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Abstract—The main contribution of this paper is to present
a very efficient FPGA implementation, which performs the
Approximate String Matching (ASM) for a pattern string and
a text string of length m and n, respectively. It is well known
that the ASM can be done in O(mn) time by the dynamic
programming technique. Myers has presented a sophisticated
sequential algorithm called bit-vector algorithm, which per-
forms the ASM in O(n) time using m-bit addition and
bitwise operations. Hoffmann et al. have implemented the bit-
vector algorithm in the FPGA and evaluated the performance.
However, the performance of the bit-vector circuit implemented
in the FPGA is degraded for large m due to a long critical
path of length proportional to m. We will present a circuit
with O(1)-length critical path that performs the ASM with
very high clock frequency and throughput. Also, to reduce the
hardware usage, we present a hybrid circuit of the bit-vector
and our ASM circuits. The experimental results show that,
our hybrid circuit for the ASM is 20 times more efficient than
the bit-vector circuit in terms of the performance per circuit
resource. To see the potentiality of the ASM computation on
the FPGA, we evaluated the performances of the ASM on the
latest FPGA, GPU, and CPU. Our hybrid circuit implemented
in Xilinx Virtex UltraScale+ XCVU9P FPGA is more than 58
times and 1400 times faster than parallel ASM computation on
NVIDIA TITAN X GPU and Core i7-6700K CPU, respectively.
Thus, the FPGA is promising as an accelerator of the ASM.

I. INTRODUCTION

An Field Programmable Gate Array (FPGA) is a pro-
grammable logic device designed to be configured by cus-
tomers or designers after manufacturing. Since an FPGA
chip maintains relative lower price and programmable fea-
tures, it is widely used in those fields which need to update
architecture or functions frequently such as communication
and education. The most common architecture of recent
FPGAs is an array of Configurable Logic Blocks (CLBs) [1],
block RAMs [2], DSP slices [3], and programmable routing
channels connecting them [4]. Although the architecture of
the latest FPGAs is targeted for high performance digital
signal processing [3], [5], it can be used for other applica-
tions and general purpose computing [6]. The main purpose
of this section is to present logic circuits for the FPGA that
performs the approximate string matching. Our logic circuits
are implemented using CLBs in the FPGA, which consists
of lookup tables (LUTs), flip-flops (FFs), multiplexers, and
carry-chains.

Suppose that two strings X (pattern) and Y (text) of
length m and n (m ≤ n), respectively, are given. The

Approximate String Matching (ASM) is a task to find a
substring in Y most similar to X . The similarity of two
strings is measured by the edit distance of them, which
is the number of three operations, insertion, deletion, and
replacement of characters necessary to change one string into
the other. The ASM has a lot of applications in the areas of
signal processing, bio-informatics, natural language process-
ing, among others. Thus, many sequential, parallel hardware
algorithms for the ASM and the related computations have
been presented [7], [8], [9], [10], [11], [12], [13]. It is well
known that the ASM can be computed in O(mn) time [14]
using the dynamic programming technique, which computes
a matrix d of size (m+1)×(n+1). Figure 1 shows the values
of matrix d for X = ababa and Y = aaabbba. Each element
d[i][j] of matrix d is the edit distance of the prefix of X of
length i and a substring of Y ending at position j. Since
the value of d[i][j] can be computed from d[i − 1][j − 1],
d[i−1][j], and d[i][j−1], the ASM can be done by a column-
major or a row-major computation of the matrix. Since each
element d[i][j] can be computed in O(1) time, this dynamic
programming algorithm runs in O(mn) time. Also, it is easy
to parallelize this sequential algorithm to run in O(n) time
using m processors [11]. Each processor is assigned to a
row of the matrix and compute elements of the assigned
row from left to right.
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Figure 1. The values of matrix d computed by the dynamic programming
algorithm for the ASM

Myers [15] has presented the bit-vector algorithm, which
accelerates the ASM using additions and bitwise operations
for m-bit words. The bit-vector algorithm computes the
differences of neighboring elements of the matrix. More
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Figure 2. The relations of d, D, V and H .

specifically, difference values V [i][j] = d[i][j]− d[i− 1][j],
H[i][j] = d[i][j]− d[i][j − 1], and D[i][j] = d[i][j]− d[i−
1][j− 1] of the matrix are computed for each position (i, j)
as shown in Figure 2. Since the values of V [i][j] and H[i][j]
are either −1, 0, or 1, they can be encoded in 2 bits each.
Also, the value of D[i][j] is 0 or 1, it can be represented
using only 1 bit. Using such bit encoding, the differences
for all elements in a column are computed from those in the
left column by a sequence of m-bit addition and bitwise op-
erations [15]. Since commonly used computing devices such
as CPUs and GPUs support 32/64-bit addition and bitwise
operations, the bit-vector algorithm works very efficiently
for pattern strings of length 32/64. Also, if m is larger
than 64, the bit-vector algorithm can be implemented by
simulating m-bit addition and bitwise operations by iterative
32/64-bit operations in an obvious way. Thus, very roughly
speaking, the speed up factor of the bit-vector algorithm
can be 32/64 over the O(mn)-time dynamic programming
algorithm, since 32/64 elements in a column of the matrix
can be computed in O(1) operations. Hoffmann et al. [16]
have implemented the bit-vector algorithm on the FPGA. We
call it bit-vector circuit. Their implementation simply uses
an adder and logic gates to simulates the bit-vector algorithm
as it is. However, the bit-vector circuit uses an m-bit adder
and so the performance is degraded for large m due to long
carry chain of the adder.

The main contribution of this paper is to present logic
circuits for the ASM and to implement them on an FPGA.
We first present a small logic circuit S, which computes dif-
ference values V [i][j], H[i][j], and D[i][j] from V [i][j − 1]
and H[i − 1][j]. We design circuit S with m logic circuits
of S, which computes these values for m elements of the
matrix in one clock cycle and the ASM can be done in
n + m − 1 clock cycles. Since the critical path length of
circuit S is O(1), it runs in very high clock frequency
and the throughput is quite large. However, circuit S needs
more flip-flops to store the intermediate values than the bit-
vector circuit shown in [16]. Thus, we present a hybrid
circuit H to compute the difference values of the matrix.
Hybrid circuit H has a design parameter which determines

the size of circuit modules. Since that with extreme values
of the design parameter correspond to circuit S and the bit-
vector circuit, it is a hybrid of them. We can select the
best design parameter that maximizes the performance of
H. We measure the performance of FPGA implementations
for the ASM by “elements per CLB·sec”, which is the
number of elements in the matrix computed per one CLB
in a second. The implementation results show that hybrid
circuitH with best parameter for m = 1024 runs in 775MHz
using 675 CLBs on Xilinx Virtex UltraScale+ XCVU9P-
L2FLGA2104E FPGA. If n = 10242 (= 1M), the ASM can
be done in 1.35ms. Also, since 1024 elements computed in
every clock cycle, the performance is 1.18 × 109 elements
per CLB·sec. Since the XCVU9P FPGA has 147,780 CLBs,
we can expect that 175 hybrid circuits can be embedded in
80% of all CLBs. Note that if we use all CLBs, the clock
performance is drastically degraded due to the overhead of
detour channel routing in the FPGA. Thus, it makes sense
to assume that we use 80% of CLBs in the FPGA. If this is
the case the total performance of the FPGA with 175 hybrid
circuits is about 140× 1012 elements per FPGA·sec.

To see the advantage of FPGA over the CPU and GPU,
we have implemented the bit-vector algorithm on NVIDIA
TITAN X GPU and Core i7-6700K(4GHz). Our GPU imple-
mentation is essentially the same as that shown in [17], and
reproduces the experimental results on the latest GPU. The
experimental results show that the performance of the GPU
is 2.38×1012 elements per GPU·sec. Thus, the performance
of our hybrid circuit implemented in XCVU9P FPGA is 58
times better than the best GPU implementation. We have
also evaluated the performance of a sequential bit-vector
algorithm [15] on Core i7-6700K. The performance using a
single thread is about 0.0125× 1012 elements per CPU·sec.
Hence, even if 8 hyper threads in 4 cores work perfectly in
parallel, the performance can not be larger than 0.100×1012.
Thus, the performance of our hybrid circuit on the FPGA is
more than 1400 times better than Core i7-6700K even if 8
hyper threads works completely in parallel.

This paper is organized as follows. We first define the Edit
Distance (EM) and the Approximate String Matching (ASM)
and review sequential and parallel algorithms for the ASM
in Section II. Section III shows the difference computation
technique, which computes the difference values of elements
in the matrix of the ASM. We then go on to show logic
circuits to compute the difference values in Section IV.
Section V shows the experimental results on FPGA, GPU,
and CPU. Section VI concludes our work.

II. APPROXIMATE STRING MATCHING AND EDIT
DISTANCE

The main purpose of this section is to review Approximate
String Matching (ASM) and the Edit Distance (ED). Please
see [14], [18] for the details.



As a preliminary, we first define the Edit Distance (ED)
of two strings. Suppose that source string X = x1x2 · · ·xm

of length m and destination string Y = y1y2 · · · yn of length
n are given. Without loss of generality, we can assume that
m ≤ n. We want to change X into Y using the following
three operations:

• insertion of a character,
• deletion of a character, and
• replacement of a character.

For example, X = ababa can be changed into Y = aaabbb

in five operations as follows: ababa
delete→ aaba

delete→
aaa

insert→ aaab
insert→ aaabb

insert→ aaabbb. Alternatively,
X can be changed into Y in three operations as follows:
ababa

replace→ aaaba
replace→ aaabb

insert→ aaabbb. The ED of
two strings is the minimum number of operations to change
one string to the other. For example, the ED of X and
Y above is three, because there exists a sequence of three
operations to change X into Y , and there exists no sequence
of less than three operations to do the same thing. For later
reference, let ED(X,Y ) denote the ED of X and Y .

The approximate string matching, a more flexible version
of the edit distance, is a task to compute the value of
ASM(X,Y ) defined as follows:

ASM(X,Y ) = min{ED(X,Y ′) | Y ′ is a substring of Y }

Clearly, ASM(X,Y ) is small if Y has a substring similar to
X . It should be clear that ASM(X,Y ) is always less than
or equal to m, and ED(X,Y ) takes a value between n−m
and n. For example, if X and Y share no character, then
ED(X,Y ) = n and ASM(X,Y ) = m. Also, if the prefix
of Y is X then ED(X,Y ) = n−m and ASM(X,Y ) = 0.

We use a matrix d of size (m+ 1)× (n+ 1) to compute
the ASM. Each d[i][j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) is used to
store the following value:

min
1≤j′≤j

ED(x1x2 · · ·xi, yj′yj′+1 · · · yj).

Note that x1x2 · · ·xi is a null string (i.e. string of length 0)
if i = 0. After all values of d is computed, we can compute
the value of ASM(X,Y ) by the following formula:

ASM(X,Y ) = min
0≤j≤n

d[m][j]

Thus, if we have all values d[m][j] (1 ≤ j ≤ n), we can
compute ASM(X,Y ) very easily. Hence, in this paper we
focus on the computation of these values.

Let us show how we compute all values of d. Suppose
that d[i − 1][j − 1], d[i − 1][j], and d[i][j − 1] are already
computed. Let “xi ̸= yj” denote the binary value such that
it is 1 if xi ̸= yj and 0 if xi = yj . The value of d[i][j] can

be computed by the following recursive formulas:

d[i][j] = 0 if i = 0 (1)
= i if j = 0 (2)
= min(d[i][j − 1] + 1, (3)

d[i− 1][j] + 1, (4)
d[i− 1][j − 1] + (xi ̸= yj)) (5)

if i > 0 and j > 0.

Using this formula, all values of matrix d can be computed
as follows:

[Algorithm ASM]
for j ← 1 to n do d[0][j]← 0
for i← 0 to m do d[i][0]← i
for i← 1 to m do
for j ← 1 to n do
d[i][j]← min(d[i][j − 1] + 1, d[i− 1][j] + 1,
d[i− 1][j − 1] + (xi ̸= yj));

output(d[m][j]);

Figure 1 shows the values of d for two strings X = ababa
and Y = aaabbba.
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Figure 3. The values of matrix d computed for each k

Next, we will show a parallel algorithm for the ASM.
The key idea is to compute the values of the matrix d from
the top-left corner to the bottom-right corner [11], [12]. The
details of the parallel algorithm is spelled out as follows:

[Parallel ASM algorithm]
for j ← 1 to n do in parallel d[0][j]← 0
for i← 0 to m do in parallel d[i][0]← i
for k ← 1 to n+m− 1 do
for i← 1 to m do in parallel
j ← k − i+ 1
if 1 ≤ j ≤ n then
d[i][j]← min(d[i][j − 1] + 1, d[i− 1][j] + 1,
d[i− 1][j − 1] + (x[i] ̸= y[j]))

if(j ≥ 1) output (d[m][j]);

In the third for-loop, for each k (1 ≤ k ≤ n +m − 1), the
values d[1][k], d[2][k − 1], . . . , d[m][k − m] are computed
and stored. Figure 3 illustrates the computation performed
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Figure 4. The difference values of matrix d

in each k for the same matrix d of Figure 1. It should be clear
that this parallel algorithm correctly computes the ASM.

III. DIFFERENCE COMPUTATION TECHNIQUE FOR THE
ASM

We will show the difference computation technique, which
computes the difference values of elements in the matrix of
the ASM. This technique has been invented by Myers and
used by the bit-vector algorithm [15]

Let d be a matrix obtained by the dynamic programming
algorithm for the ASM. We use three matrices V , H , and D
such that each of them is the difference of adjacent values
of d as follows:

V [i][j] = d[i][j]− d[i− 1][j]

H[i][j] = d[i][j]− d[i][j − 1]

D[i][j] = d[i][j]− d[i− 1][j − 1]

Figure 2 illustrates the relations of these values. Also,
Figure 4 shows the values of V , H , and D for the same
input strings as Figure 1. In Figure 4, each segment with no
arrowhead represents 0 and each arrow shows the direction
of increment of 1.

We will show the relations of d, D, V and H . We omit
“for all i and j” to avoid iteration of the same redundant
phrase. Since d[i][j] is the minimum of d[i][j−1]+1, d[i−
1][j] + 1, and d[i− 1][j − 1] + (xi ̸= yj), we have d[i][j] ≤
d[i][j − 1] + 1, d[i][j] ≤ d[i− 1][j] + 1, and d[i][j] ≤ d[i−
1][j − 1] + 1. Thus, we have V [i][j] ≤ 1, H[i][j] ≤ 1, and
D[i][j] ≤ 1. We will prove V [i][j] ≥ −1, H[i][j] ≥ −1, and
D[i][j] ≥ 0 by induction. More specifically, we assume that
V [i][j− 1] ≥ −1 and H[i− 1][j] ≥ −1 hold and prove that
V [i][j] ≥ −1, V [i][j] ≥ −1, and D[i][j] ≥ 0 are satisfied.
If D[i][j] ≤ −1 then d[i][j] = d[i − 1][j − 1] + (xi ̸=
yj) is not satisfied. Hence, d[i][j] = d[i − 1][j] + 1 and/or

d[i][j] = d[i][j − 1] + 1 must be satisfied. If d[i][j] = d[i−
1][j] + 1 holds, then H[i][j] = 1. Thus, D[i][j] = V [i][j −
1] + H[i][j] ≥ 0 is a contradiction. Hence, D[i][j] ≥ 0
holds. Further, from V [i][j− 1]+H[i][j] = D[i][j] ≥ 0 and
V [i][j − 1] ≤ 1, we have H[i][j] ≥ −1. Similarly, we can
prove V [i][j] ≥ −1. Therefore, we have,

Lemma 1: For all i and j (1 ≤ i ≤ m and 1 ≤ j ≤ n),
we have −1 ≤ H[i][j] ≤ 1, −1 ≤ V [i][j] ≤ 1, and 0 ≤
D[i][j] ≤ 1.
Actually, in Figure 4, we can see segments and arrows
of both directions for horizontal and vertical directions
corresponding to H and V . On the other hand, there is no
diagonal arrows pointing the upper left, because the values
of D[i][j] cannot be −1.

From the definition of H , if we have all values of
H[m][1],H[m][2], . . . ,H[m][n − 1], we can compute the
value of d[m][i] by the following recursive formula:

d[m][0] = m

d[m][i] = d[m][i− 1] +H[m][i] (1 ≤ i ≤ n).

In other words, d[m][i] can be computed by the
prefix-sums of m,H[m][1],H[m][2], . . . , H[m][n].
Thus, we focus on designing circuits that output
H[m][1],H[m][2], . . . ,H[m][n] one by one. A simple
accumulator, which increments or decrements the stored
value by 1, can compute the prefix-sums for these outputs
in an obvious way.

We will show important properties to determine the values
of elements in V , H , and D. Since d[i][0] = i for all i
(1 ≤ i ≤ m) and d[0][j] = 0 for all j (1 ≤ j ≤ n), V [i][0] =
1 and H[0][j] = 0. Also, since d[i][j] is the minimum of
d[i][j − 1] + 1, d[i− 1][j] + 1, and d[i− 1][j − 1] + (xi ̸=
yj), D[i][j] takes 1 if and only if all of the following three
conditions are satisfied.

• xi ̸= yj ,
• V [i][j − 1] ≥ 0 (i.e. d[i][j − 1] ≥ d[i− 1][j − 1]), and
• H[i− 1][j] ≥ 0 (i.e. d[i− 1][j] ≥ d[i− 1][j − 1]).

In other words, if at least one of the three is not satisfied,
then D[i][j] = 0. If xi = yj , then d[i][j] ≤ d[i − 1][j − 1].
Thus, from Lemma 1, D[i][j] = 0. If V [i][j−1] = −1, then
d[i][j−1]+1 = d[i−1][j−1]. Hence, d[i][j] = d[i−1][j−1]
and so D[i][j] = 0. Similarly, if H[i − 1][j] = −1 then
D[i][j] = 0. Thus, we have the following formula: D[i][j] =
(xi ̸= yj) ∧ (V [i][j − 1] ≥ 0) ∧ (H[i − 1][j] ≥ 0). Also,
from the definition of V , H , and D, we have D[i][j] =
H[i][j] + V [i][j − 1] = V [i][j] +H[i − 1][j]. We can also
confirm these relations from Figure 2. We summarize these
properties as follows:

Lemma 2: We have
(1) V [i][0] = 1 for all i (1 ≤ i ≤ m), and
(2) H[0][j] = 0 for all j (1 ≤ j ≤ n).
Also, for all i and j (1 ≤ i ≤ m, 1 ≤ j ≤ n), we have
(3) D[i][j] = (xi ̸= yj)∧(V [i][j−1] ≥ 0)∧(H[i−1][j] ≥ 0),
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Figure 5. Illustrating (1), (2), (3), (4), and (5) in Lemma 2

(4) V [i][j] = D[i][j]−H[i− 1][j], and
(5) H[i][j] = D[i][j]− V [i][j − 1].

From Lemma 2, we can design algorithms for the ASM,
which compute the values of H[m][j] for all j (1 ≤ j ≤ n).
They correspond to light blue segments in Figure 5. From
(1) and (2) in Lemma 2, the values of V and H correspond
to red and magenta segments in Figure 5 are initially given.
Figure 5 also illustrates the computation of D[i][j], V [i][j]
and H[i][j] correspond to (3), (4), and (5) in Lemma 2,
respectively. Thus, we can think that the ASM is a problem
of painting segments in Figure 5, such that all segments in
the bottom row are painted by repeatedly applying painting
rules (3), (4), and (5).

We will use two operations that we call operation 3-4-
5 and operation 5-3-4 as illustrated in Figure 6. Operation
3-4-5 uses painting rules (3), (4), and (5) for V [i][j − 1]
and H[i − 1][j] in turn and two segments corresponding
to V [i][j] and H[i][j] are painted. In operation 5-3-4, from
three painted segments of V [i − 1][j − 1], V [i][j − 1], and
D[i− 1][j], two segments V [i][j] and D[i][j] are painted.

The idea of Myers’s bit-vector algorithm [15] is based
on operation 5-3-4. The values of V [1][j − 1], V [2][j −
1], . . . , V [m][j − 1] are stored in two m bits word. A
certain number of addition and bitwise operations for words

(3) (4) (5)

Operation 3-4-5

(5) (3) (4)

Operation 5-3-4

Figure 6. Illustrating operations 3-4-5 and 5-3-4

of m + 1 bits are performed to compute the values of
V [1][j], V [2][j], . . . , V [m][j]. Since conventional processors
supports addition and bitwise operations for 32/64-bit words,
Myers’s bit-vector algorithm is efficient for m ≤ 64. Since
addition and bitwise operations for long words can be
simulated by iteration of those for 32/64-bit word, it also
work for very large m. An FPGA implementation that
simulates addition and bitwise operations for long words
used in Myers’s bit-vector algorithm have been presented
in [16].

IV. LOGIC CIRCUITS FOR THE ASM

This section first shows logic circuits based on operations
3-4-5 and 5-3-4. After that, we will present a hybrid circuit
of them.

A. ASM circuit by operation 3-4-5

Figure 7 illustrates a combinational logic circuit S imple-
menting operation 3-4-5 in Figure 6, which computes V [i][j]
and H[i][j] from V [i][j−1] and H[i−1][j]. In boxes of the
figure, combinational circuits to evaluate (3), (4), and (5) in
Lemma 2 are implemented. Since each element of V and H

xi

(3)
yj

V [i][j − 1]

H[i − 1][j]

(4)

(5)

V [i][j]

H[i][j]

D[i][j]

Figure 7. Combinational logic circuit S for operation 3-4-5

takes −1, 0, or 1, two bits are necessary. We can use 2-bit
words 01, 00, and 10 to represent the values of −1, 0, and
1 of each element, respectively.



We use circuit S to design a combinational logic circuit
S that simulates Parallel ASM algorithm illustrated in Fig-
ure 3. It computes V [1][k],H[1][k], V [2][k − 1],H[2][k −
1], . . . , V [m][k −m + 1],H[m][k −m + 1] from V [1][k −
1], V [2][k − 2], . . . , V [m][k − m] and H[0][k],H[1][k −
1], . . . , H[m − 1][k − m + 1]. Figure 8 illustrates circuit
S, which simply has m circuits S. The figure also shows
how the values of V and H are computed. Clearly, the com-
putation performed for each k by Parallel ASM algorithm
is simulated by S in 1 clock cycle. Thus, S runs m+n− 1
clock cycles for the ASM. Also, the critical path length of
circuit S is O(1) and 2 · 2 ·m = 4m flip-flops are necessary
to store the values of V and H . Thus, we have,

Theorem 3: Circuit S with 4m flip-flops of depth O(1)
can perform the ASM in m+ n− 1 clock cycles.

B. ASM circuit by operation 5-3-4

Figure 9 illustrates a combinational logic circuit T imple-
menting operation 5-3-4 in Figure 6, which computes V [i][j]
and D[i][j] from V [i−1][j−1], V [i][j−1], and D[i−1][j].

We can design a circuit T for the ASM using m
circuits T as illustrated in Figure 10. They computes
V [1][k], V [2][k], . . . , V [m][k] from V [1][k − 1], V [2][k −
1], . . . , V [m][k−1]. Note that, to compute V [1][k], a circuit
T/(5), in which a circuit for (5) is omitted in circuit T ,
is used. Also, a circuit to compute (5) in Lemma 2 is
used to output H[m][k], which is necessary to compute
d[m][k]. Thus, we can say that a circuit T uses m circuits
T . Circuit T works for the computation for each column, it
runs n clock cycles to complete the ASM. Also, it needs 2m
flip-flops to store the outputs V [1][k], V [2][k], . . . , V [m][k],
which is the inputs of T in the following clock cycle. Note
that the critical path length of circuit T is O(m) since it
has input/output chain corresponding to V [i][k]s. Thus, we
have,

Theorem 4: Circuit T with 2m flip-flops of depth O(m)
can perform the ASM in n clock cycles.

C. Hybrid ASM circuit

We will show a hybrid ASM circuit, a combination of
circuits S and T . Recall that circuit T has m circuits of
T . A hybrid circuit H has m

r circuits T with r circuits of
T , where r is a parameter of the circuit. If r = m then a
hybrid circuit H is equivalent to circuit T . Also, H is S
when r = 1, because a circuit for (5) is attached to T/(5)
in T is circuit S. Thus, it is a hybrid of S and T . Figure 11
illustrates a hybrid circuit H, which has 3 circuits T with 3
circuits of T each.

We will show that how hybrid circuit H works. Similarly
to circuits S and T , it computes the values of V from left
to right. Clearly, m

r + n − 1 clock cycles are necessary to
complete the ASM. Also, each T in H needs 2(r+1) flip-
flops to store the necessary values of V and H . Thus, H

uses m
r · 2(r + 1) = 2m(1 + 1

r ) flip-flops. The depth of the
circuit of H is that of T , which is equal to O(r). Thus, we
have,

Theorem 5: Circuit H with 2m(1+ 1
r ) flip-flops of depth

O(r) can perform the ASM in m
r + n− 1 clock cycles.

D. Bit-vector algorithm

This section briefly explains bit-vector algorithm [15] and
the FPGA implementation [16]. Please see [15], [16] for the
details. The idea of the bit-vector algorithm is to simulate
circuit T by addition and bitwise operations as follows.
The values of V [1][j − 1], V [2][j − 1], . . . , V [m][j − 1] are
stored in two m bits word. A certain number of addition and
bitwise operations for m-bit words are performed to compute
the values of V [1][j], V [2][j], . . . , V [m][j]. Since commonly
used processors supports addition and bitwise operations
for 32/64-bit words, the bit-vector algorithm is efficient if
m = 32 or 64. Since addition and bitwise operations for long
words can be simulated by iteration of those for 32/64-bit
words, it also work for very large m.

We show how circuit T in Figure 10 is simulated. Let
V + and V − be m-bit words such that the i-th bits of them
are 1 if V [i][j − 1] = 1 and −1, respectively. The i-th bits
of them are 0 if V [i][j − 1] = 0. Similarly, we use two m-
bit words H+ and H− to store H[i][j]s. Also, let D0 be
an m-bit word such that each i-th bit is 1 if D[i][j] = 0.
Further, let M be an m-bit word such that each i-th bit is 1
if xi = yj . After executing the following computation, V +

and V − are updated by the values of V [i][j]s:

[Bit-vector algorithm]
D0 ← (((M&V +) + V + ⊕ V +)|M |V −;
H+ ← V −|˜(D0|V +);
H− ← D0&V +;
V + ← (H+ << 1)|˜(D0|H+ << 1);
V − ← D0&(H+ << 1);

The key of the bit-vector algorithm is addition “+” of m bits
to compute D0. The carry chain of this addition simulates
cascade connection of circuits T in circuit T illustrated in
Figure 10. We can design circuits that simulates the bit-
vector algorithm using m-bit adder and arrays of logic gates
for bitwise operations in an obvious way. We call it bit-
vector circuit. Further, we can design a hybrid circuit by
replacing each circuit T by the bit-vector circuit.

Essentially, the bit-vector algorithm is designed so that
circuit T is simulated by additions and bitwise operations.
So, intuitively, it makes no sense to simulate the bit-vector
algorithm by a logic circuit, because a circuit simulation
algorithm is simulated by a circuit. It is expected that such
iterative simulation results increase of hardware resource
usage and degrade the clock performance. However, as we
will show in Section V, the hardware usage of both modules
are not so different. Also, for large m, the clock performance
of the bit-vector circuit is better. This is because an adder
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used in the bit-vector circuit can be implemented in em-
bedded fact carry chain logic in the FPGA very efficiently.
The experimental results show that the performance of both
circuits is almost the same for small m.

V. EXPERIMENTAL RESULTS

We have implemented circuit S, circuit T , our hybrid
circuit H, and the bit-vector circuit [16] on Xilinx Virtex
UltraScale+ XCVU9P-L2FLGA2104E FPGA with 147,780
CLBs, and evaluated the performance. This FPGA is a
popular high-end FPGA, which is used in Virtex UltraScale
FPGA VCU118 evaluation board [19] as well as Amazon
cloud computing service AWS EC2 F1 instance. The logic
synthesis performed using Vivado Design Suite. For refer-
ence, we have used NVIDIA TITAN X and Core i7-6700K
(4.00GHz) for evaluating the performance of the bit-vector

algorithms on a GPU and a CPU. Also, since the main
application of the ASM is analysis of DNA sequences with
4 bases A, T, C, and G [20], we assume that pattern and
text are strings of 2-bit characters to encode 4 bases.

Table I shows the performance of our hybrid circuit H
using circuits T of various sizes for m = 1024. It shows
clock frequency in MHz, the number of LUTs, FFs, and
CLBs. The performance is evaluated for various size of T
from 1 to 1024 for m = 1024. Note that, each CLB of
Xilinx Virtex UltraScale+ has 8 LUTs and 16 FFs [1]. For
example, when the size of T is 8, in 675 used CLBs with
5400 LUTs and 10800 FFs totally, only 3708 LUTs and 2687
FFs are used. If the size of T is 1 then our hybrid circuit is
equivalent to circuit S. Also, a single T is used when the
size of T is 1024. We can see that a hybrid circuit with larger
T uses fewer CLBs, because it uses fewer flip-flops to store
H[i][j]. Also, since a larger T has a longer critical path for
V [i][j], the clock performance decreases. We can see that the
hardware resource usage and the clock frequency in these
tables follow Theorem 5. The tables also show the number of
elements computed by a CLB in a second. For example, 128
circuits T of size 8 uses 675 CLBs and works in 775MHz.
Let us consider that a set of values of V [i][j], H[i][j], D[i][j]
is an element. We can think that the task of the ASM is
to compute all m × n elements of the matrix, and hybrid
circuits in Table I compute 1024 elements in one clock cycle.
Hence, if the circuit runs in 775MHz, it can computes 775×
106×1024 = 793.6×109 elements per second. Thus, in the
table, the value of “elements per CLB·sec” for T of size 8
is 793.6×109

675 = 1.18 × 109. This value is maximized when
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the hybrid circuit is configured as 128 circuits T of size
8 each. Since XCVU9P FPGA has 147,780 CLBs, we can
expect that the total performance of XCVU9P using 80% of
CLBs is 1.18× 109 × 147780× 0.8 = 139× 1012 elements
per FPGA·sec. Note that if almost all of CLBs are used,
the clock frequency is decreased due to detour connection
routing and layout overheads. Thus, we assume that only
80% of CLBs not to overestimate the FPGA performance
for the ASM. If this is the case, 0.8·147780

675 = 175 hybrid
circuits are implemented in the FPGA works in parallel.
Since XCVU9P has 832 I/O pins, we can implement 175

Table I
THE PERFORMANCE OF OUR HYBRID CIRCUIT H USING CIRCUITS T

FOR m = 1024

Size clock LUTs FFs CLBs 109 elements
of T (MHz) per CLB·sec

1 775 3865 7169 1619 0.490
2 775 3070 4607 938 0.846
4 775 2815 3327 800 0.992
8 775 3708 2687 675 1.18

16 465 3272 2366 535 0.890
32 408 4279 2207 643 0.650
64 213 5047 2126 879 0.248

128 94 4689 2086 791 0.122
256 77 3768 2105 592 0.133
512 38 3165 2057 523 0.0744

1024 19 3121 2051 514 0.0379

hybrid circuits with 2 input pins to provide 2-bit characters
text strings. Hence, it is feasible to embed 175 hybrid circuits
in XCVU9P.

Table II shows the performance of our hybrid circuit using
circuits T for m = 4096. The maximum performance is
obtained when we use 128 circuits T of size 8 each, and the
performance is 1.14×109 elements. Hence the performance
evaluated by the number of elements computed per CLB·sec.
is almost the same as that for m = 1024. Actually, circuits
T of size 8 are used for both m = 1024 and 4096, the
clock frequency is the same and the number of CLBs are
proportional to the number of circuits T . Hence, we can



Table II
THE PERFORMANCE OF OUR HYBRID CIRCUIT H USING CIRCUITS T

FOR m = 4096

Size clock LUTs FFs CLBs 109 elements
of T (MHz) per CLB·sec

1 775 15395 28673 6360 0.499
2 775 12287 18431 3584 0.886
4 775 11263 13311 2877 1.10
8 775 14842 10751 2792 1.14

16 431 13141 9471 2305 0.766
32 374 17206 8831 2724 0.562
64 190 20545 8511 3418 0.228

128 80 18561 8351 3150 0.104
256 69 15267 8477 2339 0.121
512 33 12670 8231 1997 0.0677

4096 3 12843 8195 1967 0.00625

Table III
THE PERFORMANCE OF OUR HYBRID CIRCUIT H USING THE

BIT-VECTOR CIRCUITS FOR m = 1024

.

Size of clock LUTs FFs CLBs 109 elements
bit-vector (MHz) per CLB·sec

1 775 3865 7169 1619 0.490
2 775 4093 5120 1123 0.707
4 775 3497 3584 787 1.01
8 775 4231 2816 913 0.87

16 732 4164 2432 687 1.09
32 669 4132 2240 661 1.04
64 596 4095 2144 634 0.963

128 494 4101 2096 614 0.824
256 370 4100 2072 612 0.619
512 243 4052 2066 606 0.411

1024 150 4095 2051 626 0.245

expect that the performance evaluated by the number of
elements computed per CLB·sec. are almost the same for
larger m.

Tables III and IV show the performance of circuits our
hybrid circuits H using bit-vector circuits. The reader should
compare them with Tables I and II, which show the per-
formance of our hybrid circuits H using circuits T . The
peak performance of elements per CLB·sec is obtained when
the size is 16 for m = 1024 and 4 for m = 4096. Their
peak performances are little smaller than the hybrid circuit
with circuits T . We can think that hybrid circuits with one
bit-vector circuit reproduces the previously published result
in [16], which simply implements the bit-vector algorithm
on the FPGA. Since the clock frequency is very low due
to a long carry chain of an adder, the performance is much
lower than our hybrid circuit. For example, when m = 4096,
the performance of the previously published implementation
shown in [16] is only 0.0555× 109 elements per CLB·sec,
while the performance of our hybrid circuit is 1.14 × 109.
Thus, our hybrid circuit is more than 20 times efficient.

We have implemented the bit-vector algorithm in NVIDIA
TITAN X GPU. Our implementation is essentially the same
as that shown in [17] and reproduces their results on a latest
GPU. Also, the sequential bit-vector algorithm is executed
on Core i7-6700K CPU. Although it has multiple cores and

Table IV
THE PERFORMANCE OF OUR HYBRID CIRCUIT H USING THE

BIT-VECTOR CIRCUITS FOR m = 4096

Size clock LUTs FFs CLBs 109 elements
of T (MHz) per CLB·sec

1 775 15395 28673 6360 0.499
2 775 16363 20480 4419 0.718
4 775 14052 14336 3106 1.02
8 759 16910 11264 3468 0.896

16 695 16671 9728 2964 0.960
32 655 16527 8960 2719 0.987
64 579 16438 8580 2494 0.951

128 466 16413 8384 2445 0.781
256 319 16373 8288 2442 0.535
512 214 16057 8258 2415 0.363

4096 38 16383 8195 2802 0.0555

multiple threads can run at the same time, we use one thread
to execute the sequential bit-vector algorithm.

Tables V and VI show the performance for m = 1024 and
4096, respectively. The ASM is computed for text strings
of length n = 10242. Also, the running time is evaluated
for multiple input instances from 2048 to 32K pairs of
pattern/text. To fully utilize the GPU resources, we should
invoke as many threads as possible. Thus, we perform the
ASM computation for multiple input instances. Thus, the
ASM computation of 32K instances for m = 4096 and
n = 10242 computes 32K·4096 ·10242 = 247 = 1.40×1014

elements. The GPU implementation runs 59.09 seconds, we
can say that the performance is 1.40×1014

59.09 = 2.38 × 1012

elements per GPU·sec. Also, the CPU performance is about
0.0125 × 1012 elements per CPU·sec. Note that, the CPU
implementation just repeats the same bit-vector operation,
the running time is proportional to the number of elements,
and so the performance in terms of elements per CPU·sec
is almost the same.

We first compare the performance of the FPGA and the
GPU in terms of the ASM. From Table I, only one hybrid
circuit H with 675 CLBs on the FPGA can perform 32K
instances of the ASM with m = 1024 and n = 10242 in
32K·(1024+10242−1)

775M = 44.4 seconds from Theorem 5. From
Table V, the GPU implementation takes 14.77 seconds for
the same task. Thus, the performance of one hybrid circuit
H on 675 CLBs is 33.5% of the GPU. Since 175 hybrid
circuits H can be embedded in a XCVU9P FPGA using
80% of all CLBs, we can say that a XCVU9P FPGA is
more than 58 times faster than an NVIDIA TITAN X GPU.

Next, let us compare the performances of the FPGA and
the CPU. From Table I, only one hybrid circuit H with 675
CLBs on the FPGA can perform 32K instances of the ASM
with m = 1024 and n = 10242 in 32K·(1024+10242−1)

775M =
44.4 seconds. From Table V, the CPU takes 2870 seconds.
Thus, quite surprisingly, only 675 CLBs in the FPGA can
be more than 64 times faster than the CPU. Since Core i7-
6700K used for evaluation can execute 8 threads on 4 cores
at the same time, a fully program cannot be more than 8



Table V
THE PERFORMANCE OF THE BIT-VECTOR ALGORITHM ON NVIDIA

TITAN X FOR m = 1024 AND n = 10242

#instances 2048 4096 8192 16K 32K
GPU Time (sec) 1.241 2.048 3.830 7.447 14.77

1012 ele./GPU·sec 1.77 2.15 2.30 2.36 2.38
CPU Time (sec) 177.8 358.6 714.8 1446 2870

1012 ele./CPU·sec 0.0124 0.0123 0.0123 0.0122 0.0123

Table VI
THE PERFORMANCE OF THE BIT-VECTOR ALGORITHM ON NVIDIA

TITAN X FOR m = 4096

#instances 2048 4096 8192 16K 32K
GPU Time (sec) 3.828 7.466 14.57 29.29 59.09

1012 ele./GPU·sec 2.30 2.36 2.41 2.40 2.38
CPU Time (sec) 675.5 1361 2714 5761 11100

1012 ele./CPU·sec 0.0130 0.0129 0.0130 0.0122 0.0127

times faster. Since we can implement 175 hybrid circuits
H using 80% CLBs in a XCVU9P FPGA, we can say that
XCVU9P is more than 1400 times faster than Core i7-6700K
for the ASM.

VI. CONCLUSION

The main contribution of this paper is to present a hybrid
circuit for the Approximate String Matching (ASM) on the
FPGA. Our hybrid circuit in the FPGA is more than 20
times efficient than the previously published implementation
based on the bit-vector algorithm. Also, our hybrid circuit
implemented in a Xilinx Virtex UltraScale+ XCVU9P FPGA
is more than 58 times faster than NVIDIA TITAN X GPU
and more than 1400 times faster than Core i7-6700K (all
4 cores are used). Thus, the FPGA is promising as an
accelerator of the ASM computation.
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