The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, Month 2011, 1-16

RESEARCH ARTICLE

Optimal Implementations of the Approximate String Matching
and the Approxrimate Discrete Signal Matching on the Memory
Machine Models

Koji Nakano®*

a Department of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan
(Received 00 Month 200z; in final form 00 Month 200z)

The Discrete Memory Machine (DMM) and the Unified Memory Machine (UMM) are theo-
retical parallel computing models that capture the essence of the shared memory access and
the global memory access of GPUs. The approximate string matching for two strings X and
Y is a task to find a substring of Y most similar to X. The main contribution of this paper
is to show efficient implementations of approximate string matching on the memory machine
models. Our best implementation for strings X and Y with length m and n (m < n), respec-
tively, runs in O(Z.* + ml) time units using n threads both on the DMM and on the UMM
with width w and latency [. We also show that any implementation of the approximate string
matching on the DMM and the UMM needs Q("* + ml) time units. Thus, our implementa-
tions for the DMM and the UMM are optimal. Finally, we show that the approximate discrete
signal matching of two signals can be computed in the same time complexity.

Keywords: Memory machine models, Approximate string matching, Dynamic time
warping, GPU, CUDA

1. Introduction

The research of parallel algorithms has a long history of more than 40 years. Se-
quential algorithms have been developed mostly on the Random Access Machine
(RAM) [1]. In contrast, since there are a variety of connection methods and pat-
terns between processors and memories, many parallel computing models have been
presented and many parallel algorithmic techniques have been shown on them. The
most well-studied parallel computing model is the Parallel Random Access Machine
(PRAM) [2-4], which consists of processors and a shared memory. Each processor
on the PRAM can access any address of the shared memory in a time unit. The
PRAM is a good parallel computing model in the sense that parallelism of each
problem can be revealed by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that can be accessed by all
processors at the same time, it is not feasible.

The GPU (Graphics Processing Unit), is a specialized circuit designed to accel-
erate computation for building and manipulating images [5-7]. Latest GPUs are
designed for general purpose computing and can perform computation in appli-
cations traditionally handled by the CPU. Hence, GPUs have recently attracted
the attention of many application developers [5]. NVIDIA provides a parallel com-
puting architecture called CUDA (Compute Unified Device Architecture) [8], the

*Corresponding author. Email: nakano@cs.hiroshima-u.ac.jp

ISSN: 1744-5760 print/ISSN 1744-5779 online
© 2011 Taylor & Francis

DOI: 10.1080/17445760.YYYY.CATSid
http://www.informaworld.com

2 Koji Nakano

computing engine for NVIDIA GPUs. CUDA gives developers access to the vir-
tual instruction set and memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multicore processors [9], since
they have hundreds of processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared memory and
the global memory [8]. The shared memory is an extremely fast on-chip memory
with lower capacity, say, 16-64 Kbytes. The global memory is implemented as an
off-chip DRAM, and has large capacity, say, 1.5-6 Gbytes, but its access latency is
very long. The efficient usage of the shared memory and the global memory is a
key for CUDA developers to accelerate applications using GPUs. In particular, we
need to consider the bank conflict of the shared memory access and the coalescing
of the global memory access [6, 9-11]. The address space of the shared memory is
mapped into several physical memory banks. If two or more threads access the same
memory banks at the same time, the access requests are processed in turn. Hence, to
maximize the memory access performance, threads of CUDA should access distinct
memory banks to avoid the bank conflicts of the memory accesses. To maximize
the bandwidth between the GPU and the DRAM chips, the consecutive addresses
of the global memory must be accessed at the same time. Thus, CUDA threads
should perform coalesced access when they access the global memory.

There are several previously published works that aim to present theoretical prac-
tical parallel computing models capturing the essence of existing parallel comput-
ers. Many researchers have been devoted to developing efficient parallel algorithms
to find algorithmic techniques on such parallel computing models. For example, pro-
cessors connected by interconnection networks such as hypercubes, meshes, trees,
among others [12], bulk synchronous models (BSP) [13], LogP models [14], recon-
figurable models [15], among others. Quite recently, Multi-BSP [16], a multi-level
model that has explicit parameters for processor numbers, memory/cache sizes,
communication costs, and synchronization costs. Although this parallel computing
model is targeted to multicore processor, it does not consider the memory access
characteristics such as the bank conflicts and the coalescing of the GPUs. As far
as we know, no sophisticated and simple parallel computing model for GPUs has
been presented. Since GPUs are attractive parallel computing devices for many de-
velopers, it is challenging work to introduce a theoretical parallel computing model
for GPUs.

In our previous paper [17], we have introduced two models, the Discrete Mem-
ory Machine (DMM) and the Unified Memory Machine (UMM), which reflect the
essential features of the shared memory and the global memory of NVIDIA GPUs.
The outline of the architectures of the DMM and the UMM is illustrated in Fig-
ure 1. In both architectures, a sea of threads (Ts) are connected to the memory
banks (MBs) through the memory management unit (MMU). Each thread is a Ran-
dom Access Machine (RAM) [1], which can execute fundamental operations in a
time unit. We do not discuss the architecture of the sea of threads in this paper,
but we can imagine that it consists of a set of multi-core processors which can
execute many threads in parallel. Threads are executed in SIMD [18] fashion, and
the processors run on the same program and work on the different data.

MBs constitute a single address space of the memory. A single address space of
the memory is mapped to the MBs in an interleaved way such that the word of
data of address 7 is stored in the (i mod w)-th bank, where w is the number of
MBs. The main difference of the two architectures is the connection of the address
line between the MMU and the MBs, which can transfer an address value. In the
DMM, the address lines connect the MBs and the MMU separately, while a single
address line from the MMU is connected to the MBs in the UMM. Hence, in the

Optimal Implementations of the ASM and the ADSM on the Memory Machine Models 3

UMM, the same address value is broadcast to every MB, and the same address of
the MBs can be accessed in each time unit. On the other hand, different addresses
of the MBs can be accessed in the DMM. Since the memory access of the UMM is
more restricted than that of the DMM, the UMM is less powerful than the DMM.

a sea of threads a sea of threads

I D D]) I
|

MMU | | MMU

MB||MB||MB| |MB MB | |MB| |[MB | [MB

DMM UMM

............. address line data line

Figure 1. The architectures of the DMM and the UMM

The performance of algorithms of the PRAM is usually evaluated using two
parameters: the size n of the input and the number p of processors. For example,
it is well known that the sum of n numbers can be computed in O(7 +logn) time
on the PRAM [2]. We will use four parameters, the size n of the input, the number
p of threads, the width w and the latency [of the memory when we evaluate
the performance of algorithms on the DMM and on the UMM. The width w is the
number of memory banks and the latency [is the number of time units to complete
the memory access. Hence, the performance of algorithms on the DMM and the
UMM is evaluated as a function of n (the size of a problem), p (the number of
threads), w (the width of a memory), and [(the latency of a memory). In NVIDIA
GPUs, the width w of global and shared memory is 16 or 32. Also, the latency [of
the global memory is several hundred clock cycles. In CUDA, a grid can have at
most 65535 blocks with at most 1024 threads each [8].

Suppose that two strings X and Y with length m and n (m < n), respectively,
are given. The approximate string matching is a task to find a substring in Y most
similar to X. The similarity of two strings is measured by the number of three op-
erations, insertion, deletion, and replacement of characters necessary to change one
string into the other. The approximate string matching has a lot of applications in
the areas of signal processing, bio-informatics, natural language processing, among
others. It is well known that the approximate string matching can be computed
in O(mn) time [19] using the dynamic programming technique. Many researchers
have been devoted to do research on variations of the approximate string matching.
For example, if the problem is to list substrings in Y with similarity no more than
k, the computing time can be reduced [20]. Also, if the complicated bit operations
of words is allowed, the approximate string matching can be accelerated [21].

Although a lot of work of sequential algorithms for the approximate string match-
ing have been published, there is no significant work for parallel algorithms for
approximate string matching. Since the computation of the approximate string
matching involves long sequential operations, it is very hard to parallelize it to run
in poly-logarithmic time. Also, it is not difficult to obtain a cost-optimal linear-time
parallel algorithm, which runs in O(n) time using m processors on the PRAM. As a
related result, a GPU implementation of k-mismatch approximate string matching

4 Koji Nakano

has been shown in [22]. However, this string matching is a task to find substrings
with Hamming distance no more than k, which is much simpler than our approxi-
mate string matching.

We also deal with the the dynamic time warping (DTW) of two sequences of real
numbers [23, 24] and its generalization, the approximate discrete signal matching
(ADSM). The DTW is a task to compute the similarity of two discrete signals.
Also, the ADSM for two discrete signals (i.e. sequences of real numbers) X and Y
is a task to find a subsequence in Y’ most similar to X. The DTW and the ADSM
have many applications in the area of pattern recognition. For example, suppose
that a discrete sound signal for a particular word is given. We can find such word
in a discrete sound signal of a speech by computing the ADSM.

The main contribution of this paper is to show an optimal implementation of
the approximate string matching algorithm shown in [19] on the memory machine
models. We also show an optimal implementation for the approximate discrete
signal matching algorithm. We first show that the approximate string matching
for X and Y with length m and n (m < n), respectively, can be computed in
O(™=2 + nl) time units using m threads on the DMM. We then go on to present
the matrix sliding technique, which allows us to perform the approximate string
matching on the UMM in the same computing time.

From the practical point of view, n can be very large while m is small. Also,
the latency [of current GPUs is several hundred. Thus, the factor O(nl) in the
latency overhead in the computation of the approximate string matching dominates
the computing time. Hence, we show that the latency overhead can be reduced to
O(ml). In other words, we show that the approximate string matching for X and
Y with length m and n (m < n) respectively can be computed in O(%;* +ml) time
units using n threads both on the DMM and the UMM.

We also discuss the lower bound of the computing time and show that any
implementation of O(mn)-time approximate string matching need to run in Q(%*+
ml) time. From this lower bound, our implementation of the approximate string
matching running in O(“* +ml) time is optimal. Clearly, the bandwidth w between
threads and the memory is the bottleneck of our implementation of the approximate
string matching algorithm. For any computation on the DMM and the UMM, the
bandwidth w determines the computational power of them. Finally, we show that
the approximate discrete signal matching can be computed in the same way as the
approximate string matching.

This paper is organized as follows. In Section 2, we review the memory machine
models presented in our previous paper [17], that capture the essence of the shared
memory access and the global memory access of GPUs. Next, we evaluate the
performance of the contiguous memory access on the memory machine models in
Section 3. Section 4 defines the edit distance (ED) and the approximate string
matching (ASM) of two strings, and shows a sequential algorithm for the ASM.
In Section 5, we define the dynamic time warping (DTW) and the approximate
discrete matching (ADSM) of two sequences of real numbers and show a sequential
algorithm for the ADSM. We then show parallel algorithms of the ASM for the
DMM and the UMM in Sections 6 and 7, respectively. In Section 8, we show a better
algorithm on the UMM that optimizes the latency overhead. Section 9 discusses
the lower bound of the computing time for the ASM. Finally, Section 10 shows
that the approximate discrete signal matching can be computed in the same way
as the approximate string matching. Section 11 concludes our work.

Optimal Implementations of the ASM and the ADSM on the Memory Machine Models 5

2. Parallel Memory Machines: DMM and UMM

The main purpose of this section is to define the Discrete Memory Machine (DMM)
and the Unified Memory Machine (UMM) introduced in our previous paper [17].
The reader should refer to [17, 25] for the details of the DMM and the UMM.

We first define the Discrete Memory Machine (DMM) of width w and latency
[. Let m[i] (i > 0) denote a memory cell of address ¢ in the memory. Let B[j] =
{m[j],m[j +w],m[j + 2w],m[j + 3w],...} (0 <j <w—1) denote the j-th bank of
the memory. Clearly, a memory cell m[i] is in the (i mod w)-th memory bank. We
assume that memory cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in a time unit. Also, we
assume that [time units are necessary to complete an access request and continuous
requests are processed in a pipeline fashion through the MMU. Thus, it takes k+[—1
time units to complete memory access requests to k memory cells in a particular
bank. However, we assume that multiple memory access requests destined for the
same address in the same bank have no extra overhead. For example, if two or
more threads read from the same address, it can be read at the same time. Also,
if two or more threads write in the same address, one of them is arbitrary selected
and succeeds in writing.

B[o] B{] B[2] B3]

ofl1(l21][3] |o|1]|2]3lao

alls5)l6ll7] |4]5]6/|7|ay

gllolltofl11] |8 | 9 |10 |11 |4

12 ((13]]|14 || 15 12 | 13 | 14 | 15 |A[3]
I T T T 1

memory banks of DMM 'addre'ss gro;lps of' UMM

Figure 2. Banks and address groups for w = 4

We assume that p threads are partitioned into % groups of w threads called
warps. More specifically, p threads T'(0), T'(1), ..., T(p — 1) are partitioned into £
warps W (0), W(1), ..., W(E —1) such that W (i) = {T(i-w), T (i-w+1),..., T((i+
1)-w—1)} (0 <4 < & —1). Warps are dispatched for memory access in turn,
and w threads in a warp try to access the memory at the same time. In other
words, W (0),W(1),...,W(E& — 1) are dispatched in a round-robin manner if at
least one thread in a warp requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory access and is skipped.
When W (i) is dispatched, w threads in W (i) sends memory access requests, at
most one request per thread, to the memory. We also assume that a thread cannot
send a new memory access request until the previous memory access request is
completed. Hence, if a thread sends a memory access request, it must wait at least
[time units to send a new memory access request.

We next define the Unified Memory Machine (UMM for short) of width w as
follows. Let A[j] = {m[j - w],m[j - w+1],...,m[(j + 1) - w — 1]} denote the j-
th address group. We assume that memory cells in the same address group are
processed at the same time. However, if they are in the different groups, one time
unit is necessary for each of the groups. Also, similarly to the DMM, p threads are
partitioned into warps and each warp accesses the memory in turn.

6 Koji Nakano

The difference of the DMM and the UMM is the memory access flexibility. As
illustrated in Figure 1, the same address of all memory banks must be accessed
at the same time in the UMM, while the DMM can access different addresses of
memory banks of the UMM. Thus, the DMM is more powerful than the UMM.

3. Contiguous memory access and contiguous bank access

The main purpose of this section is to review the contiguous memory access on the
DMM and the UMM shown in [17, 25]. We also show the contiguous bank access
for the DMM.

The contiguous memory access is a key technique for accelerating the computa-
tion. Suppose that an array a of size n (> p) is given. We use p threads to access
all of n memory cells in a such that each thread accesses 2 memory cells. Note that
“accessing” can be “reading from” or “writing in.” Let a[i] (0 <4 < n — 1) denote
the ¢-th memory cells in a. When n > p, the contiguous access can be performed
as follows:

[Contiguous memory access]
for £ <~ 0 to 2 —1do

for + <~ 0 to p — 1 do in parallel
T'(7) access a[p -t + i]

Let us evaluate the computing time. First, we assume that w < p. For each ¢
(0 <t <3 —1), p threads access p memory cells a[pt], alpt +1],...,a[p(t +1) — 1].
This memory access is performed by % warps in turn. More specifically, first, w
threads in W (0) access a[pt],a[pt +1],...,a[pt + w — 1]. After that, w threads in
W (1) access a[pt + w],alpt + w+ 1],...,a[pt + 2w — 1], and the same operation
is repeatedly performed. In general, w threads in W(j) (0 < j < Z — 1) access
a[pt + jw), a[pt + jw +1],...,a[pt + (j + 1)w — 1]. Since w memory cells accessed
by a warp are in different banks, the access can be completed in [time units on
the DMM. Also, these w memory cells are in the same address group, and thus,
the access can be completed in [time units on the UMM. Recall that the memory
access are processed in a pipeline fashion such that w threads in each W (j) send
w memory access requests in one time unit. Hence, p threads in % warps send
P memory access requests in % time units. After that, the last memory access
requests by W (£ — 1) are completed in [— 1 time units. Thus, p threads access
p memory cells a[pt], apt +1],...,a[p(t + 1) — 1] in £ 4] — 1 time units. Since
this memory access is repeated % times, the contiguous access can be done in

5 (BE+1-1)=0(% + %l) time units.
Next, let us consider the case that p < w. If this is the case p threads are in a

single warp. This warp performs memory access % times each of which takes [time

units. Thus, the contiguous access can be done in O(%l) time.
Therefore, we have,

LEMMA 3.1. The contiguous memory access to an array of size n can be done in
O(Z& + %l) time using p threads (p < mn) on the DMM and the UMM with width w
and latency [.

For later reference, we also define the contiguous bank access, which takes the
same time units as the contiguous access on the DMM. Let by, b1,...b,—1 be a
sequence of integers such that b; mod w = ¢ mod w for all ¢ (0 <4 < n —1). Hence,
each a[b;] is in bank ¢ mod w. The contiguous bank access is spelled out as follows:

Optimal Implementations of the ASM and the ADSM on the Memory Machine Models 7

[Contiguous bank access]
for £ <~ 0 to 2 —1do
for + <~ 0 to p — 1 do in parallel
T'(¢) access a[by.i4i]

If p > w then p threads are partitioned into % warps. In the contiguous bank
access, w threads in each warp access the different banks. Hence, p threads access
p memory cells a[by], a[bpri1],...,alby1y—1] in & +1 — 1 time units. Thus, the
contiguous bank access can be done in 2 - (£ +1-1) = O(3 + %l) time units.

If p < w then the contiguous bank access takes O(%l) time units similarly to the
contiguous memory access. Hence, we have,

LEMMA 3.2. The contiguous access to an array of size n can be done in O(%—I—%l)

time using p threads (p < mn) on the DMM with width w and latency [.

Note that, the UMM may take a lot of time for the contiguous bank access,
because threads in warps may access different address groups.

4. Approximate string matching and edit distance

The main purpose of this section is to review approximate string matching (ASM)
and the edit distance (ED). Please see [19, 26] for the details.

As a preliminary, we first define the edit distance (ED) of two strings. Sup-
pose that source string X = zjz9- -z, of length m and destination string
Y = y1y2-- -y, of length n are given. Without loss of generality, we can assume
that m < n. We want to change X into Y using the following three operations:

e insertion of a character,
e deletion of a character, and
e replacement of a character.

For example, X = ababa can be changed into Y = aaabbb in five operations as fol-

delet delet insert insert insert .
lows: ababa “=5° aaba “S° aaa X" aaab """ aaabb """ aaabbb. Alternatively,

. . . replace replace
X can be changed into Y in three operations as follows: ababa PR aaaba "

aaabb "™ aaabbb. The ED of two strings is the minimum number of operations

to change one string to the other. For example, the ED of X and Y above is three,
because there exists a sequence of three operations to change X into Y, and there
exists no sequence of less than three operations to do the same thing. For later
reference, let ED(X,Y") denote the edit distance of X and Y.

The approximate string matching, a more flexible version of the edit distance, is
a task to compute the value of ASM(X,Y') defined as follows:

ASM(X,Y) = min{ED(X,Y") | Y' is a substring of Y}

Clearly, ASM(X,Y) is small if Y has a substring similar to X.

It should be clear that ASM(X,Y) is always less than or equal to m, and
ED(X,Y) takes a value between n — m and n. For example, if X and Y share
no character, then ED(X,Y) = n and ASM(X,Y) = m. Also, if the prefix of Y is
X then ED(X,Y) =n —m and ASM(X,Y) =0.

We use a matrix d of size (m + 1) x (n + 1) to compute the ASM. Each d[i][J]
(0 <i<m,0<j<n)is used to store the following value:

min ED(z1zo-- %5, yiryia1 - y;).
195755 (Y5 Y5+ Y;)

8 Koji Nakano

Q o~ Q2 o 2

G| WIN|—]|O
lwiNn|lRrlRrlOol2
wWliNn|lRrlRrlololo
NI =1 =1
|~ |—lOolR|o|
N[== ==
Wi~ los
Nl lolOo|e
NN IRO[D|a

Figure 3. The values of matrix d for the ASM

Note that z1z2---z; is a null string (i.e. string with length 0) if # = 0. Once all
values of d is computed, we can compute the value of ASM(X,Y") by the following
formula:

ASM(X,Y) = O%ign d[m][]

Let us show how we compute all values of d. Suppose that d[i—1][j —1], d[i —1][/],
and d[i][j — 1] are already computed. Let “x; # y;” denote the binary value such
that it is 1 if z; # y; and 0 if z; = y;. The value of d[é]j] can be computed as
follows:

dii][j]=0 ifi=0 (1)
—i ifj=0 (2)

= min(d[7][j — 1] + 1, (3)

dfi — 1][j] + 1, (4)

dli = 1][j — 1]+ (z; #y;)) ifi>0andj > 0. (5)

Let ¢ denote a null string or a string with length 0. We can confirm the correctness

of the formula above as follows:

(1) d[0][j] = 0 from ASM(¢,y1y2---y;) =0,

(2) d[i][0] =i from ASM(z1z9 - -z, @) =1,

3) dull < dils - 1] + 1 from ASM(zy---2iy1---y;)

ASM(z1 - 291 yj—1) + 1,

4) dull < dli - 1] + 1 from ASM(zy---2iy1---yj)

ASM(zy -~ zi—1,y1- - y5) + 1,

(5) if z; = yj, then d[i][j] < dli — 1][j — 1], and if z; # y;, then d[i][j]

dli —1][j — 1]+ 1 from ASM(x1 - 25, y1---y;) < ASM(z1 -+ 21,91 - yj—1) +
Using this formula, all values of matrix d can be computed as follows:

[Sequential algorithm for the ASM]
for j <1 to n do d[0][j] < 0
for i <— 0 to m do d[i][0] < ¢
for i < 1 to m do
for j < 1 ton do
di]lj] min(di]lj — 1]+ 1,dfi - (7] + Ll — 1 - 1 + (2 # ;)
output min{d[m][j] | 0 < j < n}

IN

<
1.

Figure 3 shows the values of d for two strings X = ababa and Y = aaabbbaa.
From the figure, we can see that the ASM of X and Y is 1.

Optimal Implementations of the ASM and the ADSM on the Memory Machine Models 9

Usually, the approximate string matching should require algorithms to return the
indexes ¢ and j such that ASM(X,Y) = ED(X, y;yi+1---y;). The reader should
have no difficulty to confirm that once all the values in array d is obtained, it is
not difficult to compute such values of ¢ and j.

5. Dynamic time warping distance and approximate discrete signal matching

The main purpose of this section is to review the dynamic time warping (DTW)
of two sequences of real numbers [23, 24]. We also generalize the DTW to the
approximate discrete signal matching (ADSM), analogously to the generalization
of the ED to the ASM.

Suppose that source discrete signal X = z1x9---x,, of m real numbers and
destination discrete signal Y = yyo - -y, of n real numbers are given. Without
loss of generality, we assume that m < n. A warping path of X and Y is a sequence
(p1,q1), (P2,92)s- -, (Pryqr) (r > 1) of a pair of integers such that

(1) (p1,q1) =(1,1) and (pr, gr) = (m,n), and
(2) (Pis1,qiv1) — (pirqi) = (0,1),(1,0), or (1,1) for all i (1 <i<r—1).

A warping path defines a many-to-many mapping between X and Y such that z,,
corresponds to y,,. The error of a warping path (p1,q1), (p2,42),-- ., (Pr,qr) is the
sum of the distance over all corresponding pairs,

l
Z |$pi - yl]i|'
i=1

The dynamic time warping distance of two discrete signals is the minimum error
over all possible paths.

Let DTW(X,Y) denote the dynamic time warping of two discrete signals X
and Y. The approximate discrete signal matching, a more flexible version of the
dynamic warp matching is a task to compute the value of ADSM(X,Y) defined as
follows:

ADSM(X,Y) = min{DTW(X,Y"') | Y’ is a subsignal of Y'}

Clearly, ADSM(X,Y) is small if Y has a subsignal similar to X.

We use a matrix d of size (m+1) X (n+1) to compute the values of ADSM(X,Y)
for discrete signals X and Y with length m and n respectively. Each d[i][j] (0 <
i <m,0 <j<n)is used to store the following value:

1I§nj;1§1jDTW(x1x2 ST Y YY)

Once all values of d is computed, we can compute the value of ADSM(X,Y’) by
the following formula:

ADSM(X,Y) = 1r§nin dim][j]

Let us show how we compute all values of d. Suppose that d[i—1][j —1], d[i —1][;],

10 Koji Nakano

Y
1 23 442 1 2
|0|0|0]|0]0|0]O]O
THool1]1(2|3|3]1]0]1
X3oo32123221
Sloo| 7|53 (2|3|5(6 (4
3l0|9]6(3[3[3(4(|6]5
loo|9|7]5|6|6|5]|4]6

Figure 4. The values of matrix d for the ADSM

and d[i][j —1] are already computed. The value of d[i][j] can be computed as follows:

di][j]=0 ifi=0
=400 ifj=0
= min(d[z][j — 1], d[s — 1][5],d[i — 1][j — 1]) +[z; —y;| ifi>0andj>0.

Similarly to the computation of the ASM, the value of d[i][j] can be computed
using three values of d[i|[j — 1], d[i — 1][j], and d[i — 1][j — 1]. Thus, similarly to
the ASM, all values of matrix d for the ADSM can be computed as follows:

[Sequential algorithm for the ADSM]
for j 1 to n do d[0][j] < 0
for i <— 0 to m do d[i][0] < +o0
for i <~ 1 to m do
for j < 1 ton do
dii)lj) « min(di)lj — 1] + 1,dli — 1][j] + 1,dli — 1 — 1]) + |o; £ ;]
output min{d[m][j] | 0 < j < n}

Figure 4 shows the values of d for two discrete signals X = 1,3,5,3,1 and
Y =1,2,3,4,4,2,1,2. From the figure, we can see that the ADSM of X and Y is
4.

6. A parallel algorithm for the ASM on the DMM

The main purpose of this section is to show a parallel algorithm for computing the
ASM.

The key idea is to compute the values of the matrix d from the top-left corner
to the bottom-right corner as illustrated in Figure 5. The details of the parallel
algorithm are spelled out as follows:

[Parallel algorithm for the ASM]
for j - 1 to n do in parallel d[0][j] + 0
for i <— 0 to m do in parallel d[i][0] < i
fork+1ton+m—1do
for ¢ < 1 to m do in parallel
begin
j—k—i+1
if 1 <75 <mn then
DY minal = 1]+ 1 = 6]+ L = 105 1)+ 6] %5
en

Optimal Implementations of the ASM and the ADSM on the Memory Machine Models 11

y k=12345¢67

aad

BB e A g
008 .,.@" 070707067 @ .
al1 <10
x 02 Sgnt
al 3 <12
A
al 5

Figure 5. Illustrating a parallel algorithm for computing matrix d

output min{d[m][j] | 0 < j <n}

In the third for-loop, for each k£ (1 < k < n + m — 1), the values d[1][k], d[2][k —
1],...d[m][k — m] are computed and stored. Clearly, when the values of d for k is
computed, only those for £ — 1 and k — 2 are used. Thus, this parallel algorithm
correctly computes the ASM.

Let us evaluate the computing time on the DMM. We assume that n+1, the row
size of matrix d, is a multiple of w. If this is not a case, we can choose the minimum
integer n' exceeding n + 1 such that n' is a multiple of w, and use a matrix d of
size (m + 1) x n'. We also assume that we use m threads on the UMM.

The first for-loop performs “d[0][j] - 0” in parallel. Since writing in n elements
d[0][1], d[0][2], ..., d[0][n] is contiguous memory access, it takes O(Z +) time
units from Lemma 3.1. The second for-loop performs “d[i][0] < 4" in parallel.
Since d[0][0], d[1][0], ..., d[m][0] are in the same bank B(0), all writing operations
are performed in turn. Hence, the second for-loop takes m + [time units.

The evaluation of the computing time for the third for-loop is a little complicated.
The third for-loop for a fixed k involves the following memory access operations:

e reading from z[1],z[2],...,z[m],

e reading from y[k|, y[k —], o ylk—m 1,

e reading from d[1][k — 1],d[2][k — 2],. [[k — m],

e reading from d[0][k], d[1][k — 1],. [][k —m + 1],

e reading from d[0][k — 1], d[l][] d[— 1][k — m], and
e writing in d[1][k], d[2][k —1],...,d[m][k—m—i—l].

For simplicity, we consider that the memory access is omitted if the index of arrays
above is out of range defined. Since the first two reading operations are the con-
tiguous memory access for m elements, they take O(2 + ™) = O(+[) time units
from Lemma 3.1. The remaining four reading operations are not contiguous. How-
ever, they are contiguous bank access, and they also take O(%: +1) time units from
Lemma 3.2. Thus, the third for-loop runs in O(+1) - (n +m — 1) = O(%* +nl)
time from m < n.

Finally, we need to compute min{d[m][j] | 0 < j < n}. The minimum of n + 1
numbers can be computed using a single thread in (n + 1) = O(nl) time in an
obvious way.

Therefore, we have,

LEMMA 6.1. The ASM of two strings of length m and n (m < n) can be computed
in O(%% +nl) time units using m threads on the DMM with width w and latency
l.

12 Koji Nakano

0|a Y !
|
a1/0]a Lk
bl 2 l¢1-6 L. 1
b'e 2 10t X
al 3 [ato}-0- L. 2
|
bl 4 [+1676b b 3
|
a| 5 b b 4
|
A4t oli1lnllln L. b
|"—.I:LJ.UJ.UU/|
! Lol 1111 Lol 1.0
| T Z 1 L] Lr|urra
|
| O 7
|
| <210 8
|
. @+t 9
|
\ G—+2+434-.10
|
| =1211
|
\ <12

Figure 6. Illustrating a parallel algorithm for computing slided matrix s

7. A parallel algorithm for the ASM on the UMM

This section is devoted to show how we implement the parallel algorithm for com-
puting the approximate string matching on the UMM.

If the parallel algorithm in the previous section is implemented on the UMM as it
is, the memory access is performed for different address groups. If this is the case,
the memory access request is processed in turn, the UMM takes at least O(nm)
time units to compute the values of d.

For the purpose of the contiguous memory access in the third for-loop, we slide
the matrix d as illustrated in Figure 6. More specifically, we use a matrix s of size
(n+m+1) x (n+ 1) such that the value of each d[i][j] is stored in s[i + j][J].

Let us evaluate the computing time on the UMM if the parallel algorithm is exe-
cuted for the matrix s. Again, we assume that we use m threads. The first for-loop
and the second for-loop performs writing operations for s[0][0], s[1][1], ..., s[n][n]
and for s[1][0], s[2][0], .. . , s[m][0], respectively. Hence, the memory access by a warp
is performed for the different address groups both in the first for-loop and in the
second for-loop. Thus, the first for-loop and the second for-loop take m + [time
units and n + [time units, respectively.

The third for-loop for a fixed k involves the following memory access operations:

reading from z[1], z[2],...,z[m],

reading from y[k],ylk —1],...,y[k — m + 1],

reading from s[k|[k — 1], s[k][k — 2], ..., s[k][k — m],

reading from s[k][k], s[k][k — 1],..., s[k][k — m + 1],

reading from s[k — 1][k — 1], s[k — 1][k — 2],..., s[k — 1][k — m], and
writing in s[k + 1][k], s[k + 1][k — 1], ..., s[k + 1][k — m + 1].

Since the first two reading operations are the contiguous access, they take O(7; +
%l) = O(%; + 1) time units from Lemma 3.1. Since the remaining four memory
access operations are performed by the contiguous access, they also take O(> +1)
time units. Thus, the third for-loop runs in O(% +1) - (n +m) = O(%* + nl) time
units. Finally, we compute min{s[m + j][j] | 0 < j < n} in O(nl) time units using
a single thread in an obvious way. Therefore, we have,

Optimal Implementations of the ASM and the ADSM on the Memory Machine Models 13

LEMMA 7.1. The ASM of two strings of length m and n (m < n) can be computed
in O(%F + nl) time units using m threads on the UMM with width w and latency
l.

Clearly, the implementation for Lemma 7.1 also works on the DMM.

The implementation for Lemma 7.1 uses an array s of size (n+m+1) x (n+1).
However, only three rows s[k — 1][x], s[k][*], s|[k + 1][*] of s are accessed for each k.
Further, m + 2 elements are used in each row, and two of them are just initialized
values. Thus, we can reduce the size of array s to 3 x m. For this purpose, we use
array s’ of size 3 x m to handle the values in s as follows:

e return 0 when s[j][j] is read,
e return ¢ when s[i][0] is read, and
e access s'[i mod 3|[j mod m] when s[i][j] is accessed.

Clearly, since the memory access to array s performed by the parallel algorithm for
the ASM is contiguous, that to array s’ is also contiguous. Hence, even if we use
s" instead of s, the computing time is still O(™™ 4-nl) time units. Thus, we have,

THEOREM 7.2. The ASM of two strings of length m and n (m < n) can be

computed in O(%* + nl) time units using m threads and working space of size
O(m) on the DMM and the UMM with width w and latency .

8. Further improvement of the parallel ASM

In practical applications, ASM(X,Y’) for a very long Y need to be computed. In
other words, we need to compute ASM(X,Y) such that m < n. If this is the case,
the latency overhead O(nl) dominates the computing time. The main purpose of
this section is to show that the latency overhead can be reduced to O(ml). This
hides the latency overhead and achieves a significant improvement when m < n.

We first show that, we can restrict the length of substrings of ¥ to at most
2m when we compute the ASM. If a substring Y’ of Y is longer than 2m, then
ED(X,Y') > 2m — m = m. However, since ASM(X,Y) < m always hold, we can
ignore such Y’ when we compute ASM(X,Y).

Using this fact, we can further parallelize the computation of ASM(X,Y). We
partition Y into > substrings Yy, Y1, ... Yoy of length m each such that Y; =
Yim+1Yim+2 " Y(i+1)m (0 <4 < - —1). Further, let Zy, Z1, ..., Z2 _3 be the strings
of adjacent three Y;’s, that is, Z; = Y;Y;11Y;12 (0 <4 < = —3). Clearly, the length
of each Z; is 3m and any substring Y’ with at most 2m characters is a substring of
one of Zy, Z1, ..., Z=_3. Thus, the following algorithm can compute ASM(X,Y).

[Improved parallel algorithm for the ASM]
for i <- 0 to ;> — 3 do in parallel
compute ASM(X, Z;)

output min{ASM(X, Z;) |0 < < 2 — 3}

Let us evaluate the computing time. We use the implementation for Theorem 7.2
to compute each ASM(X, Z;) (0 < < > —3) in parallel. In this implementation, a
matrix s’ of size 3xm is used to compute each ASM(X, Z;). Since m-(J-—3) < n, we
can consider that we have a large combined matrix of size 3 x n and the contiguous
memory access is performed using n threads. From Lemma 3.1, the contiguous
memory access to an array of 3n can be done using n threads in O(%” + 37’”) =
O(Z +1) time units. Since X and Z; have m and 3m characters, respectively, this
contiguous memory access is repeated m+3m—1 = 4m—1 times. Thus, the values of

all ASM(X, Z;) (0 <4 < X —3) can be computed in O(3 +1)-(4m—1) = O(E2+ml)

14 Koji Nakano

time using n threads.

Next, we need to compute the minimum of ;> — 2 numbers. We can compute the
minimum in (% —2)l = O(%l) time units using a single thread. However, when n is
very large, this computing time dominates the total computing time. We want to
compute the minimum of % —2 numbers in no more than O(%* +ml) time. We use
the fact that these numbers are no more than m. Let sg, s1,.. S§2_3 denote - —2
numbers. We use ;- —2 threads and an array v of size m+1 mltlahzed by 0. A thread

assigned to each s; (0 <@ < ;- —2) performs v[s;] < 1. Since each of the m_2

accesses an array of size m + 1, this operation takes (— +1) - 2t = O(% + %l)
time units. After that, we find the minimum j such that v[j] = 1. Such minimum j,
which is equal to the minimum of I —2 numbers, can be found in (m+1)I = O(ml)
time using a single thread in an obvious way. Thus, the minimum of —2 numbers

can be computed in O(=% + 2) < O(™2 +) time units. Finally, we have,

THEOREM 8.1. The ASM of two strings of length m and n (m < n) can be

computed in O(Z2 + ml) time units using n threads and working space of size
O(m) on the DMM and the UMM with width w and latency .

9. Optimality of Implementations

This section is devoted to discuss the optimality of our implementation of the
dynamic programming based algorithm for the ASM. Note that, what we discuss
is “optimality of implementations”, not “optimality of algorithms”.

In the dynamic programming based algorithm, an array d of size (m+1) x (n+1)
is used. Since all of (m + 1)(n + 1) elements in d is accessed at least once and
the memory bandwidth is w, it takes at least w = Q
compute the ASM.

The value of d[i][j] (1 <4 < m) depends on that of d[i — 1][j]. Hence, the value
of d[i — 1][j] must be read before that of d[i][j] is written. In other words, at least
[time units are necessary from writing the resulting values in d[i — 1][4] to that of

d[i][7]. Thus, at least ml time units are necessary to compute the value of d[m][j].

Two lower bounds combined, we have,

M%) time units to

THEOREM 9.1. Any implementation of the dynamic programming based ASM
algorithm for two strings of length m and n (m < n) takes at least Q("2* + ml)
time on the DMM and the UMM with width w and latency .

From this lower bound theorem, our implementations for Theorem 8.1 is time
optimal.

10. Optimal implementation of the ADSM

As we have shown in Section 5, the ADSM can be computed in the same way as
the ASM. Hence the reader should have no difficulty to confirm that

THEOREM 10.1. The ADSM of two discrete signals of length m and n (m < n)
can be computed in O(™F + ml) time units using n threads and working space of
size O(m) on the DMM “and the UMM with width w and latency 1.

The ADSM of two discrete signals of length m and n (m < n) can be computed
in O(%* + ml) time units using n threads and working space of size O(m) on the
DMM and the UMM with width w and latency I.

REFERENCES 15

Also, we have the same lower bound of the time units to prove the optimality of
Theorem 10.1 as follows.

THEOREM 10.2. Any implementation of the dynamic programming based ADSM
algorithm for two sequences of length m and n (m < n) takes at least Q(% + ml)
time on the DMM and the UMM with width w and latency .

11. Conclusion

In this paper, we have presented efficient implementations for the approximate
string matching (ASM) on the memory machine models. Our best implementation
for strings X and Y with length m and n (m < n), respectively, runs in O(™= 4-ml)
time units using n threads both on the DMM on the UMM with width w and
latency [. The approximate discrete signal matching (ADSM) can be computed in
the same time complexity. Further, we have proved that Q(Z* +ml) time units are
necessary for any implementation of the dynamic programming based algorithm to
compute the ASM and the ADSM.

References

[1] A.V. Aho, J.D. Ullman, and J.E. Hopcroft, Data Structures and Algorithms,
Addison Wesley, 1983.

[2] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge Univer-
sity Press, 1988.

[3] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel

Computing, Addison Wesley, 2003.

M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill, 1994.

W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan Kaufmann,

2011.

[6] D. Man, K. Uda, Y. Ito, and K. Nakano, A GPU Implementation of Computing
Euclidean Distance Map with Efficient Memory Access, in Proc. of Interna-
tional Conference on Networking and Computing, Dec., IEEE CS Press, 2011,
pp. 68-76.

[7] A. Uchida, Y. Ito, and K. Nakano, Fast and Accurate Template Matching
using Pizel Rearrangement on the GPU, in Proc. of International Conference
on Networking and Computing, Dec., IEEE CS Press, 2011, pp. 153-159.

[8] NVIDIA Corporation, NVIDIA CUDA C programming guide version 4.0
(2011).

[9] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, Implementations of a
parallel algorithm for computing euclidean distance map in multicore proces-
sors and GPUs, International Journal of Networking and Computing 1 (2011),
pp. 260-276.

[10] NVIDIA Corporation, NVIDIA CUDA C best practice guide version 3.1
(2010).

[11] K. Nishida, Y. Ito, and K. Nakano, Accelerating the Dynamic Programming
for the Optial Poygon Triangulation on the GPU, in Proc. of International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP,
LNCS 7439), Sept., IEEE CS Press, 2012, pp. 1-15.

[12] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann, 1991.

I

16
[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]
21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

R.H. Bisseling, Parallel Scientific Computation: A Structured Approach using
BSP and MPI, Oxford University Press, 2004.

D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R.
Subramonian, and T. Eickenvon , LogP: towards a realistic model of paral-
lel computation, in Proceedings of the fourth ACM SIGPLAN symposium on
Principles and practice of parallel programming, ACM, 1993, pp. 1-12.

R. Vaidyanathan and J.L. Trahan, Dynamic Reconfiguration: Architectures
and Algorithms, Kluwer Academic/Plenum Publishers, 2004.

L.G. Valiant, A bridging model for multi-core computing, Journal of Computer
and System Sciences 77 (2011), pp. 154-166.

K. Nakano, Simple Memory Machine Models for GPUs, in Proc. of Interna-
tional Parallel and Distributed Processing Symposium Workshops, May, IEEE
CS Press, 2012, pp. 788-797.

M.J. Flynn, Some computer organizations and their effectiveness, IEEE Trans-
actions on Computers C-21 (1972), pp. 948-960.

P.H. Sellers, The theory and computation of evolutionary distances: Pattern
recognition, Journal of Algorithms 1 (1980), pp. 359-373.

E. Ukkonen, Algorithms for approzimate string matching, Information and
Control 64 (1985), pp. 100-118.

G. Myers, A fast bit-vector algorithm for approzimate string matching based
on dynamic programming, Journal of the ACM 46 (1999), pp. 395 — 415.

Y. Liu, L. Guo, J. Li, M. Ren, and K. Li, Parallel Algorithms for Approximate
String Matching with k Mismatches on CUDA, in Proc. of International Par-
allel and Distributed Processing Symposium Workshops, May, IEEE CS Press,
2012, pp. 2414 —2422.

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for
spoken word recognition, IEEE Transactions on Acoustics, Speech and Signal
Processing (1978), pp. 43— 49.

M. Muller, Chapter 4: Dynamic time warping, in Information Retrieval for
Music and Motion, Springer, 2007, pp. 69-84.

K. Nakano, An Optimal Parallel Prefiz-sums Algorithm on the Memory Ma-
chine Models for GPUs, in Proc. of International Conference on Algorithms
and Architectures for Parallel Processing (ICASPP, LNCS 7439), Sept.,
Springer, 2012, pp. 99-113.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,
MIT Press, 1990.

