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RESEARCH ARTICLEOptimal Implementations of the Approximate String Mat
hingand the Approximate Dis
rete Signal Mat
hing on the MemoryMa
hine ModelsKoji Nakanoa�aDepartment of Information Engineering, Hiroshima UniversityKagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan(Re
eived 00 Month 200x; in �nal form 00 Month 200x)The Dis
rete Memory Ma
hine (DMM) and the Uni�ed Memory Ma
hine (UMM) are theo-reti
al parallel 
omputing models that 
apture the essen
e of the shared memory a

ess andthe global memory a

ess of GPUs. The approximate string mat
hing for two strings X andY is a task to �nd a substring of Y most similar to X. The main 
ontribution of this paperis to show eÆ
ient implementations of approximate string mat
hing on the memory ma
hinemodels. Our best implementation for strings X and Y with length m and n (m � n), respe
-tively, runs in O(mnw +ml) time units using n threads both on the DMM and on the UMMwith width w and laten
y l. We also show that any implementation of the approximate stringmat
hing on the DMM and the UMM needs 
(mnw +ml) time units. Thus, our implementa-tions for the DMM and the UMM are optimal. Finally, we show that the approximate dis
retesignal mat
hing of two signals 
an be 
omputed in the same time 
omplexity.Keywords: Memory ma
hine models, Approximate string mat
hing, Dynami
 timewarping, GPU, CUDA1. Introdu
tionThe resear
h of parallel algorithms has a long history of more than 40 years. Se-quential algorithms have been developed mostly on the Random A

ess Ma
hine(RAM) [1℄. In 
ontrast, sin
e there are a variety of 
onne
tion methods and pat-terns between pro
essors and memories, many parallel 
omputing models have beenpresented and many parallel algorithmi
 te
hniques have been shown on them. Themost well-studied parallel 
omputing model is the Parallel Random A

ess Ma
hine(PRAM) [2{4℄, whi
h 
onsists of pro
essors and a shared memory. Ea
h pro
essoron the PRAM 
an a

ess any address of the shared memory in a time unit. ThePRAM is a good parallel 
omputing model in the sense that parallelism of ea
hproblem 
an be revealed by the performan
e of parallel algorithms on the PRAM.However, sin
e the PRAM requires a shared memory that 
an be a

essed by allpro
essors at the same time, it is not feasible.The GPU (Graphi
s Pro
essing Unit), is a spe
ialized 
ir
uit designed to a

el-erate 
omputation for building and manipulating images [5{7℄. Latest GPUs aredesigned for general purpose 
omputing and 
an perform 
omputation in appli-
ations traditionally handled by the CPU. Hen
e, GPUs have re
ently attra
tedthe attention of many appli
ation developers [5℄. NVIDIA provides a parallel 
om-puting ar
hite
ture 
alled CUDA (Compute Uni�ed Devi
e Ar
hite
ture) [8℄, the�Corresponding author. Email: nakano�
s.hiroshima-u.a
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omputing engine for NVIDIA GPUs. CUDA gives developers a

ess to the vir-tual instru
tion set and memory of the parallel 
omputational elements in NVIDIAGPUs. In many 
ases, GPUs are more eÆ
ient than multi
ore pro
essors [9℄, sin
ethey have hundreds of pro
essor 
ores and very high memory bandwidth.CUDA uses two types of memories in the NVIDIA GPUs: the shared memory andthe global memory [8℄. The shared memory is an extremely fast on-
hip memorywith lower 
apa
ity, say, 16-64 Kbytes. The global memory is implemented as ano�-
hip DRAM, and has large 
apa
ity, say, 1.5-6 Gbytes, but its a

ess laten
y isvery long. The eÆ
ient usage of the shared memory and the global memory is akey for CUDA developers to a

elerate appli
ations using GPUs. In parti
ular, weneed to 
onsider the bank 
on
i
t of the shared memory a

ess and the 
oales
ingof the global memory a

ess [6, 9{11℄. The address spa
e of the shared memory ismapped into several physi
al memory banks. If two or more threads a

ess the samememory banks at the same time, the a

ess requests are pro
essed in turn. Hen
e, tomaximize the memory a

ess performan
e, threads of CUDA should a

ess distin
tmemory banks to avoid the bank 
on
i
ts of the memory a

esses. To maximizethe bandwidth between the GPU and the DRAM 
hips, the 
onse
utive addressesof the global memory must be a

essed at the same time. Thus, CUDA threadsshould perform 
oales
ed a

ess when they a

ess the global memory.There are several previously published works that aim to present theoreti
al pra
-ti
al parallel 
omputing models 
apturing the essen
e of existing parallel 
omput-ers. Many resear
hers have been devoted to developing eÆ
ient parallel algorithmsto �nd algorithmi
 te
hniques on su
h parallel 
omputing models. For example, pro-
essors 
onne
ted by inter
onne
tion networks su
h as hyper
ubes, meshes, trees,among others [12℄, bulk syn
hronous models (BSP) [13℄, LogP models [14℄, re
on-�gurable models [15℄, among others. Quite re
ently, Multi-BSP [16℄, a multi-levelmodel that has expli
it parameters for pro
essor numbers, memory/
a
he sizes,
ommuni
ation 
osts, and syn
hronization 
osts. Although this parallel 
omputingmodel is targeted to multi
ore pro
essor, it does not 
onsider the memory a

ess
hara
teristi
s su
h as the bank 
on
i
ts and the 
oales
ing of the GPUs. As faras we know, no sophisti
ated and simple parallel 
omputing model for GPUs hasbeen presented. Sin
e GPUs are attra
tive parallel 
omputing devi
es for many de-velopers, it is 
hallenging work to introdu
e a theoreti
al parallel 
omputing modelfor GPUs.In our previous paper [17℄, we have introdu
ed two models, the Dis
rete Mem-ory Ma
hine (DMM) and the Uni�ed Memory Ma
hine (UMM), whi
h re
e
t theessential features of the shared memory and the global memory of NVIDIA GPUs.The outline of the ar
hite
tures of the DMM and the UMM is illustrated in Fig-ure 1. In both ar
hite
tures, a sea of threads (Ts) are 
onne
ted to the memorybanks (MBs) through the memory management unit (MMU). Ea
h thread is a Ran-dom A

ess Ma
hine (RAM) [1℄, whi
h 
an exe
ute fundamental operations in atime unit. We do not dis
uss the ar
hite
ture of the sea of threads in this paper,but we 
an imagine that it 
onsists of a set of multi-
ore pro
essors whi
h 
anexe
ute many threads in parallel. Threads are exe
uted in SIMD [18℄ fashion, andthe pro
essors run on the same program and work on the di�erent data.MBs 
onstitute a single address spa
e of the memory. A single address spa
e ofthe memory is mapped to the MBs in an interleaved way su
h that the word ofdata of address i is stored in the (i mod w)-th bank, where w is the number ofMBs. The main di�eren
e of the two ar
hite
tures is the 
onne
tion of the addressline between the MMU and the MBs, whi
h 
an transfer an address value. In theDMM, the address lines 
onne
t the MBs and the MMU separately, while a singleaddress line from the MMU is 
onne
ted to the MBs in the UMM. Hen
e, in the
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hine Models 3UMM, the same address value is broad
ast to every MB, and the same address ofthe MBs 
an be a

essed in ea
h time unit. On the other hand, di�erent addressesof the MBs 
an be a

essed in the DMM. Sin
e the memory a

ess of the UMM ismore restri
ted than that of the DMM, the UMM is less powerful than the DMM.
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a sea of threads a sea of threads

data lineaddress lineFigure 1. The ar
hite
tures of the DMM and the UMMThe performan
e of algorithms of the PRAM is usually evaluated using twoparameters: the size n of the input and the number p of pro
essors. For example,it is well known that the sum of n numbers 
an be 
omputed in O(np + log n) timeon the PRAM [2℄. We will use four parameters, the size n of the input, the numberp of threads, the width w and the laten
y l of the memory when we evaluatethe performan
e of algorithms on the DMM and on the UMM. The width w is thenumber of memory banks and the laten
y l is the number of time units to 
ompletethe memory a

ess. Hen
e, the performan
e of algorithms on the DMM and theUMM is evaluated as a fun
tion of n (the size of a problem), p (the number ofthreads), w (the width of a memory), and l (the laten
y of a memory). In NVIDIAGPUs, the width w of global and shared memory is 16 or 32. Also, the laten
y l ofthe global memory is several hundred 
lo
k 
y
les. In CUDA, a grid 
an have atmost 65535 blo
ks with at most 1024 threads ea
h [8℄.Suppose that two strings X and Y with length m and n (m � n), respe
tively,are given. The approximate string mat
hing is a task to �nd a substring in Y mostsimilar to X. The similarity of two strings is measured by the number of three op-erations, insertion, deletion, and repla
ement of 
hara
ters ne
essary to 
hange onestring into the other. The approximate string mat
hing has a lot of appli
ations inthe areas of signal pro
essing, bio-informati
s, natural language pro
essing, amongothers. It is well known that the approximate string mat
hing 
an be 
omputedin O(mn) time [19℄ using the dynami
 programming te
hnique. Many resear
hershave been devoted to do resear
h on variations of the approximate string mat
hing.For example, if the problem is to list substrings in Y with similarity no more thank, the 
omputing time 
an be redu
ed [20℄. Also, if the 
ompli
ated bit operationsof words is allowed, the approximate string mat
hing 
an be a

elerated [21℄.Although a lot of work of sequential algorithms for the approximate string mat
h-ing have been published, there is no signi�
ant work for parallel algorithms forapproximate string mat
hing. Sin
e the 
omputation of the approximate stringmat
hing involves long sequential operations, it is very hard to parallelize it to runin poly-logarithmi
 time. Also, it is not diÆ
ult to obtain a 
ost-optimal linear-timeparallel algorithm, whi
h runs in O(n) time usingm pro
essors on the PRAM. As arelated result, a GPU implementation of k-mismat
h approximate string mat
hing
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hing is a task to �nd substringswith Hamming distan
e no more than k, whi
h is mu
h simpler than our approxi-mate string mat
hing.We also deal with the the dynami
 time warping (DTW) of two sequen
es of realnumbers [23, 24℄ and its generalization, the approximate dis
rete signal mat
hing(ADSM). The DTW is a task to 
ompute the similarity of two dis
rete signals.Also, the ADSM for two dis
rete signals (i.e. sequen
es of real numbers) X and Yis a task to �nd a subsequen
e in Y 0 most similar to X. The DTW and the ADSMhave many appli
ations in the area of pattern re
ognition. For example, supposethat a dis
rete sound signal for a parti
ular word is given. We 
an �nd su
h wordin a dis
rete sound signal of a spee
h by 
omputing the ADSM.The main 
ontribution of this paper is to show an optimal implementation ofthe approximate string mat
hing algorithm shown in [19℄ on the memory ma
hinemodels. We also show an optimal implementation for the approximate dis
retesignal mat
hing algorithm. We �rst show that the approximate string mat
hingfor X and Y with length m and n (m � n), respe
tively, 
an be 
omputed inO(mnw + nl) time units using m threads on the DMM. We then go on to presentthe matrix sliding te
hnique, whi
h allows us to perform the approximate stringmat
hing on the UMM in the same 
omputing time.From the pra
ti
al point of view, n 
an be very large while m is small. Also,the laten
y l of 
urrent GPUs is several hundred. Thus, the fa
tor O(nl) in thelaten
y overhead in the 
omputation of the approximate string mat
hing dominatesthe 
omputing time. Hen
e, we show that the laten
y overhead 
an be redu
ed toO(ml). In other words, we show that the approximate string mat
hing for X andY with length m and n (m � n) respe
tively 
an be 
omputed in O(mnw +ml) timeunits using n threads both on the DMM and the UMM.We also dis
uss the lower bound of the 
omputing time and show that anyimplementation of O(mn)-time approximate string mat
hing need to run in 
(nmw +ml) time. From this lower bound, our implementation of the approximate stringmat
hing running inO(mnw +ml) time is optimal. Clearly, the bandwidthw betweenthreads and the memory is the bottlene
k of our implementation of the approximatestring mat
hing algorithm. For any 
omputation on the DMM and the UMM, thebandwidth w determines the 
omputational power of them. Finally, we show thatthe approximate dis
rete signal mat
hing 
an be 
omputed in the same way as theapproximate string mat
hing.This paper is organized as follows. In Se
tion 2, we review the memory ma
hinemodels presented in our previous paper [17℄, that 
apture the essen
e of the sharedmemory a

ess and the global memory a

ess of GPUs. Next, we evaluate theperforman
e of the 
ontiguous memory a

ess on the memory ma
hine models inSe
tion 3. Se
tion 4 de�nes the edit distan
e (ED) and the approximate stringmat
hing (ASM) of two strings, and shows a sequential algorithm for the ASM.In Se
tion 5, we de�ne the dynami
 time warping (DTW) and the approximatedis
rete mat
hing (ADSM) of two sequen
es of real numbers and show a sequentialalgorithm for the ADSM. We then show parallel algorithms of the ASM for theDMM and the UMM in Se
tions 6 and 7, respe
tively. In Se
tion 8, we show a betteralgorithm on the UMM that optimizes the laten
y overhead. Se
tion 9 dis
ussesthe lower bound of the 
omputing time for the ASM. Finally, Se
tion 10 showsthat the approximate dis
rete signal mat
hing 
an be 
omputed in the same wayas the approximate string mat
hing. Se
tion 11 
on
ludes our work.
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hine Models 52. Parallel Memory Ma
hines: DMM and UMMThe main purpose of this se
tion is to de�ne the Dis
rete Memory Ma
hine (DMM)and the Uni�ed Memory Ma
hine (UMM) introdu
ed in our previous paper [17℄.The reader should refer to [17, 25℄ for the details of the DMM and the UMM.We �rst de�ne the Dis
rete Memory Ma
hine (DMM) of width w and laten
yl. Let m[i℄ (i � 0) denote a memory 
ell of address i in the memory. Let B[j℄ =fm[j℄;m[j +w℄;m[j + 2w℄;m[j + 3w℄; : : :g (0 � j � w� 1) denote the j-th bank ofthe memory. Clearly, a memory 
ell m[i℄ is in the (i mod w)-th memory bank. Weassume that memory 
ells in di�erent banks 
an be a

essed in a time unit, butno two memory 
ells in the same bank 
an be a

essed in a time unit. Also, weassume that l time units are ne
essary to 
omplete an a

ess request and 
ontinuousrequests are pro
essed in a pipeline fashion through the MMU. Thus, it takes k+l�1time units to 
omplete memory a

ess requests to k memory 
ells in a parti
ularbank. However, we assume that multiple memory a

ess requests destined for thesame address in the same bank have no extra overhead. For example, if two ormore threads read from the same address, it 
an be read at the same time. Also,if two or more threads write in the same address, one of them is arbitrary sele
tedand su

eeds in writing.
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address groups of UMMFigure 2. Banks and address groups for w = 4We assume that p threads are partitioned into pw groups of w threads 
alledwarps. More spe
i�
ally, p threads T (0), T (1), : : :, T (p� 1) are partitioned into pwwarpsW (0);W (1), : : :,W ( pw�1) su
h thatW (i) = fT (i�w);T (i�w+1); : : : ;T ((i+1) � w � 1)g (0 � i � pw � 1). Warps are dispat
hed for memory a

ess in turn,and w threads in a warp try to a

ess the memory at the same time. In otherwords, W (0);W (1); : : : ;W ( pw � 1) are dispat
hed in a round-robin manner if atleast one thread in a warp requests memory a

ess. If no thread in a warp needsmemory a

ess, su
h warp is not dispat
hed for memory a

ess and is skipped.When W (i) is dispat
hed, w threads in W (i) sends memory a

ess requests, atmost one request per thread, to the memory. We also assume that a thread 
annotsend a new memory a

ess request until the previous memory a

ess request is
ompleted. Hen
e, if a thread sends a memory a

ess request, it must wait at leastl time units to send a new memory a

ess request.We next de�ne the Uni�ed Memory Ma
hine (UMM for short) of width w asfollows. Let A[j℄ = fm[j � w℄;m[j � w + 1℄; : : : ;m[(j + 1) � w � 1℄g denote the j-th address group. We assume that memory 
ells in the same address group arepro
essed at the same time. However, if they are in the di�erent groups, one timeunit is ne
essary for ea
h of the groups. Also, similarly to the DMM, p threads arepartitioned into warps and ea
h warp a

esses the memory in turn.
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e of the DMM and the UMM is the memory a

ess 
exibility. Asillustrated in Figure 1, the same address of all memory banks must be a

essedat the same time in the UMM, while the DMM 
an a

ess di�erent addresses ofmemory banks of the UMM. Thus, the DMM is more powerful than the UMM.3. Contiguous memory a

ess and 
ontiguous bank a

essThe main purpose of this se
tion is to review the 
ontiguous memory a

ess on theDMM and the UMM shown in [17, 25℄. We also show the 
ontiguous bank a

essfor the DMM.The 
ontiguous memory a

ess is a key te
hnique for a

elerating the 
omputa-tion. Suppose that an array a of size n (� p) is given. We use p threads to a

essall of n memory 
ells in a su
h that ea
h thread a

esses np memory 
ells. Note that\a

essing" 
an be \reading from" or \writing in." Let a[i℄ (0 � i � n� 1) denotethe i-th memory 
ells in a. When n � p, the 
ontiguous a

ess 
an be performedas follows:[Contiguous memory a

ess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) a

ess a[p � t+ i℄Let us evaluate the 
omputing time. First, we assume that w � p. For ea
h t(0 � t � np � 1), p threads a

ess p memory 
ells a[pt℄; a[pt+1℄; : : : ; a[p(t+1)� 1℄.This memory a

ess is performed by pw warps in turn. More spe
i�
ally, �rst, wthreads in W (0) a

ess a[pt℄; a[pt + 1℄; : : : ; a[pt + w � 1℄. After that, w threads inW (1) a

ess a[pt + w℄; a[pt + w + 1℄; : : : ; a[pt + 2w � 1℄, and the same operationis repeatedly performed. In general, w threads in W (j) (0 � j � pw � 1) a

essa[pt+ jw℄; a[pt + jw + 1℄; : : : ; a[pt+ (j + 1)w � 1℄. Sin
e w memory 
ells a

essedby a warp are in di�erent banks, the a

ess 
an be 
ompleted in l time units onthe DMM. Also, these w memory 
ells are in the same address group, and thus,the a

ess 
an be 
ompleted in l time units on the UMM. Re
all that the memorya

ess are pro
essed in a pipeline fashion su
h that w threads in ea
h W (j) sendw memory a

ess requests in one time unit. Hen
e, p threads in pw warps sendp memory a

ess requests in pw time units. After that, the last memory a

essrequests by W ( pw � 1) are 
ompleted in l � 1 time units. Thus, p threads a

essp memory 
ells a[pt℄; a[pt + 1℄; : : : ; a[p(t + 1) � 1℄ in pw + l � 1 time units. Sin
ethis memory a

ess is repeated np times, the 
ontiguous a

ess 
an be done innp � ( pw + l � 1) = O( nw + nlp ) time units.Next, let us 
onsider the 
ase that p � w. If this is the 
ase p threads are in asingle warp. This warp performs memory a

ess np times ea
h of whi
h takes l timeunits. Thus, the 
ontiguous a

ess 
an be done in O(nlp ) time.Therefore, we have,Lemma 3.1 : The 
ontiguous memory a

ess to an array of size n 
an be done inO( nw + nlp ) time using p threads (p � n) on the DMM and the UMM with width wand laten
y l.For later referen
e, we also de�ne the 
ontiguous bank a

ess, whi
h takes thesame time units as the 
ontiguous a

ess on the DMM. Let b0; b1; : : : bn�1 be asequen
e of integers su
h that bi mod w = i mod w for all i (0 � i � n�1). Hen
e,ea
h a[bi℄ is in bank i mod w. The 
ontiguous bank a

ess is spelled out as follows:
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hine Models 7[Contiguous bank a

ess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) a

ess a[bp�t+i℄If p � w then p threads are partitioned into pw warps. In the 
ontiguous banka

ess, w threads in ea
h warp a

ess the di�erent banks. Hen
e, p threads a

essp memory 
ells a[bpt℄; a[bpt+1℄; : : : ; a[bp(t+1)�1℄ in pw + l � 1 time units. Thus, the
ontiguous bank a

ess 
an be done in np � ( pw + l � 1) = O( nw + nlp ) time units.If p � w then the 
ontiguous bank a

ess takes O(nlp ) time units similarly to the
ontiguous memory a

ess. Hen
e, we have,Lemma 3.2 : The 
ontiguous a

ess to an array of size n 
an be done in O( nw+ nlp )time using p threads (p � n) on the DMM with width w and laten
y l.Note that, the UMM may take a lot of time for the 
ontiguous bank a

ess,be
ause threads in warps may a

ess di�erent address groups.4. Approximate string mat
hing and edit distan
eThe main purpose of this se
tion is to review approximate string mat
hing (ASM)and the edit distan
e (ED). Please see [19, 26℄ for the details.As a preliminary, we �rst de�ne the edit distan
e (ED) of two strings. Sup-pose that sour
e string X = x1x2 � � � xm of length m and destination stringY = y1y2 � � � yn of length n are given. Without loss of generality, we 
an assumethat m � n. We want to 
hange X into Y using the following three operations:� insertion of a 
hara
ter,� deletion of a 
hara
ter, and� repla
ement of a 
hara
ter.For example, X = ababa 
an be 
hanged into Y = aaabbb in �ve operations as fol-lows: ababa delete! aaba delete! aaa insert! aaab insert! aaabb insert! aaabbb. Alternatively,X 
an be 
hanged into Y in three operations as follows: ababa repla
e! aaaba repla
e!aaabb insert! aaabbb. The ED of two strings is the minimum number of operationsto 
hange one string to the other. For example, the ED of X and Y above is three,be
ause there exists a sequen
e of three operations to 
hange X into Y , and thereexists no sequen
e of less than three operations to do the same thing. For laterreferen
e, let ED(X;Y ) denote the edit distan
e of X and Y .The approximate string mat
hing, a more 
exible version of the edit distan
e, isa task to 
ompute the value of ASM(X;Y ) de�ned as follows:ASM(X;Y ) = minfED(X;Y 0) j Y 0 is a substring of Y gClearly, ASM(X;Y ) is small if Y has a substring similar to X.It should be 
lear that ASM(X;Y ) is always less than or equal to m, andED(X;Y ) takes a value between n � m and n. For example, if X and Y shareno 
hara
ter, then ED(X;Y ) = n and ASM(X;Y ) = m. Also, if the pre�x of Y isX then ED(X;Y ) = n�m and ASM(X;Y ) = 0.We use a matrix d of size (m + 1) � (n + 1) to 
ompute the ASM. Ea
h d[i℄[j℄(0 � i � m; 0 � j � n) is used to store the following value:min1�j0�j ED(x1x2 � � � xi; yj0yj0+1 � � � yj):
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1 2Figure 3. The values of matrix d for the ASMNote that x1x2 � � � xi is a null string (i.e. string with length 0) if i = 0. On
e allvalues of d is 
omputed, we 
an 
ompute the value of ASM(X;Y ) by the followingformula: ASM(X;Y ) = min0�j�nd[m℄[j℄Let us show how we 
ompute all values of d. Suppose that d[i�1℄[j�1℄, d[i�1℄[j℄,and d[i℄[j � 1℄ are already 
omputed. Let \xi 6= yj" denote the binary value su
hthat it is 1 if xi 6= yj and 0 if xi = yj. The value of d[i℄[j℄ 
an be 
omputed asfollows: d[i℄[j℄ = 0 if i = 0 (1)= i if j = 0 (2)= min(d[i℄[j � 1℄ + 1; (3)d[i� 1℄[j℄ + 1; (4)d[i� 1℄[j � 1℄ + (xi 6= yj)) if i > 0 and j > 0. (5)Let � denote a null string or a string with length 0. We 
an 
on�rm the 
orre
tnessof the formula above as follows:(1) d[0℄[j℄ = 0 from ASM(�; y1y2 � � � yj) = 0,(2) d[i℄[0℄ = i from ASM(x1x2 � � � xi; �) = i,(3) d[i℄[j℄ � d[i℄[j � 1℄ + 1 from ASM(x1 � � � xi; y1 � � � yj) �ASM(x1 � � � xi; y1 � � � yj�1) + 1,(4) d[i℄[j℄ � d[i � 1℄[j℄ + 1 from ASM(x1 � � � xi; y1 � � � yj) �ASM(x1 � � � xi�1; y1 � � � yj) + 1,(5) if xi = yj, then d[i℄[j℄ � d[i � 1℄[j � 1℄, and if xi 6= yj, then d[i℄[j℄ �d[i� 1℄[j � 1℄ + 1 from ASM(x1 � � � xi; y1 � � � yj) � ASM(x1 � � � xi�1; y1 � � � yj�1) + 1.Using this formula, all values of matrix d 
an be 
omputed as follows:[Sequential algorithm for the ASM℄for j  1 to n do d[0℄[j℄ 0for i 0 to m do d[i℄[0℄ ifor i 1 to m dofor j  1 to n dod[i℄[j℄ min(d[i℄[j � 1℄ + 1; d[i � 1℄[j℄ + 1; d[i � 1℄[j � 1℄ + (xi 6= yj)output minfd[m℄[j℄ j 0 � j � ngFigure 3 shows the values of d for two strings X = ababa and Y = aaabbbaa.From the �gure, we 
an see that the ASM of X and Y is 1.
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hine Models 9Usually, the approximate string mat
hing should require algorithms to return theindexes i and j su
h that ASM(X;Y ) = ED(X; yiyi+1 � � � yj). The reader shouldhave no diÆ
ulty to 
on�rm that on
e all the values in array d is obtained, it isnot diÆ
ult to 
ompute su
h values of i and j.5. Dynami
 time warping distan
e and approximate dis
rete signal mat
hingThe main purpose of this se
tion is to review the dynami
 time warping (DTW)of two sequen
es of real numbers [23, 24℄. We also generalize the DTW to theapproximate dis
rete signal mat
hing (ADSM), analogously to the generalizationof the ED to the ASM.Suppose that sour
e dis
rete signal X = x1x2 � � � xm of m real numbers anddestination dis
rete signal Y = y1y2 � � � yn of n real numbers are given. Withoutloss of generality, we assume that m � n. A warping path of X and Y is a sequen
e(p1; q1); (p2; q2); : : : ; (pr; qr) (r � 1) of a pair of integers su
h that(1) (p1; q1) = (1; 1) and (pr; qr) = (m;n), and(2) (pi+1; qi+1)� (pi; qi) = (0; 1); (1; 0); or (1; 1) for all i (1 � i � r � 1).A warping path de�nes a many-to-many mapping between X and Y su
h that xpi
orresponds to yqi. The error of a warping path (p1; q1); (p2; q2); : : : ; (pr; qr) is thesum of the distan
e over all 
orresponding pairs,lXi=1 jxpi � yqij:The dynami
 time warping distan
e of two dis
rete signals is the minimum errorover all possible paths.Let DTW (X;Y ) denote the dynami
 time warping of two dis
rete signals Xand Y . The approximate dis
rete signal mat
hing, a more 
exible version of thedynami
 warp mat
hing is a task to 
ompute the value of ADSM(X;Y ) de�ned asfollows: ADSM(X;Y ) = minfDTW(X;Y 0) j Y 0 is a subsignal of Y gClearly, ADSM(X;Y ) is small if Y has a subsignal similar to X.We use a matrix d of size (m+1)�(n+1) to 
ompute the values of ADSM(X;Y )for dis
rete signals X and Y with length m and n respe
tively. Ea
h d[i℄[j℄ (0 �i � m; 0 � j � n) is used to store the following value:min1�j0�jDTW(x1x2 � � � xi; yj0yj0+1 � � � yj):On
e all values of d is 
omputed, we 
an 
ompute the value of ADSM(X;Y ) bythe following formula: ADSM(X;Y ) = min1�j�n d[m℄[j℄Let us show how we 
ompute all values of d. Suppose that d[i�1℄[j�1℄, d[i�1℄[j℄,
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∞Figure 4. The values of matrix d for the ADSMand d[i℄[j�1℄ are already 
omputed. The value of d[i℄[j℄ 
an be 
omputed as follows:d[i℄[j℄ = 0 if i = 0= +1 if j = 0= min(d[i℄[j � 1℄; d[i � 1℄[j℄; d[i � 1℄[j � 1℄) + jxi � yjj if i > 0 and j > 0.Similarly to the 
omputation of the ASM, the value of d[i℄[j℄ 
an be 
omputedusing three values of d[i℄[j � 1℄, d[i � 1℄[j℄, and d[i � 1℄[j � 1℄. Thus, similarly tothe ASM, all values of matrix d for the ADSM 
an be 
omputed as follows:[Sequential algorithm for the ADSM℄for j  1 to n do d[0℄[j℄ 0for i 0 to m do d[i℄[0℄ +1for i 1 to m dofor j  1 to n dod[i℄[j℄ min(d[i℄[j � 1℄ + 1; d[i � 1℄[j℄ + 1; d[i � 1℄[j � 1℄) + jxi 6= yjjoutput minfd[m℄[j℄ j 0 � j � ngFigure 4 shows the values of d for two dis
rete signals X = 1; 3; 5; 3; 1 andY = 1; 2; 3; 4; 4; 2; 1; 2. From the �gure, we 
an see that the ADSM of X and Y is4.6. A parallel algorithm for the ASM on the DMMThe main purpose of this se
tion is to show a parallel algorithm for 
omputing theASM.The key idea is to 
ompute the values of the matrix d from the top-left 
ornerto the bottom-right 
orner as illustrated in Figure 5. The details of the parallelalgorithm are spelled out as follows:[Parallel algorithm for the ASM℄for j  1 to n do in parallel d[0℄[j℄  0for i 0 to m do in parallel d[i℄[0℄ ifor k  1 to n+m� 1 dofor i 1 to m do in parallelbeginj  k � i+ 1if 1 � j � n thend[i℄[j℄ min(d[i℄[j � 1℄ + 1; d[i � 1℄[j℄ + 1; d[i � 1℄[j � 1℄ + (x[i℄ 6= y[j℄)end
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Figure 5. Illustrating a parallel algorithm for 
omputing matrix doutput minfd[m℄[j℄ j 0 � j � ngIn the third for-loop, for ea
h k (1 � k � n +m � 1), the values d[1℄[k℄; d[2℄[k �1℄; : : : d[m℄[k �m℄ are 
omputed and stored. Clearly, when the values of d for k is
omputed, only those for k � 1 and k � 2 are used. Thus, this parallel algorithm
orre
tly 
omputes the ASM.Let us evaluate the 
omputing time on the DMM. We assume that n+1, the rowsize of matrix d, is a multiple of w. If this is not a 
ase, we 
an 
hoose the minimuminteger n0 ex
eeding n + 1 su
h that n0 is a multiple of w, and use a matrix d ofsize (m+ 1)� n0. We also assume that we use m threads on the UMM.The �rst for-loop performs \d[0℄[j℄  0" in parallel. Sin
e writing in n elementsd[0℄[1℄; d[0℄[2℄; : : : ; d[0℄[n℄ is 
ontiguous memory a

ess, it takes O( nw + nlm ) timeunits from Lemma 3.1. The se
ond for-loop performs \d[i℄[0℄  i" in parallel.Sin
e d[0℄[0℄; d[1℄[0℄; : : : ; d[m℄[0℄ are in the same bank B(0), all writing operationsare performed in turn. Hen
e, the se
ond for-loop takes m+ l time units.The evaluation of the 
omputing time for the third for-loop is a little 
ompli
ated.The third for-loop for a �xed k involves the following memory a

ess operations:� reading from x[1℄; x[2℄; : : : ; x[m℄,� reading from y[k℄; y[k � 1℄; : : : ; y[k �m+ 1℄,� reading from d[1℄[k � 1℄; d[2℄[k � 2℄; : : : ; d[m℄[k �m℄,� reading from d[0℄[k℄; d[1℄[k � 1℄; : : : ; d[m� 1℄[k �m+ 1℄,� reading from d[0℄[k � 1℄; d[1℄[k � 2℄; : : : ; d[m� 1℄[k �m℄, and� writing in d[1℄[k℄; d[2℄[k � 1℄; : : : ; d[m℄[k �m+ 1℄.For simpli
ity, we 
onsider that the memory a

ess is omitted if the index of arraysabove is out of range de�ned. Sin
e the �rst two reading operations are the 
on-tiguous memory a

ess for m elements, they take O(mw + mlm ) = O(mw + l) time unitsfrom Lemma 3.1. The remaining four reading operations are not 
ontiguous. How-ever, they are 
ontiguous bank a

ess, and they also take O(mw + l) time units fromLemma 3.2. Thus, the third for-loop runs in O(mw + l) � (n+m� 1) = O(nmw + nl)time from m � n.Finally, we need to 
ompute minfd[m℄[j℄ j 0 � j � ng. The minimum of n + 1numbers 
an be 
omputed using a single thread in (n + 1)l = O(nl) time in anobvious way.Therefore, we have,Lemma 6.1 : The ASM of two strings of length m and n (m � n) 
an be 
omputedin O(nmw + nl) time units using m threads on the DMM with width w and laten
yl.
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12Figure 6. Illustrating a parallel algorithm for 
omputing slided matrix s7. A parallel algorithm for the ASM on the UMMThis se
tion is devoted to show how we implement the parallel algorithm for 
om-puting the approximate string mat
hing on the UMM.If the parallel algorithm in the previous se
tion is implemented on the UMM as itis, the memory a

ess is performed for di�erent address groups. If this is the 
ase,the memory a

ess request is pro
essed in turn, the UMM takes at least O(nm)time units to 
ompute the values of d.For the purpose of the 
ontiguous memory a

ess in the third for-loop, we slidethe matrix d as illustrated in Figure 6. More spe
i�
ally, we use a matrix s of size(n+m+ 1)� (n+ 1) su
h that the value of ea
h d[i℄[j℄ is stored in s[i+ j℄[j℄.Let us evaluate the 
omputing time on the UMM if the parallel algorithm is exe-
uted for the matrix s. Again, we assume that we use m threads. The �rst for-loopand the se
ond for-loop performs writing operations for s[0℄[0℄; s[1℄[1℄; : : : ; s[n℄[n℄and for s[1℄[0℄; s[2℄[0℄; : : : ; s[m℄[0℄, respe
tively. Hen
e, the memory a

ess by a warpis performed for the di�erent address groups both in the �rst for-loop and in these
ond for-loop. Thus, the �rst for-loop and the se
ond for-loop take m + l timeunits and n+ l time units, respe
tively.The third for-loop for a �xed k involves the following memory a

ess operations:� reading from x[1℄; x[2℄; : : : ; x[m℄,� reading from y[k℄; y[k � 1℄; : : : ; y[k �m+ 1℄,� reading from s[k℄[k � 1℄; s[k℄[k � 2℄; : : : ; s[k℄[k �m℄,� reading from s[k℄[k℄; s[k℄[k � 1℄; : : : ; s[k℄[k �m+ 1℄,� reading from s[k � 1℄[k � 1℄; s[k � 1℄[k � 2℄; : : : ; s[k � 1℄[k �m℄, and� writing in s[k + 1℄[k℄; s[k + 1℄[k � 1℄; : : : ; s[k + 1℄[k �m+ 1℄.Sin
e the �rst two reading operations are the 
ontiguous a

ess, they take O(mw +mlm ) = O(mw + l) time units from Lemma 3.1. Sin
e the remaining four memorya

ess operations are performed by the 
ontiguous a

ess, they also take O(mw + l)time units. Thus, the third for-loop runs in O(mw + l) � (n+m) = O(nmw + nl) timeunits. Finally, we 
ompute minfs[m+ j℄[j℄ j 0 � j � ng in O(nl) time units usinga single thread in an obvious way. Therefore, we have,
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hine Models 13Lemma 7.1 : The ASM of two strings of length m and n (m � n) 
an be 
omputedin O(nmw + nl) time units using m threads on the UMM with width w and laten
yl. Clearly, the implementation for Lemma 7.1 also works on the DMM.The implementation for Lemma 7.1 uses an array s of size (n+m+1)� (n+1).However, only three rows s[k� 1℄[�℄; s[k℄[�℄; s[k +1℄[�℄ of s are a

essed for ea
h k.Further, m+ 2 elements are used in ea
h row, and two of them are just initializedvalues. Thus, we 
an redu
e the size of array s to 3�m. For this purpose, we usearray s0 of size 3�m to handle the values in s as follows:� return 0 when s[j℄[j℄ is read,� return i when s[i℄[0℄ is read, and� a

ess s0[i mod 3℄[j mod m℄ when s[i℄[j℄ is a

essed.Clearly, sin
e the memory a

ess to array s performed by the parallel algorithm forthe ASM is 
ontiguous, that to array s0 is also 
ontiguous. Hen
e, even if we uses0 instead of s, the 
omputing time is still O(nmw + nl) time units. Thus, we have,Theorem 7.2 : The ASM of two strings of length m and n (m � n) 
an be
omputed in O(nmw + nl) time units using m threads and working spa
e of sizeO(m) on the DMM and the UMM with width w and laten
y l.8. Further improvement of the parallel ASMIn pra
ti
al appli
ations, ASM(X;Y ) for a very long Y need to be 
omputed. Inother words, we need to 
ompute ASM(X;Y ) su
h that m� n. If this is the 
ase,the laten
y overhead O(nl) dominates the 
omputing time. The main purpose ofthis se
tion is to show that the laten
y overhead 
an be redu
ed to O(ml). Thishides the laten
y overhead and a
hieves a signi�
ant improvement when m� n.We �rst show that, we 
an restri
t the length of substrings of Y to at most2m when we 
ompute the ASM. If a substring Y 0 of Y is longer than 2m, thenED(X;Y 0) > 2m �m = m. However, sin
e ASM(X;Y ) � m always hold, we 
anignore su
h Y 0 when we 
ompute ASM(X;Y ).Using this fa
t, we 
an further parallelize the 
omputation of ASM(X;Y ). Wepartition Y into nm substrings Y0; Y1; : : : ; Y nm�1 of length m ea
h su
h that Yi =yim+1yim+2 � � � y(i+1)m (0 � i � nm�1). Further, let Z0; Z1; : : : ; Z nm�3 be the stringsof adja
ent three Yi's, that is, Zi = YiYi+1Yi+2 (0 � i � nm � 3). Clearly, the lengthof ea
h Zi is 3m and any substring Y 0 with at most 2m 
hara
ters is a substring ofone of Z0; Z1; : : : ; Z nm�3. Thus, the following algorithm 
an 
ompute ASM(X;Y ).[Improved parallel algorithm for the ASM℄for i 0 to nm � 3 do in parallel
ompute ASM(X;Zi)output minfASM(X;Zi) j 0 � i � nm � 3gLet us evaluate the 
omputing time. We use the implementation for Theorem 7.2to 
ompute ea
h ASM(X;Zi) (0 � i � nm�3) in parallel. In this implementation, amatrix s0 of size 3�m is used to 
ompute ea
h ASM(X;Zi). Sin
em�( nm�3) < n, we
an 
onsider that we have a large 
ombined matrix of size 3�n and the 
ontiguousmemory a

ess is performed using n threads. From Lemma 3.1, the 
ontiguousmemory a

ess to an array of 3n 
an be done using n threads in O(3nw + 3nln ) =O( nw + l) time units. Sin
e X and Zi have m and 3m 
hara
ters, respe
tively, this
ontiguous memory a

ess is repeatedm+3m�1 = 4m�1 times. Thus, the values ofall ASM(X;Zi) (0 � i � nm�3) 
an be 
omputed inO( nw+l)�(4m�1) = O(nmw +ml)
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ompute the minimum of nm � 2 numbers. We 
an 
ompute theminimum in ( nm �2)l = O(nlm ) time units using a single thread. However, when n isvery large, this 
omputing time dominates the total 
omputing time. We want to
ompute the minimum of nm�2 numbers in no more than O(nmw +ml) time. We usethe fa
t that these numbers are no more than m. Let s0; s1; : : : ; s nm�3 denote nm �2numbers. We use nm�2 threads and an array v of sizem+1 initialized by 0. A threadassigned to ea
h si (0 � i < nm�2) performs v[si℄ 1. Sin
e ea
h of the nm�2w warpsa

esses an array of size m+1, this operation takes ( nm�2w + l) � m+1w = O( nw2 + mlw )time units. After that, we �nd the minimum j su
h that v[j℄ = 1. Su
h minimum j,whi
h is equal to the minimum of nm�2 numbers, 
an be found in (m+1)l = O(ml)time using a single thread in an obvious way. Thus, the minimum of nm�2 numbers
an be 
omputed in O( nmw + mlw ) < O(nmw +ml) time units. Finally, we have,Theorem 8.1 : The ASM of two strings of length m and n (m � n) 
an be
omputed in O(nmw + ml) time units using n threads and working spa
e of sizeO(m) on the DMM and the UMM with width w and laten
y l.9. Optimality of ImplementationsThis se
tion is devoted to dis
uss the optimality of our implementation of thedynami
 programming based algorithm for the ASM. Note that, what we dis
ussis \optimality of implementations", not \optimality of algorithms".In the dynami
 programming based algorithm, an array d of size (m+1)�(n+1)is used. Sin
e all of (m + 1)(n + 1) elements in d is a

essed at least on
e andthe memory bandwidth is w, it takes at least (m+1)(n+1)w = 
(mnw ) time units to
ompute the ASM.The value of d[i℄[j℄ (1 � i � m) depends on that of d[i � 1℄[j℄. Hen
e, the valueof d[i� 1℄[j℄ must be read before that of d[i℄[j℄ is written. In other words, at leastl time units are ne
essary from writing the resulting values in d[i� 1℄[j℄ to that ofd[i℄[j℄. Thus, at least ml time units are ne
essary to 
ompute the value of d[m℄[j℄.Two lower bounds 
ombined, we have,Theorem 9.1 : Any implementation of the dynami
 programming based ASMalgorithm for two strings of length m and n (m � n) takes at least 
(mnw +ml)time on the DMM and the UMM with width w and laten
y l.From this lower bound theorem, our implementations for Theorem 8.1 is timeoptimal.10. Optimal implementation of the ADSMAs we have shown in Se
tion 5, the ADSM 
an be 
omputed in the same way asthe ASM. Hen
e the reader should have no diÆ
ulty to 
on�rm thatTheorem 10.1 : The ADSM of two dis
rete signals of length m and n (m � n)
an be 
omputed in O(nmw +ml) time units using n threads and working spa
e ofsize O(m) on the DMM and the UMM with width w and laten
y l.The ADSM of two dis
rete signals of length m and n (m � n) 
an be 
omputedin O(nmw +ml) time units using n threads and working spa
e of size O(m) on theDMM and the UMM with width w and laten
y l.
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