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RESEARCH ARTICLEOptimal Implementations of the Approximate String Mathingand the Approximate Disrete Signal Mathing on the MemoryMahine ModelsKoji Nakanoa�aDepartment of Information Engineering, Hiroshima UniversityKagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan(Reeived 00 Month 200x; in �nal form 00 Month 200x)The Disrete Memory Mahine (DMM) and the Uni�ed Memory Mahine (UMM) are theo-retial parallel omputing models that apture the essene of the shared memory aess andthe global memory aess of GPUs. The approximate string mathing for two strings X andY is a task to �nd a substring of Y most similar to X. The main ontribution of this paperis to show eÆient implementations of approximate string mathing on the memory mahinemodels. Our best implementation for strings X and Y with length m and n (m � n), respe-tively, runs in O(mnw +ml) time units using n threads both on the DMM and on the UMMwith width w and lateny l. We also show that any implementation of the approximate stringmathing on the DMM and the UMM needs 
(mnw +ml) time units. Thus, our implementa-tions for the DMM and the UMM are optimal. Finally, we show that the approximate disretesignal mathing of two signals an be omputed in the same time omplexity.Keywords: Memory mahine models, Approximate string mathing, Dynami timewarping, GPU, CUDA1. IntrodutionThe researh of parallel algorithms has a long history of more than 40 years. Se-quential algorithms have been developed mostly on the Random Aess Mahine(RAM) [1℄. In ontrast, sine there are a variety of onnetion methods and pat-terns between proessors and memories, many parallel omputing models have beenpresented and many parallel algorithmi tehniques have been shown on them. Themost well-studied parallel omputing model is the Parallel Random Aess Mahine(PRAM) [2{4℄, whih onsists of proessors and a shared memory. Eah proessoron the PRAM an aess any address of the shared memory in a time unit. ThePRAM is a good parallel omputing model in the sense that parallelism of eahproblem an be revealed by the performane of parallel algorithms on the PRAM.However, sine the PRAM requires a shared memory that an be aessed by allproessors at the same time, it is not feasible.The GPU (Graphis Proessing Unit), is a speialized iruit designed to ael-erate omputation for building and manipulating images [5{7℄. Latest GPUs aredesigned for general purpose omputing and an perform omputation in appli-ations traditionally handled by the CPU. Hene, GPUs have reently attratedthe attention of many appliation developers [5℄. NVIDIA provides a parallel om-puting arhiteture alled CUDA (Compute Uni�ed Devie Arhiteture) [8℄, the�Corresponding author. Email: nakano�s.hiroshima-u.a.jpISSN: 1744-5760 print/ISSN 1744-5779 online 2011 Taylor & FranisDOI: 10.1080/17445760.YYYY.CATSidhttp://www.informaworld.om
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2 Koji Nakanoomputing engine for NVIDIA GPUs. CUDA gives developers aess to the vir-tual instrution set and memory of the parallel omputational elements in NVIDIAGPUs. In many ases, GPUs are more eÆient than multiore proessors [9℄, sinethey have hundreds of proessor ores and very high memory bandwidth.CUDA uses two types of memories in the NVIDIA GPUs: the shared memory andthe global memory [8℄. The shared memory is an extremely fast on-hip memorywith lower apaity, say, 16-64 Kbytes. The global memory is implemented as ano�-hip DRAM, and has large apaity, say, 1.5-6 Gbytes, but its aess lateny isvery long. The eÆient usage of the shared memory and the global memory is akey for CUDA developers to aelerate appliations using GPUs. In partiular, weneed to onsider the bank onit of the shared memory aess and the oalesingof the global memory aess [6, 9{11℄. The address spae of the shared memory ismapped into several physial memory banks. If two or more threads aess the samememory banks at the same time, the aess requests are proessed in turn. Hene, tomaximize the memory aess performane, threads of CUDA should aess distintmemory banks to avoid the bank onits of the memory aesses. To maximizethe bandwidth between the GPU and the DRAM hips, the onseutive addressesof the global memory must be aessed at the same time. Thus, CUDA threadsshould perform oalesed aess when they aess the global memory.There are several previously published works that aim to present theoretial pra-tial parallel omputing models apturing the essene of existing parallel omput-ers. Many researhers have been devoted to developing eÆient parallel algorithmsto �nd algorithmi tehniques on suh parallel omputing models. For example, pro-essors onneted by interonnetion networks suh as hyperubes, meshes, trees,among others [12℄, bulk synhronous models (BSP) [13℄, LogP models [14℄, reon-�gurable models [15℄, among others. Quite reently, Multi-BSP [16℄, a multi-levelmodel that has expliit parameters for proessor numbers, memory/ahe sizes,ommuniation osts, and synhronization osts. Although this parallel omputingmodel is targeted to multiore proessor, it does not onsider the memory aessharateristis suh as the bank onits and the oalesing of the GPUs. As faras we know, no sophistiated and simple parallel omputing model for GPUs hasbeen presented. Sine GPUs are attrative parallel omputing devies for many de-velopers, it is hallenging work to introdue a theoretial parallel omputing modelfor GPUs.In our previous paper [17℄, we have introdued two models, the Disrete Mem-ory Mahine (DMM) and the Uni�ed Memory Mahine (UMM), whih reet theessential features of the shared memory and the global memory of NVIDIA GPUs.The outline of the arhitetures of the DMM and the UMM is illustrated in Fig-ure 1. In both arhitetures, a sea of threads (Ts) are onneted to the memorybanks (MBs) through the memory management unit (MMU). Eah thread is a Ran-dom Aess Mahine (RAM) [1℄, whih an exeute fundamental operations in atime unit. We do not disuss the arhiteture of the sea of threads in this paper,but we an imagine that it onsists of a set of multi-ore proessors whih anexeute many threads in parallel. Threads are exeuted in SIMD [18℄ fashion, andthe proessors run on the same program and work on the di�erent data.MBs onstitute a single address spae of the memory. A single address spae ofthe memory is mapped to the MBs in an interleaved way suh that the word ofdata of address i is stored in the (i mod w)-th bank, where w is the number ofMBs. The main di�erene of the two arhitetures is the onnetion of the addressline between the MMU and the MBs, whih an transfer an address value. In theDMM, the address lines onnet the MBs and the MMU separately, while a singleaddress line from the MMU is onneted to the MBs in the UMM. Hene, in the
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Optimal Implementations of the ASM and the ADSM on the Memory Mahine Models 3UMM, the same address value is broadast to every MB, and the same address ofthe MBs an be aessed in eah time unit. On the other hand, di�erent addressesof the MBs an be aessed in the DMM. Sine the memory aess of the UMM ismore restrited than that of the DMM, the UMM is less powerful than the DMM.
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data lineaddress lineFigure 1. The arhitetures of the DMM and the UMMThe performane of algorithms of the PRAM is usually evaluated using twoparameters: the size n of the input and the number p of proessors. For example,it is well known that the sum of n numbers an be omputed in O(np + log n) timeon the PRAM [2℄. We will use four parameters, the size n of the input, the numberp of threads, the width w and the lateny l of the memory when we evaluatethe performane of algorithms on the DMM and on the UMM. The width w is thenumber of memory banks and the lateny l is the number of time units to ompletethe memory aess. Hene, the performane of algorithms on the DMM and theUMM is evaluated as a funtion of n (the size of a problem), p (the number ofthreads), w (the width of a memory), and l (the lateny of a memory). In NVIDIAGPUs, the width w of global and shared memory is 16 or 32. Also, the lateny l ofthe global memory is several hundred lok yles. In CUDA, a grid an have atmost 65535 bloks with at most 1024 threads eah [8℄.Suppose that two strings X and Y with length m and n (m � n), respetively,are given. The approximate string mathing is a task to �nd a substring in Y mostsimilar to X. The similarity of two strings is measured by the number of three op-erations, insertion, deletion, and replaement of haraters neessary to hange onestring into the other. The approximate string mathing has a lot of appliations inthe areas of signal proessing, bio-informatis, natural language proessing, amongothers. It is well known that the approximate string mathing an be omputedin O(mn) time [19℄ using the dynami programming tehnique. Many researhershave been devoted to do researh on variations of the approximate string mathing.For example, if the problem is to list substrings in Y with similarity no more thank, the omputing time an be redued [20℄. Also, if the ompliated bit operationsof words is allowed, the approximate string mathing an be aelerated [21℄.Although a lot of work of sequential algorithms for the approximate string math-ing have been published, there is no signi�ant work for parallel algorithms forapproximate string mathing. Sine the omputation of the approximate stringmathing involves long sequential operations, it is very hard to parallelize it to runin poly-logarithmi time. Also, it is not diÆult to obtain a ost-optimal linear-timeparallel algorithm, whih runs in O(n) time usingm proessors on the PRAM. As arelated result, a GPU implementation of k-mismath approximate string mathing
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4 Koji Nakanohas been shown in [22℄. However, this string mathing is a task to �nd substringswith Hamming distane no more than k, whih is muh simpler than our approxi-mate string mathing.We also deal with the the dynami time warping (DTW) of two sequenes of realnumbers [23, 24℄ and its generalization, the approximate disrete signal mathing(ADSM). The DTW is a task to ompute the similarity of two disrete signals.Also, the ADSM for two disrete signals (i.e. sequenes of real numbers) X and Yis a task to �nd a subsequene in Y 0 most similar to X. The DTW and the ADSMhave many appliations in the area of pattern reognition. For example, supposethat a disrete sound signal for a partiular word is given. We an �nd suh wordin a disrete sound signal of a speeh by omputing the ADSM.The main ontribution of this paper is to show an optimal implementation ofthe approximate string mathing algorithm shown in [19℄ on the memory mahinemodels. We also show an optimal implementation for the approximate disretesignal mathing algorithm. We �rst show that the approximate string mathingfor X and Y with length m and n (m � n), respetively, an be omputed inO(mnw + nl) time units using m threads on the DMM. We then go on to presentthe matrix sliding tehnique, whih allows us to perform the approximate stringmathing on the UMM in the same omputing time.From the pratial point of view, n an be very large while m is small. Also,the lateny l of urrent GPUs is several hundred. Thus, the fator O(nl) in thelateny overhead in the omputation of the approximate string mathing dominatesthe omputing time. Hene, we show that the lateny overhead an be redued toO(ml). In other words, we show that the approximate string mathing for X andY with length m and n (m � n) respetively an be omputed in O(mnw +ml) timeunits using n threads both on the DMM and the UMM.We also disuss the lower bound of the omputing time and show that anyimplementation of O(mn)-time approximate string mathing need to run in 
(nmw +ml) time. From this lower bound, our implementation of the approximate stringmathing running inO(mnw +ml) time is optimal. Clearly, the bandwidthw betweenthreads and the memory is the bottlenek of our implementation of the approximatestring mathing algorithm. For any omputation on the DMM and the UMM, thebandwidth w determines the omputational power of them. Finally, we show thatthe approximate disrete signal mathing an be omputed in the same way as theapproximate string mathing.This paper is organized as follows. In Setion 2, we review the memory mahinemodels presented in our previous paper [17℄, that apture the essene of the sharedmemory aess and the global memory aess of GPUs. Next, we evaluate theperformane of the ontiguous memory aess on the memory mahine models inSetion 3. Setion 4 de�nes the edit distane (ED) and the approximate stringmathing (ASM) of two strings, and shows a sequential algorithm for the ASM.In Setion 5, we de�ne the dynami time warping (DTW) and the approximatedisrete mathing (ADSM) of two sequenes of real numbers and show a sequentialalgorithm for the ADSM. We then show parallel algorithms of the ASM for theDMM and the UMM in Setions 6 and 7, respetively. In Setion 8, we show a betteralgorithm on the UMM that optimizes the lateny overhead. Setion 9 disussesthe lower bound of the omputing time for the ASM. Finally, Setion 10 showsthat the approximate disrete signal mathing an be omputed in the same wayas the approximate string mathing. Setion 11 onludes our work.
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Optimal Implementations of the ASM and the ADSM on the Memory Mahine Models 52. Parallel Memory Mahines: DMM and UMMThe main purpose of this setion is to de�ne the Disrete Memory Mahine (DMM)and the Uni�ed Memory Mahine (UMM) introdued in our previous paper [17℄.The reader should refer to [17, 25℄ for the details of the DMM and the UMM.We �rst de�ne the Disrete Memory Mahine (DMM) of width w and latenyl. Let m[i℄ (i � 0) denote a memory ell of address i in the memory. Let B[j℄ =fm[j℄;m[j +w℄;m[j + 2w℄;m[j + 3w℄; : : :g (0 � j � w� 1) denote the j-th bank ofthe memory. Clearly, a memory ell m[i℄ is in the (i mod w)-th memory bank. Weassume that memory ells in di�erent banks an be aessed in a time unit, butno two memory ells in the same bank an be aessed in a time unit. Also, weassume that l time units are neessary to omplete an aess request and ontinuousrequests are proessed in a pipeline fashion through the MMU. Thus, it takes k+l�1time units to omplete memory aess requests to k memory ells in a partiularbank. However, we assume that multiple memory aess requests destined for thesame address in the same bank have no extra overhead. For example, if two ormore threads read from the same address, it an be read at the same time. Also,if two or more threads write in the same address, one of them is arbitrary seletedand sueeds in writing.
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address groups of UMMFigure 2. Banks and address groups for w = 4We assume that p threads are partitioned into pw groups of w threads alledwarps. More spei�ally, p threads T (0), T (1), : : :, T (p� 1) are partitioned into pwwarpsW (0);W (1), : : :,W ( pw�1) suh thatW (i) = fT (i�w);T (i�w+1); : : : ;T ((i+1) � w � 1)g (0 � i � pw � 1). Warps are dispathed for memory aess in turn,and w threads in a warp try to aess the memory at the same time. In otherwords, W (0);W (1); : : : ;W ( pw � 1) are dispathed in a round-robin manner if atleast one thread in a warp requests memory aess. If no thread in a warp needsmemory aess, suh warp is not dispathed for memory aess and is skipped.When W (i) is dispathed, w threads in W (i) sends memory aess requests, atmost one request per thread, to the memory. We also assume that a thread annotsend a new memory aess request until the previous memory aess request isompleted. Hene, if a thread sends a memory aess request, it must wait at leastl time units to send a new memory aess request.We next de�ne the Uni�ed Memory Mahine (UMM for short) of width w asfollows. Let A[j℄ = fm[j � w℄;m[j � w + 1℄; : : : ;m[(j + 1) � w � 1℄g denote the j-th address group. We assume that memory ells in the same address group areproessed at the same time. However, if they are in the di�erent groups, one timeunit is neessary for eah of the groups. Also, similarly to the DMM, p threads arepartitioned into warps and eah warp aesses the memory in turn.
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6 Koji NakanoThe di�erene of the DMM and the UMM is the memory aess exibility. Asillustrated in Figure 1, the same address of all memory banks must be aessedat the same time in the UMM, while the DMM an aess di�erent addresses ofmemory banks of the UMM. Thus, the DMM is more powerful than the UMM.3. Contiguous memory aess and ontiguous bank aessThe main purpose of this setion is to review the ontiguous memory aess on theDMM and the UMM shown in [17, 25℄. We also show the ontiguous bank aessfor the DMM.The ontiguous memory aess is a key tehnique for aelerating the omputa-tion. Suppose that an array a of size n (� p) is given. We use p threads to aessall of n memory ells in a suh that eah thread aesses np memory ells. Note that\aessing" an be \reading from" or \writing in." Let a[i℄ (0 � i � n� 1) denotethe i-th memory ells in a. When n � p, the ontiguous aess an be performedas follows:[Contiguous memory aess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) aess a[p � t+ i℄Let us evaluate the omputing time. First, we assume that w � p. For eah t(0 � t � np � 1), p threads aess p memory ells a[pt℄; a[pt+1℄; : : : ; a[p(t+1)� 1℄.This memory aess is performed by pw warps in turn. More spei�ally, �rst, wthreads in W (0) aess a[pt℄; a[pt + 1℄; : : : ; a[pt + w � 1℄. After that, w threads inW (1) aess a[pt + w℄; a[pt + w + 1℄; : : : ; a[pt + 2w � 1℄, and the same operationis repeatedly performed. In general, w threads in W (j) (0 � j � pw � 1) aessa[pt+ jw℄; a[pt + jw + 1℄; : : : ; a[pt+ (j + 1)w � 1℄. Sine w memory ells aessedby a warp are in di�erent banks, the aess an be ompleted in l time units onthe DMM. Also, these w memory ells are in the same address group, and thus,the aess an be ompleted in l time units on the UMM. Reall that the memoryaess are proessed in a pipeline fashion suh that w threads in eah W (j) sendw memory aess requests in one time unit. Hene, p threads in pw warps sendp memory aess requests in pw time units. After that, the last memory aessrequests by W ( pw � 1) are ompleted in l � 1 time units. Thus, p threads aessp memory ells a[pt℄; a[pt + 1℄; : : : ; a[p(t + 1) � 1℄ in pw + l � 1 time units. Sinethis memory aess is repeated np times, the ontiguous aess an be done innp � ( pw + l � 1) = O( nw + nlp ) time units.Next, let us onsider the ase that p � w. If this is the ase p threads are in asingle warp. This warp performs memory aess np times eah of whih takes l timeunits. Thus, the ontiguous aess an be done in O(nlp ) time.Therefore, we have,Lemma 3.1 : The ontiguous memory aess to an array of size n an be done inO( nw + nlp ) time using p threads (p � n) on the DMM and the UMM with width wand lateny l.For later referene, we also de�ne the ontiguous bank aess, whih takes thesame time units as the ontiguous aess on the DMM. Let b0; b1; : : : bn�1 be asequene of integers suh that bi mod w = i mod w for all i (0 � i � n�1). Hene,eah a[bi℄ is in bank i mod w. The ontiguous bank aess is spelled out as follows:
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Optimal Implementations of the ASM and the ADSM on the Memory Mahine Models 7[Contiguous bank aess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) aess a[bp�t+i℄If p � w then p threads are partitioned into pw warps. In the ontiguous bankaess, w threads in eah warp aess the di�erent banks. Hene, p threads aessp memory ells a[bpt℄; a[bpt+1℄; : : : ; a[bp(t+1)�1℄ in pw + l � 1 time units. Thus, theontiguous bank aess an be done in np � ( pw + l � 1) = O( nw + nlp ) time units.If p � w then the ontiguous bank aess takes O(nlp ) time units similarly to theontiguous memory aess. Hene, we have,Lemma 3.2 : The ontiguous aess to an array of size n an be done in O( nw+ nlp )time using p threads (p � n) on the DMM with width w and lateny l.Note that, the UMM may take a lot of time for the ontiguous bank aess,beause threads in warps may aess di�erent address groups.4. Approximate string mathing and edit distaneThe main purpose of this setion is to review approximate string mathing (ASM)and the edit distane (ED). Please see [19, 26℄ for the details.As a preliminary, we �rst de�ne the edit distane (ED) of two strings. Sup-pose that soure string X = x1x2 � � � xm of length m and destination stringY = y1y2 � � � yn of length n are given. Without loss of generality, we an assumethat m � n. We want to hange X into Y using the following three operations:� insertion of a harater,� deletion of a harater, and� replaement of a harater.For example, X = ababa an be hanged into Y = aaabbb in �ve operations as fol-lows: ababa delete! aaba delete! aaa insert! aaab insert! aaabb insert! aaabbb. Alternatively,X an be hanged into Y in three operations as follows: ababa replae! aaaba replae!aaabb insert! aaabbb. The ED of two strings is the minimum number of operationsto hange one string to the other. For example, the ED of X and Y above is three,beause there exists a sequene of three operations to hange X into Y , and thereexists no sequene of less than three operations to do the same thing. For laterreferene, let ED(X;Y ) denote the edit distane of X and Y .The approximate string mathing, a more exible version of the edit distane, isa task to ompute the value of ASM(X;Y ) de�ned as follows:ASM(X;Y ) = minfED(X;Y 0) j Y 0 is a substring of Y gClearly, ASM(X;Y ) is small if Y has a substring similar to X.It should be lear that ASM(X;Y ) is always less than or equal to m, andED(X;Y ) takes a value between n � m and n. For example, if X and Y shareno harater, then ED(X;Y ) = n and ASM(X;Y ) = m. Also, if the pre�x of Y isX then ED(X;Y ) = n�m and ASM(X;Y ) = 0.We use a matrix d of size (m + 1) � (n + 1) to ompute the ASM. Eah d[i℄[j℄(0 � i � m; 0 � j � n) is used to store the following value:min1�j0�j ED(x1x2 � � � xi; yj0yj0+1 � � � yj):
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1 2Figure 3. The values of matrix d for the ASMNote that x1x2 � � � xi is a null string (i.e. string with length 0) if i = 0. One allvalues of d is omputed, we an ompute the value of ASM(X;Y ) by the followingformula: ASM(X;Y ) = min0�j�nd[m℄[j℄Let us show how we ompute all values of d. Suppose that d[i�1℄[j�1℄, d[i�1℄[j℄,and d[i℄[j � 1℄ are already omputed. Let \xi 6= yj" denote the binary value suhthat it is 1 if xi 6= yj and 0 if xi = yj. The value of d[i℄[j℄ an be omputed asfollows: d[i℄[j℄ = 0 if i = 0 (1)= i if j = 0 (2)= min(d[i℄[j � 1℄ + 1; (3)d[i� 1℄[j℄ + 1; (4)d[i� 1℄[j � 1℄ + (xi 6= yj)) if i > 0 and j > 0. (5)Let � denote a null string or a string with length 0. We an on�rm the orretnessof the formula above as follows:(1) d[0℄[j℄ = 0 from ASM(�; y1y2 � � � yj) = 0,(2) d[i℄[0℄ = i from ASM(x1x2 � � � xi; �) = i,(3) d[i℄[j℄ � d[i℄[j � 1℄ + 1 from ASM(x1 � � � xi; y1 � � � yj) �ASM(x1 � � � xi; y1 � � � yj�1) + 1,(4) d[i℄[j℄ � d[i � 1℄[j℄ + 1 from ASM(x1 � � � xi; y1 � � � yj) �ASM(x1 � � � xi�1; y1 � � � yj) + 1,(5) if xi = yj, then d[i℄[j℄ � d[i � 1℄[j � 1℄, and if xi 6= yj, then d[i℄[j℄ �d[i� 1℄[j � 1℄ + 1 from ASM(x1 � � � xi; y1 � � � yj) � ASM(x1 � � � xi�1; y1 � � � yj�1) + 1.Using this formula, all values of matrix d an be omputed as follows:[Sequential algorithm for the ASM℄for j  1 to n do d[0℄[j℄ 0for i 0 to m do d[i℄[0℄ ifor i 1 to m dofor j  1 to n dod[i℄[j℄ min(d[i℄[j � 1℄ + 1; d[i � 1℄[j℄ + 1; d[i � 1℄[j � 1℄ + (xi 6= yj)output minfd[m℄[j℄ j 0 � j � ngFigure 3 shows the values of d for two strings X = ababa and Y = aaabbbaa.From the �gure, we an see that the ASM of X and Y is 1.
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Optimal Implementations of the ASM and the ADSM on the Memory Mahine Models 9Usually, the approximate string mathing should require algorithms to return theindexes i and j suh that ASM(X;Y ) = ED(X; yiyi+1 � � � yj). The reader shouldhave no diÆulty to on�rm that one all the values in array d is obtained, it isnot diÆult to ompute suh values of i and j.5. Dynami time warping distane and approximate disrete signal mathingThe main purpose of this setion is to review the dynami time warping (DTW)of two sequenes of real numbers [23, 24℄. We also generalize the DTW to theapproximate disrete signal mathing (ADSM), analogously to the generalizationof the ED to the ASM.Suppose that soure disrete signal X = x1x2 � � � xm of m real numbers anddestination disrete signal Y = y1y2 � � � yn of n real numbers are given. Withoutloss of generality, we assume that m � n. A warping path of X and Y is a sequene(p1; q1); (p2; q2); : : : ; (pr; qr) (r � 1) of a pair of integers suh that(1) (p1; q1) = (1; 1) and (pr; qr) = (m;n), and(2) (pi+1; qi+1)� (pi; qi) = (0; 1); (1; 0); or (1; 1) for all i (1 � i � r � 1).A warping path de�nes a many-to-many mapping between X and Y suh that xpiorresponds to yqi. The error of a warping path (p1; q1); (p2; q2); : : : ; (pr; qr) is thesum of the distane over all orresponding pairs,lXi=1 jxpi � yqij:The dynami time warping distane of two disrete signals is the minimum errorover all possible paths.Let DTW (X;Y ) denote the dynami time warping of two disrete signals Xand Y . The approximate disrete signal mathing, a more exible version of thedynami warp mathing is a task to ompute the value of ADSM(X;Y ) de�ned asfollows: ADSM(X;Y ) = minfDTW(X;Y 0) j Y 0 is a subsignal of Y gClearly, ADSM(X;Y ) is small if Y has a subsignal similar to X.We use a matrix d of size (m+1)�(n+1) to ompute the values of ADSM(X;Y )for disrete signals X and Y with length m and n respetively. Eah d[i℄[j℄ (0 �i � m; 0 � j � n) is used to store the following value:min1�j0�jDTW(x1x2 � � � xi; yj0yj0+1 � � � yj):One all values of d is omputed, we an ompute the value of ADSM(X;Y ) bythe following formula: ADSM(X;Y ) = min1�j�n d[m℄[j℄Let us show how we ompute all values of d. Suppose that d[i�1℄[j�1℄, d[i�1℄[j℄,
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Figure 5. Illustrating a parallel algorithm for omputing matrix doutput minfd[m℄[j℄ j 0 � j � ngIn the third for-loop, for eah k (1 � k � n +m � 1), the values d[1℄[k℄; d[2℄[k �1℄; : : : d[m℄[k �m℄ are omputed and stored. Clearly, when the values of d for k isomputed, only those for k � 1 and k � 2 are used. Thus, this parallel algorithmorretly omputes the ASM.Let us evaluate the omputing time on the DMM. We assume that n+1, the rowsize of matrix d, is a multiple of w. If this is not a ase, we an hoose the minimuminteger n0 exeeding n + 1 suh that n0 is a multiple of w, and use a matrix d ofsize (m+ 1)� n0. We also assume that we use m threads on the UMM.The �rst for-loop performs \d[0℄[j℄  0" in parallel. Sine writing in n elementsd[0℄[1℄; d[0℄[2℄; : : : ; d[0℄[n℄ is ontiguous memory aess, it takes O( nw + nlm ) timeunits from Lemma 3.1. The seond for-loop performs \d[i℄[0℄  i" in parallel.Sine d[0℄[0℄; d[1℄[0℄; : : : ; d[m℄[0℄ are in the same bank B(0), all writing operationsare performed in turn. Hene, the seond for-loop takes m+ l time units.The evaluation of the omputing time for the third for-loop is a little ompliated.The third for-loop for a �xed k involves the following memory aess operations:� reading from x[1℄; x[2℄; : : : ; x[m℄,� reading from y[k℄; y[k � 1℄; : : : ; y[k �m+ 1℄,� reading from d[1℄[k � 1℄; d[2℄[k � 2℄; : : : ; d[m℄[k �m℄,� reading from d[0℄[k℄; d[1℄[k � 1℄; : : : ; d[m� 1℄[k �m+ 1℄,� reading from d[0℄[k � 1℄; d[1℄[k � 2℄; : : : ; d[m� 1℄[k �m℄, and� writing in d[1℄[k℄; d[2℄[k � 1℄; : : : ; d[m℄[k �m+ 1℄.For simpliity, we onsider that the memory aess is omitted if the index of arraysabove is out of range de�ned. Sine the �rst two reading operations are the on-tiguous memory aess for m elements, they take O(mw + mlm ) = O(mw + l) time unitsfrom Lemma 3.1. The remaining four reading operations are not ontiguous. How-ever, they are ontiguous bank aess, and they also take O(mw + l) time units fromLemma 3.2. Thus, the third for-loop runs in O(mw + l) � (n+m� 1) = O(nmw + nl)time from m � n.Finally, we need to ompute minfd[m℄[j℄ j 0 � j � ng. The minimum of n + 1numbers an be omputed using a single thread in (n + 1)l = O(nl) time in anobvious way.Therefore, we have,Lemma 6.1 : The ASM of two strings of length m and n (m � n) an be omputedin O(nmw + nl) time units using m threads on the DMM with width w and latenyl.
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12Figure 6. Illustrating a parallel algorithm for omputing slided matrix s7. A parallel algorithm for the ASM on the UMMThis setion is devoted to show how we implement the parallel algorithm for om-puting the approximate string mathing on the UMM.If the parallel algorithm in the previous setion is implemented on the UMM as itis, the memory aess is performed for di�erent address groups. If this is the ase,the memory aess request is proessed in turn, the UMM takes at least O(nm)time units to ompute the values of d.For the purpose of the ontiguous memory aess in the third for-loop, we slidethe matrix d as illustrated in Figure 6. More spei�ally, we use a matrix s of size(n+m+ 1)� (n+ 1) suh that the value of eah d[i℄[j℄ is stored in s[i+ j℄[j℄.Let us evaluate the omputing time on the UMM if the parallel algorithm is exe-uted for the matrix s. Again, we assume that we use m threads. The �rst for-loopand the seond for-loop performs writing operations for s[0℄[0℄; s[1℄[1℄; : : : ; s[n℄[n℄and for s[1℄[0℄; s[2℄[0℄; : : : ; s[m℄[0℄, respetively. Hene, the memory aess by a warpis performed for the di�erent address groups both in the �rst for-loop and in theseond for-loop. Thus, the �rst for-loop and the seond for-loop take m + l timeunits and n+ l time units, respetively.The third for-loop for a �xed k involves the following memory aess operations:� reading from x[1℄; x[2℄; : : : ; x[m℄,� reading from y[k℄; y[k � 1℄; : : : ; y[k �m+ 1℄,� reading from s[k℄[k � 1℄; s[k℄[k � 2℄; : : : ; s[k℄[k �m℄,� reading from s[k℄[k℄; s[k℄[k � 1℄; : : : ; s[k℄[k �m+ 1℄,� reading from s[k � 1℄[k � 1℄; s[k � 1℄[k � 2℄; : : : ; s[k � 1℄[k �m℄, and� writing in s[k + 1℄[k℄; s[k + 1℄[k � 1℄; : : : ; s[k + 1℄[k �m+ 1℄.Sine the �rst two reading operations are the ontiguous aess, they take O(mw +mlm ) = O(mw + l) time units from Lemma 3.1. Sine the remaining four memoryaess operations are performed by the ontiguous aess, they also take O(mw + l)time units. Thus, the third for-loop runs in O(mw + l) � (n+m) = O(nmw + nl) timeunits. Finally, we ompute minfs[m+ j℄[j℄ j 0 � j � ng in O(nl) time units usinga single thread in an obvious way. Therefore, we have,
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Optimal Implementations of the ASM and the ADSM on the Memory Mahine Models 13Lemma 7.1 : The ASM of two strings of length m and n (m � n) an be omputedin O(nmw + nl) time units using m threads on the UMM with width w and latenyl. Clearly, the implementation for Lemma 7.1 also works on the DMM.The implementation for Lemma 7.1 uses an array s of size (n+m+1)� (n+1).However, only three rows s[k� 1℄[�℄; s[k℄[�℄; s[k +1℄[�℄ of s are aessed for eah k.Further, m+ 2 elements are used in eah row, and two of them are just initializedvalues. Thus, we an redue the size of array s to 3�m. For this purpose, we usearray s0 of size 3�m to handle the values in s as follows:� return 0 when s[j℄[j℄ is read,� return i when s[i℄[0℄ is read, and� aess s0[i mod 3℄[j mod m℄ when s[i℄[j℄ is aessed.Clearly, sine the memory aess to array s performed by the parallel algorithm forthe ASM is ontiguous, that to array s0 is also ontiguous. Hene, even if we uses0 instead of s, the omputing time is still O(nmw + nl) time units. Thus, we have,Theorem 7.2 : The ASM of two strings of length m and n (m � n) an beomputed in O(nmw + nl) time units using m threads and working spae of sizeO(m) on the DMM and the UMM with width w and lateny l.8. Further improvement of the parallel ASMIn pratial appliations, ASM(X;Y ) for a very long Y need to be omputed. Inother words, we need to ompute ASM(X;Y ) suh that m� n. If this is the ase,the lateny overhead O(nl) dominates the omputing time. The main purpose ofthis setion is to show that the lateny overhead an be redued to O(ml). Thishides the lateny overhead and ahieves a signi�ant improvement when m� n.We �rst show that, we an restrit the length of substrings of Y to at most2m when we ompute the ASM. If a substring Y 0 of Y is longer than 2m, thenED(X;Y 0) > 2m �m = m. However, sine ASM(X;Y ) � m always hold, we anignore suh Y 0 when we ompute ASM(X;Y ).Using this fat, we an further parallelize the omputation of ASM(X;Y ). Wepartition Y into nm substrings Y0; Y1; : : : ; Y nm�1 of length m eah suh that Yi =yim+1yim+2 � � � y(i+1)m (0 � i � nm�1). Further, let Z0; Z1; : : : ; Z nm�3 be the stringsof adjaent three Yi's, that is, Zi = YiYi+1Yi+2 (0 � i � nm � 3). Clearly, the lengthof eah Zi is 3m and any substring Y 0 with at most 2m haraters is a substring ofone of Z0; Z1; : : : ; Z nm�3. Thus, the following algorithm an ompute ASM(X;Y ).[Improved parallel algorithm for the ASM℄for i 0 to nm � 3 do in parallelompute ASM(X;Zi)output minfASM(X;Zi) j 0 � i � nm � 3gLet us evaluate the omputing time. We use the implementation for Theorem 7.2to ompute eah ASM(X;Zi) (0 � i � nm�3) in parallel. In this implementation, amatrix s0 of size 3�m is used to ompute eah ASM(X;Zi). Sinem�( nm�3) < n, wean onsider that we have a large ombined matrix of size 3�n and the ontiguousmemory aess is performed using n threads. From Lemma 3.1, the ontiguousmemory aess to an array of 3n an be done using n threads in O(3nw + 3nln ) =O( nw + l) time units. Sine X and Zi have m and 3m haraters, respetively, thisontiguous memory aess is repeatedm+3m�1 = 4m�1 times. Thus, the values ofall ASM(X;Zi) (0 � i � nm�3) an be omputed inO( nw+l)�(4m�1) = O(nmw +ml)
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14 Koji Nakanotime using n threads.Next, we need to ompute the minimum of nm � 2 numbers. We an ompute theminimum in ( nm �2)l = O(nlm ) time units using a single thread. However, when n isvery large, this omputing time dominates the total omputing time. We want toompute the minimum of nm�2 numbers in no more than O(nmw +ml) time. We usethe fat that these numbers are no more than m. Let s0; s1; : : : ; s nm�3 denote nm �2numbers. We use nm�2 threads and an array v of sizem+1 initialized by 0. A threadassigned to eah si (0 � i < nm�2) performs v[si℄ 1. Sine eah of the nm�2w warpsaesses an array of size m+1, this operation takes ( nm�2w + l) � m+1w = O( nw2 + mlw )time units. After that, we �nd the minimum j suh that v[j℄ = 1. Suh minimum j,whih is equal to the minimum of nm�2 numbers, an be found in (m+1)l = O(ml)time using a single thread in an obvious way. Thus, the minimum of nm�2 numbersan be omputed in O( nmw + mlw ) < O(nmw +ml) time units. Finally, we have,Theorem 8.1 : The ASM of two strings of length m and n (m � n) an beomputed in O(nmw + ml) time units using n threads and working spae of sizeO(m) on the DMM and the UMM with width w and lateny l.9. Optimality of ImplementationsThis setion is devoted to disuss the optimality of our implementation of thedynami programming based algorithm for the ASM. Note that, what we disussis \optimality of implementations", not \optimality of algorithms".In the dynami programming based algorithm, an array d of size (m+1)�(n+1)is used. Sine all of (m + 1)(n + 1) elements in d is aessed at least one andthe memory bandwidth is w, it takes at least (m+1)(n+1)w = 
(mnw ) time units toompute the ASM.The value of d[i℄[j℄ (1 � i � m) depends on that of d[i � 1℄[j℄. Hene, the valueof d[i� 1℄[j℄ must be read before that of d[i℄[j℄ is written. In other words, at leastl time units are neessary from writing the resulting values in d[i� 1℄[j℄ to that ofd[i℄[j℄. Thus, at least ml time units are neessary to ompute the value of d[m℄[j℄.Two lower bounds ombined, we have,Theorem 9.1 : Any implementation of the dynami programming based ASMalgorithm for two strings of length m and n (m � n) takes at least 
(mnw +ml)time on the DMM and the UMM with width w and lateny l.From this lower bound theorem, our implementations for Theorem 8.1 is timeoptimal.10. Optimal implementation of the ADSMAs we have shown in Setion 5, the ADSM an be omputed in the same way asthe ASM. Hene the reader should have no diÆulty to on�rm thatTheorem 10.1 : The ADSM of two disrete signals of length m and n (m � n)an be omputed in O(nmw +ml) time units using n threads and working spae ofsize O(m) on the DMM and the UMM with width w and lateny l.The ADSM of two disrete signals of length m and n (m � n) an be omputedin O(nmw +ml) time units using n threads and working spae of size O(m) on theDMM and the UMM with width w and lateny l.
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