to n (≥ p) words of the global memory in n
p

rounds. If all rounds are coalesced memory access for the
global memory, it takes O(p

w
+L) · n

p = O(n
w
+ nL

p) time units.
Similarly, n

p rounds memory access for the shared memory

take O(n
w
+ nl

p) time units. Thus, we have,

Lemma 1: The coalesced memory access to n words of
the global memory and the conflict-free memory access to n
words of the shared memory take O(n

w
+ nL

p) time units and

O(n
w
+ nl

p) time units, respectively, if n ≥ p ≥ w.

4. Approximate String Matching and Edit Distance

The main purpose of this section is to review approximate
string matching (ASM) and the edit distance (ED). Please
see [14], [19], [23] for the details.

As a preliminary, we first define the edit distance (ED)
of two strings. Suppose that source string X = x1x2 · · · xm

of length m and destination string Y = y1y2 · · · yn of length
n are given. Without loss of generality, we can assume that
m ≤ n. We want to change X into Y using the following
three operations:

• insertion of a character,
• deletion of a character, and
• replacement of a character.

For example, X = ababa can be changed into Y = aaabbb in

five operations as follows: ababa
delete→ aaba

delete→ aaa
insert→

aaab
insert→ aaabb

insert→ aaabbb. Alternatively, X can be

changed into Y in three operations as follows: ababa
replace→

aaaba
replace→ aaabb

insert→ aaabbb. The ED of two strings is
the minimum number of operations to change one string to
the other. For example, the ED of X and Y above is three, be-
cause there exists a sequence of three operations to change X
into Y , and there exists no sequence of less than three oper-
ations to do the same thing. For later reference, let ED(X,Y)
denote the ED of X and Y .

The approximate string matching, a more flexible ver-
sion of the edit distance, is a task to compute the value of
ASM(X,Y) defined as follows:

ASM(X,Y) = min{ED(X,Y ′) | Y ′ is a substring of Y}
Clearly, ASM(X,Y) is small if Y has a substring similar to
X. It should be clear that ASM(X,Y) is always less than
or equal to m, and ED(X,Y) takes a value between n − m
and n. For example, if X and Y share no character, then
ED(X,Y) = n and ASM(X,Y) = m. Also, if the prefix of Y
is X then ED(X,Y) = n − m and ASM(X,Y) = 0.

We use a matrix c of size (m + 1) × (n + 1) to compute
the ASM. Each c[i][j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) is used to store
the following value:

min
1≤ j′≤ j

ED(x1x2 · · · xi, y j′y j′+1 · · · y j).

Note that x1x2 · · · xi is a null string (i.e. a string with length

MAN et al.: APPROXIMATE STRING MATCHING ON THE HIERARCHICAL MEMORY MACHINE
3067

Fig. 4 The values of matrix c for the ASM.

0) if i = 0. Once all values of c is computed, we can compute
the value of ASM(X,Y) by the following formula:

ASM(X,Y) = min
0≤ j≤n

c[m][j]

Let us show how we compute all values of c. Suppose
that c[i − 1][j − 1], c[i − 1][j], and c[i][j − 1] are already
computed. Let “xi � y j” denote the binary value such that
it is 1 if xi � y j and 0 if xi = y j. The value of c[i][j] can be
computed as follows:

c[i][j] = 0 if i = 0 (1)

= i if j = 0 (2)

= min(c[i][j − 1] + 1, (3)

c[i − 1][j] + 1, (4)

c[i − 1][j − 1] + (xi � y j)) (5)

if i > 0 and j > 0.

Using this formula, all values of matrix c can be com-
puted as follows:

[Algorithm ASM]
for j← 1 to n do c[0][j]← 0
for i← 0 to m do c[i][0]← i
for i← 1 to m do
for j← 1 to n do

c[i][j]← min(c[i][j − 1] + 1, c[i − 1][j] + 1,
c[i − 1][j − 1] + (xi � y j))

output min{c[m][j] | 0 ≤ j ≤ n}
Figure 4 shows the values of c for two strings X =

ababa and Y = aaabbbaa. From the figure, we can see
that the ASM of X and Y is 1.

Usually, the approximate string matching should re-
quire algorithms to return the indexes i and j such that
ASM(X,Y) = ED(X, yiyi+1 · · · y j). The reader should have
no difficulty to confirm that once all the values in matrix c is
obtained, it is not difficult to compute such values of i and j.

5. A Parallel ASM Algorithm on the DMM

The main purpose of this section is to show a parallel al-
gorithm for computing the ASM on a single DMM of the
HMM. We assume that, two input strings X and Y of length
m and n are given in the shared memory.

Fig. 5 Illustrating a parallel algorithm for computing matrix c.

The key idea is to compute the values of the matrix
c from the top-left corner to the bottom-right corner as il-
lustrated in Fig. 5. The details of the parallel algorithm are
spelled out as follows:

[Parallel ASM algorithm]
for j← 1 to n do in parallel c[0][j]← 0
for i← 0 to m do in parallel c[i][0]← i
for k ← 1 to n + m − 1 do
for i← 1 to m do in parallel

begin
j← k − i + 1
if 1 ≤ j ≤ n then

c[i][j]← min(c[i][j − 1] + 1, c[i − 1][j] + 1,
c[i − 1][j − 1] + (x[i] � y[j]))

end
output min{c[m][j] | 0 ≤ j ≤ n}
In the third for-loop, for each k (1 ≤ k ≤ n +m − 1), the val-
ues c[1][k], c[2][k − 1], . . . , c[m][k − m] are computed and
stored. It should be clear that this parallel algorithm cor-
rectly computes the ASM.

Clearly, when the values of c for k is computed, only
those for k − 1 and k − 2 are used. Thus, it is sufficient to
use a matrix e of size 3 × (m + 1) that stores values of c for
k − 2, k − 1, and k. We assume that m + 1 is a multiple
of w to guarantee that e[j][i] and e[j′][i′] are in different
banks of the shared memory iff i � i′. If this is not the case,
we use a matrix c of size 3 × (m′ + 1) such that m′ + 1 is
the minimum multiple of w exceeding m + 1. Let e be a
matrix of size 3 × (m + 1) such that the value of each c[i][j]
(0 ≤ i ≤ m, 0 ≤ j ≤ n) are stored in e[j mod 3][i]. The ASM
can also be computed using array e as follows:

[Improved parallel ASM algorithm]
minval← m; e[0][0]← 0; e[0][1]← 1; e[1][0]← 0
for k ← 1 to n + m − 1 do
begin

for i← 0 to m do in parallel
begin

j← k − i + 1
if i = 0 then e[j mod 3][i]← 0
else if j = 0 then e[j mod 3][i]← i
else if 1 ≤ j ≤ n then

e[j mod 3][i]← min(e[(j − 1) mod 3][i] + 1,
e[j mod 3][i − 1] + 1, e[(j − 1) mod 3][i − 1]

3068
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

+(x[i] � y[j]))
end

if k ≥ m and e[j mod 3][m] < minval
then minval← e[j mod 3][m]

end
output minval

Let us evaluate the computing time using p (≥ w)
threads on the DMM. Initializations of e[0][0], e[0][1], and
e[1][0], and can be done in O(1) time using a single thread.
The memory access operations to compute the values to be
stored in e[j mod 3][i] in parallel are conflict-free. For ex-
ample, parallel reading operation for e[(j−1) mod 3][i−1] is
done for e[∗][0], e[∗][1], . . . , e[∗][m−1], where each “*” de-
notes an integer in [0, 2]. Since e is a matrix of size 3×(m+1)
and m + 1 is a multiple of w, each e[∗][i] (0 ≤ i ≤ m − 1)
is in the (i mod w)-th bank. Hence, this reading opera-
tion is conflict-free and the memory access operation to
store the values in e[j mod 3][i] can be doe in O(m

w
+ ml

p)
time units using p threads on the DMM from Lemma 1.
Also, it involves the computation of minval, which can be
computed in O(1) time by evaluating the if statement us-
ing a single thread. Thus, the for-loop for a fixed k takes
O(m
w
+ ml

p) time units. Since these memory access opera-
tions are performed n + m − 1 times, this algorithm runs in
(n + m − 1) · O(m

w
+ ml

p) = O(mn
w
+ mnl

p) time units. Thus, we
have,

Lemma 2: The ASM of two strings of length m and n (m ≤
n) can be computed in O(mn

w
+ mnl

p) time units using p (w ≤
p ≤ m) threads on the DMM.

6. A Parallel ASM Algorithm on the HMM

This section is devoted to show a parallel algorithm for the
ASM using d DMMs on the HMM. We assume that X and
Y of length m and n each are stored in the global memory of
the HMM. Also, we assume that n and p are large enough
such that n ≥ wd and p ≥ wd. Since wd threads on the
HMM can work at the same time, it makes sense to assume
that p ≥ wd.

Recall that n − m ≤ ED(X,Y) ≤ n. Hence, if n > 2m
then ED(X,Y) > m. On the other hand, ASM(X,Y) ≤ m
always holds. Hence, we can ignore substrings with more
than 2m characters of Y , when we compute ASM(X,Y). In
other words, we can write

ASM(X,Y) = min{ED(X,Y ′) | Y ′ is a substring of Y

with at most 2m characters}.
Let Y0,Y1, . . . ,Yd−1 be d substrings of Y such that any sub-
string of Y with at most 2m characters is included in at least
one of Yi’s. For such Yi’s, we can write

ASM(X,Y) = min{ED(X,Yi) | 0 ≤ i ≤ d − 1}.
Thus, by computing ASM(X,Yi) for all i (0 ≤ i ≤
d − 1) in parallel, we can obtain ASM(X,Y). Let Yi =

yisyis+1 · · · y(i+1)s+2m−1 for all i (0 ≤ i ≤ d − 1), where
s = n−2m

d . For simplicity, we assume that s is an integer.
Clearly, all substrings with at most 2m characters in Y are
included in at least one of Yi’s. For example, if n = 1024,
m = 32, and d = 4 then, s = 240, and Y0 = y0y1 · · · y303,
Y1 = y240y241 · · · y543, Y2 = y480y481 · · · y783, and Y3 =

y720y721 · · · y1023. We can confirm that any substring with
at most 2m = 64 characters in Y is included at least one of
Y0,Y1,Y2, and Y3.

We can compute ASM(X,Y) as follows:
[Parallel ASM algorithm on the HMM]
Step 1: Each DMM(i) reads X and Yi from the global mem-
ory and write them in the shared memory.
Step 2: Each DMM(i) computes ASM(X,Yi) in parallel.
Step 3: Each DMM(i) writes the value of ASM(X,Yi) in the
global memory.
Step 4: Compute the min{ASM(X,Yi) | 0 ≤ i ≤ d − 1}.

We assume that we use p
d threads for each of the d

DMMs and evaluate the computing time. In Step 1, to
read X by d DMMs, the reading operation for md charac-
ters is performed by p threads. Hence, from Lemma 1,
it takes O(md

w
+ mdL

p) time units to read X from the global
memory. Similarly, the reading of every Yi from the global
memory takes O((s+2m)d

w
+

(s+2m)dL
p) time units. Also, writ-

ing X and Yi in the shared memory of each DMM is per-
formed independently. From Lemma 1, writing opera-
tions of X and Yi take O(m

w
+ ml

p) time units and O(s+2m
w
+

(s+2m)l
p) time units, respectively. Therefore, Step 1 takes

O((s+m)d
w
+

(s+m)dL
p) = O(n+md

w
+

(n+md)L
p) time units from

s < n
d . In Step 2, the computation of each ASM(X,Yi)

takes O((s+2m)m
w
+

(s+2m)ml
p
d

) ≤ O((n+md)m
dw +

(n+md)ml
p) time units

from Lemma 2. Note that, w ≤ p
d ≤ m must be satisfied to

use Lemma 2. In Step 3, one thread in DMM(i) writes the
value of ASM(X,Yi) in the global memory. Since we have
d DMMs, Step 3 takes O(d + L) ≤ O(n

w
+ L) time units

from n ≥ wd. Finally, Step 4 computes the minimum of
ASM(X,Yi) in O(d

w
+ dL

p + L) time units using p threads on
the UMM using the algorithm in [24]. The computing time
of the four steps combined, the ASM can be computed in
O(n+md

w
+

m(n+md)
dw +

(n+md)L
p +

m(n+md)l
p) time units.

Lemma 3: The ASM of two strings of length m and n (m ≤
n) can be computed in O(n+md

w
+

m(n+md)
dw +

(n+md)L
p +

m(n+md)l
p)

using p threads (wd ≤ p ≤ md) on the HMM with d DMMs,
width w, shared memory latency l, and global memory la-
tency L.

The parallel ASM algorithm for Lemma 3 uses up to
md threads, and the latency overhead O((n+md)L

p +
m(n+md)l

p)
is minimized when p = md. If this is the case, the latency
overhead is O(nL

md +
nl
d + L + ml), which may be dominant

when m and d are not large. To reduce this latency overhead,
we should use more than md threads More specifically, we
use p = mD threads such that d < D ≤ n. Since mD threads
are available, we use D substrings Y0,Y1, . . . ,YD−1 of Y such
that each substring Yi (0 ≤ i ≤ D−1) has S +2m characters,
where S = n−2m

D . We assign m threads to compute each

MAN et al.: APPROXIMATE STRING MATCHING ON THE HIERARCHICAL MEMORY MACHINE
3069

Table 1 The running time (milliseconds) of parallel ASM algorithm on the HMM for |Y | = 4M
(= 222).

GPU CUDA blocks D CPU speed-up
|X| = m 16 32 64 128 256 512 1024 2048

32 178.2 89.23 44.92 23.46 23.53 23.64 23.90 24.38 701.8 29.9
64 178.6 89.71 46.74 29.13 29.13 29.18 29.39 30.01 1364 46.8
128 181.1 92.66 55.81 48.40 48.51 48.92 50.16 53.36 2683 55.4
256 187.0 112.2 95.77 93.16 91.83 93.83 100.1 113.3 5295 57.7
512 236.5 191.0 184.6 181.3 185.0 197.9 224.1 277.9 10560 58.2

1024 419.6 423.8 432.3 449.4 483.4 551.5 687.7 960.0 27720 66.1

ASM(X,Yi). In other words, p = mD threads are arranged
in d DMMs, and each DMM computes D

d ASM(X,Yi)s using
mD
d threads. If this is the case, each of the four steps takes

the following computing time: Step 1: O(n+mD
w
+

(n+mD)L
p)

time units, Step 2: O((n+mD)m
dw +

(n+mD)ml
p time units, Step 3:

O(D+ L) < O(n
w
+ L) time units, and Step 4: O(D

w
+ DL

p + L)

time units. Thus, the ASM can be computed in O(n+mD
w
+

m(n+mD)
dw +

(n+mD)L
p +

m(n+mD)l
p) = O(n+p

w
+

m(n+p)
dw + nL

p +
mnl

p +

L + ml) time units. Thus, we have,

Theorem 4: The ASM of two strings of length m and n
(m ≤ n) can be computed in O(n+p

w
+

m(n+p)
dw +

nL
p +

mnl
p +L+ml)

using p threads (wd ≤ p ≤ mn) on the HMM.

If Y is large enough such that n ≥ p, we can simplify the
computing time as follows:

Corollary 5: The ASM of two strings of length m and n
(m ≤ n) can be computed in O(n

w
+ mn

dw +
nL
p +

mnl
p) using p

threads on the HMM if wd ≤ p ≤ n.

7. The Lower Bounds of the Computing Time

The main purpose of this section is to show the lower bound
of the computing time of implementations for the approxi-
mate string matching on the HMM.

To compute the ASM, all of the n characters in Y stored
in the global memory must be read at least once. Recall that
w memory banks constitute the global memory, and each of
the memory banks can handle at most one memory access
request in a time unit. Thus, the global memory can process
at most w memory access requests in a time unit. Since at
least one memory access request must be destined for each
character in Y , n memory access requests to the global mem-
ory are necessary. Thus, the ASM takes at least Ω(n

w
) time

units (bandwidth limitation).
The HMM has d DMMs, each of which can execute

w instructions in a time unit. Thus, the HMM can perform
dw instructions in a time unit. Since Algorithm ASM in-
volves at least mn additions, any implementation of Algo-
rithm ASM on the HMM takes Ω(mn

dw) time units (speed-up
limitation).

Each thread can send at most one memory request in
L time units to the global memory. Hence, p threads can
send at most pt

L memory requests in t time units. Since every
character of Y stored in the global memory must be accessed
at least once, pt

L ≥ n must be satisfied to access all characters

and t ≥ nL
p must be satisfied. Hence, Ω(nL

p) time units are
necessary (global memory latency limitation).

When we implement a dynamic programming based
ASM algorithm such as Algorithm ASM or Parallel ASM in
the HMM, elements in a matrix c in Algorithm ASM (or a
matrix e in Parallel ASM algorithm) must be arranged in the
global memory or the shared memory of the HMM. Since
we assumed that the shared memory access latency l is much
smaller than the global memory access latency L, we can as-
sume that the matrix is arranged in the shared memory for
the lower bound discussion. In other words, it takes at least
l time units to complete the memory access request to an el-
ement of the matrix arranged in the shared memory. On the
other hand, a thread can send a new memory access request
only after the previous memory access request is completed.
Thus, if the HMM has p threads, it cannot have more than
p memory access requests being processed. Hence, for any
parameter k, all p threads cannot send more than pk memory
access requests in lk time units. Since a dynamic program-
ming based ASM algorithm accesses elements in the matrix
at least mn times, pk ≥ mn is a necessary condition. Thus,
it takes at least lk ≥ mnl

p time units for p threads to send
mn memory access requests to the matrix (shared memory
latency limitation).

Thus, we have

Theorem 6: Any implementation of the ASM for two
strings of length m and n needs at least Ω(n

w
+ mn

dw +
nL
p +

mnl
p)

time units using p threads on the HMM with d DMMs,
width w, global memory latency L, and shared memory la-
tency l.

From Theorem 6, our ASM algorithm on the HMM shown
for Corollary 5 is time optimal.

8. Experimental Results

We have implemented our parallel ASM algorithm for the
HMM on the GPU and the sequential ASM algorithm
on a single CPU. For these experiments, we used a PC
with GeForce GTX-580 GPU and Intel Xeon CPU X7460
(2.66GHz). CUDA 4.2 and gcc 4.4.4-14 with option -O2
running on Ubuntu 10.10 (32-bit) have been used. GeForce
GTX-580 GPU has 16 streaming multiprocessors. The
size w of a warp is 32. Table 1 shows the running time
for Y with 4M (= 222) characters and X with 32, 64,
128, 256, 512, 1024, and 2048. We partition the input
Y into D = 16, 32, 64, 128, 256, 512, 1024 substrings, and

3070
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

D CUDA blocks of m threads are invoked to compute
ASM(X,Yi) (0 ≤ i ≤ D − 1). Strings of X and Y are stored
as arrays of 8-bit unsigned char initialized by random 0/1
values in the global memory. Since X and Y are random 0/1
strings, “xi � y j” is true with probability 1

2 . Such strings
are unfavorable for GPUs, because the resulting values of
“xi � y j” by all threads in a warp are not the same with high
probability. From the table, the ASM of two strings of 1024
and 4M (= 222) characters can be computed in 419.6ms
when D = 16, while the sequential algorithm can compute it
in 27720ms. Thus, our implementation on the GPU attains a
speedup factor of 66.1 over the single CPU implementation.

From Theorem 4, our implementation on the GPU runs
in O(n+p

w
+

m(n+p)
dw +

nL
p +

mnl
p +L+ml) time units. This comput-

ing time has two factors: O(n+p
w
+

m(n+p)
dw) time units for mem-

ory bandwidth and computation, and O(nL
p +

mnl
p +L+ml) time

units for memory access latency. Clearly, if p is small, the
memory access latency dominates the memory bandwidth
and computation. On the other hand, the memory bandwidth
and computation dominates the memory access latency for
large p. To minimize the computing time, we should select
the number p (= mD) threads so that these two factors are
balanced. From Table 1, we can see the number p of threads
that minimizes the computing time. For example, when
m = 512, our implementation takes the minimum comput-
ing time 181.3ms if 128 CUDA blocks or 512 × 128 = 64K
threads are used. This fact implies that the experimental re-
sults follow the theoretical analysis of the computing time.

9. Conclusion

We have presented a parallel approximate matching algo-
rithm of two strings of length m and n, which runs O(n

w
+

mn
dw +

nL
p +

mnl
p) time units using p threads on the Hierar-

chical Memory Machine (HMM) with d Discrete Memory
Machines (DMMs), width w, shared memory access latency
l, and global memory access latency L. We also proved
that this algorithm is time optimal. Further, we have im-
plemented this algorithm on GeForce GTX-580 GPU. Our
implementation achieves a speedup of 66.1 over the single
CPU implementation.

References

[1] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan
Kaufmann, 2011.

[2] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge detection
using a GPU,” Proc. International Conference on Networking and
Computing, pp.279–280, Nov. 2010.

[3] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation
of computing Euclidean distance map with efficient memory ac-
cess,” Proc. International Conference on Networking and Comput-
ing, pp.68–76, Dec. 2011.

[4] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” Proc. Interna-
tional Conference on Networking and Computing, pp.153–159, Dec.
2011.

[5] Y. Ito, K. Ogawa, and K. Nakano, “Fast ellipse detection algorithm
using Hough transform on the GPU,” Proc. International Conference

on Networking and Computing, pp.313–319, Dec. 2011.
[6] NVIDIA Corporation, “NVIDIA CUDA C programming guide ver-

sion 5.0,” 2012.
[7] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-

tions of a parallel algorithm for computing euclidean distance map
in multicore processors and GPUs,” Int. J. Networking and Comput-
ing, vol.1, no.2, pp.260–276, July 2011.

[8] NVIDIA Corporation, “NVIDIA CUDA C best practice guide ver-
sion 3.1,” 2010.

[9] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-
gramming for the optial poygon triangulation on the GPU,” Proc.
International Conference on Algorithms and Architectures for Par-
allel Processing (ICA3PP, LNCS 7439), pp.1–15, Sept. 2012.

[10] K. Nakano, “Simple memory machine models for GPUs,” Proc. In-
ternational Parallel and Distributed Processing Symposium Work-
shops, pp.788–797, May 2012.

[11] A.V. Aho, J.D. Ullman, and J.E. Hopcroft, Data Structures and Al-
gorithms, Addison Wesley, 1983.

[12] M.J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Trans. Comput., vol.C-21, pp.948–960, 1972.

[13] K. Nakano, “The hierarchical memory machine model for GPUs,”
Proc. International Parallel and Distributed Processing Symposium
Workshops, pp.591–600, May 2013.

[14] P.H. Sellers, “The theory and computation of evolutionary distances:
Pattern recognition,” J. Algorithms, vol.1, no.4, pp.359–373, Dec.
1980.

[15] E. Ukkonen, “Algorithms for approximate string matching,” Infor-
mation and Control, vol.64, no.1–3, pp.100–118, Jan.–March 1985.

[16] G. Myers, “A fast bit-vector algorithm for approximate string match-
ing based on dynamic programming,” J. ACM, vol.46, no.3, pp.395–
415, May 1999.

[17] Y. Utan, M. Inagi, S. Wakabayashi, and S. Nagayama, “A GPGPU
implementation of approximate string matching with regular ex-
pression operators and comparison with its FPGA implementation,”
Proc. Int. Conf. Parallel and Distributed Processing Techniques and
Applications, July 2012.

[18] Y. Liu, L. Guo, J. Li, M. Ren, and K. Li, “Parallel algorithms for
approximate string matching with k mismatches on cuda,” Proc. In-
ternational Parallel and Distributed Processing Symposium Work-
shops, pp.2414–2422, May 2012.

[19] K. Nakano, “Efficient implementations of the approximate string
matching on the memory machine models,” Proc. International Con-
ference on Networking and Computing, pp.233–239, Dec. 2012.

[20] A. Kasagi, K. Nakano, and Y. Ito, “An implementation of conflict-
free off-line permutation on the GPU,” Proc. International Confer-
ence on Networking and Computing, pp.226–232, 2012.

[21] K. Nakano, S. Matsumae, and Y. Ito, “The random address shift to
reduce the memory access congestion on the discrete memory ma-
chine,” Proc. International Symposium on Computing and Network-
ing, pp.95–103, Dec. 2013.

[22] K. Nakano, “Sequential memory access on the unified memory ma-
chine with application to the dynamic programming,” Proc. Interna-
tional Symposium on Computing and Networking, pp.85–94, Dec.
2013.

[23] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Al-
gorithms, MIT Press, 1990.

[24] K. Nakano, “An optimal parallel prefix-sums algorithm on the mem-
ory machine models for GPUs,” Proc. International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP,
LNCS 7439), pp.99–113, Sept. 2012.

MAN et al.: APPROXIMATE STRING MATCHING ON THE HIERARCHICAL MEMORY MACHINE
3071

Duhu Man received the ME and Ph.D de-
grees from the Department of Information Engi-
neering, Hiroshima University in 2010 and 2013
respectively. Currently, he is a project assistant
professor at the Department of Information En-
gineering, Hiroshima University.

Koji Nakano received the BE, ME and Ph.D
degrees from Department of Computer Science,
Osaka University, Japan in 1987, 1989, and
1992 respectively. In 1992–1995, he was a Re-
search Scientist at Advanced Research Labora-
tory. Hitachi Ltd. In 1995, he joined Depart-
ment of Electrical and Computer Engineering,
Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. He has also guest-edited several special issues in-
cluding IEEE TPDS Special issue on Wireless Networks and Mobile Com-
puting, IJFCS special issue on Graph Algorithms and Applications, and
IEICE Transactions special issue on Foundations of Computer Science.
He has organized conferences and workshops including International Con-
ference on Networking and Computing, International Conference on Par-
allel and Distributed Computing, Applications and Technologies, IPDPS
Workshop on Advances in Parallel and Distributed Computational Models,
and ICPP Workshop on Wireless Networks and Mobile Computing. His
research interests includes image processing, hardware algorithms, GPU-
based computing, FPGA-based reconfigurable computing, parallel comput-
ing, algorithms and architectures.

Yasuaki Ito received B.E. degree from Na-
goya Institute of Technology (Japan), M.S. de-
gree from Japan Advanced Institute of Science
and Technology in 2003, and D.E. degree from
Hiroshima University (Japan), in 2010. From
2004 to 2007 he was a Research Associate at
Hiroshima University. Since 2007, Dr. Ito has
been with the School of Engineering, at Hiro-
shima University, where he is working as an
Associate Professor. His research interests in-
clude reconfigurable architectures, parallel com-

puting, computational complexity and image processing.

