
The Approximate String Matching on the Hierarchical Memory Machine, with
Performance Evaluation

Duhu Man, Koji Nakano, and Yasuaki Ito
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The Hierarchical Memory Machine (HMM) is a
theoretical parallel computing model that captures the essence
of computing on CUDA-enabled GPUs. The approximate string
matching (ASM) for two strings � and � of length � and
� is a task to find a substring of � most similar to � .
The main contribution of this paper is to show an optimal
parallel algorithm for the approximate string matching on the
HMM and to implement it on a CUDA-enabled GPU. Our
algorithm runs in �� �

�
� ��

��
� ��

�
� ���

�
� on the HMM with �

streaming processors, memory band width �, global memory
access latency �, and shared memory access latency 	. Further,
we implement our algorithm on GeForce GTX 580 GPU and
evaluate the performance. The experimental results show that
the ASM of two strings of 1024 and 4M (� ���) characters
can be computed in 419.6ms, while the sequential algorithm
can compute it in 27720ms. Thus, our implementation on the
GPU attains a speedup factor of 66.1 over the single CPU
implementation.

Keywords-memory machine models, approximate string
matching, edit distance, GPU, CUDA

I. INTRODUCTION

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3]. Latest GPUs are designed
for general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many appli-
cation developers [1]. NVIDIA provides a parallel com-
puting architecture called CUDA (Compute Unified Device
Architecture) [4], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [5], since they have hundreds of
processor cores and very high memory bandwidth.

NVIDIA GPUs has streaming multiprocessors (SMs) each
of which executes multiple threads in parallel. CUDA uses
two types of memories in the NVIDIA GPUs: the shared
memory and the global memory [4]. The efficient usage of
the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory

access [2], [5], [6], [7]. The address space of the shared
memory is mapped into several physical memory banks. If
two or more threads access the same memory banks at the
same time, the access requests are processed in turn. Hence,
to maximize the memory access performance, threads of
CUDA should access distinct memory banks to avoid the
bank conflicts of the memory accesses. To maximize the
bandwidth between the GPU and the global memory the
consecutive addresses must be accessed at the same time.
Thus, CUDA threads should perform coalesced access when
they access the global memory.

In our previous paper [8], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM), which reflect the essential features
of the shared memory and the global memory of NVIDIA
GPUs. Algorithms on the DMM and the UMM correspond
to the computation using the shared memory and the global
memory of GPUs, respectively. Later, we have introduced
the Hierarchical Memory Machine (HMM), which is a
hybrid of the DMM and the UMM [9]. The HMM is a
more practical parallel computing model that reflects the
hierarchical architecture of CUDA-enabled GPUs. Figure 1
illustrates the architecture of the HMM. The HMM consists
of � DMMs and a single UMM. Each DMM has � memory
banks and the UMM also has � memory banks. We call
the memory banks of each DMM the shared memory and
those of the UMM the global memory after CUDA-enabled
NVIDIA GPUs. Each DMM can work independently and
can perform the computation using its shared memory. Also,
all threads of DMMs work as a single UMM and can access
to the global memory. While the memory access latency
of the shared memory of CUDA-enables GPUs is very
low, that of the global memory is several hundred clock
cycles [4]. Hence, we use parameters � and � that denote
the memory access latencies of the shared memory and the
global memory, and assume � � �.

Suppose that two strings � and � of length � and �

(� � �), respectively, are given. The approximate string
matching (ASM) is a task to find a substring in � most
similar to � . The ASM has a lot of applications in the
areas of signal processing, bio-informatics, natural language
processing, among others. It is well known that the ASM can

NoC and MMU

MB MB MB MB

address line

data line

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

DMM DMM DMM

UMM

shared memory

global memory

latency=	

latency=�

Figure 1. The architecture of the HMM with � � � DMMs and width � � �

be computed in 	���� time [10] using the dynamic pro-
gramming technique. Many researchers have been devoted
to do research on variations of the ASM. For example, if
the problem is to list substrings in � with similarity no
more than
, the computing time can be reduced [11]. Also,
if the complicated bit operations of words is allowed, the
ASM can be accelerated [12]. Utan et. al [13] implemented
an approximate regular expression matching algorithm on
the FPGA and the GPU. Quite recently, we have published
an optimal algorithm for the ASM on the DMM and the
UMM [14]. This implementation runs in 	���

�
���� time

units on the DMM and on the UMM using � threads.
However, since at most � threads perform computation in
every time unit on the DMM and the UMM, it is not possible
to accelerate the computation a factor of more than �.

The main contribution of this paper is to present an
optimal implementation of the ASM algorithm on the HMM.
Our implementation on the HMM achieves more speed-up
than our previous work [14] on the DMM and the UMM. It
runs in 	� �

�
���

��
� ��

�
����

�
� time units on the HMM with

� DMMs, width �, global memory latency � and shared
memory latency �. We can prove that this implementation
is time optimal in the sense that no other implementation
can be faster. However, we omit the proof of the lower
bound in this paper, due to the stringent page limitation. We
also implemented our algorithm for the ASM on GeForce
GTX-580 GPU. The experimental results show that the ASM
of two strings of 1024 and 4M (� ���) characters can be
computed in 419.6ms, while the sequential algorithm can
compute it in 27720ms. Thus, our implementation on the
GPU attains a speedup factor of 66.1 over the single CPU
implementation.

II. MEMORY MACHINE MODELS: THE DMM, THE

UMM, AND THE HMM

We first define the Discrete Memory Machine (DMM) of
width � and latency �. Let ���� (� � �) denote a memory
cell of address � in the memory. Let ��� � ������� �
����� � ������ � 	��� � � �� (� � � � �
) denote the
-th bank of the memory. Clearly, a memory cell ���� is in
the �� �� ��-th memory bank. We assume that memory
cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in
a time unit. Also, we assume that � time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU. Thus,
it takes
 � � �
 time units to complete memory access
requests to
 memory cells in a particular bank.

We assume that � threads are partitioned into �
�

groups
of � threads called warps. More specifically, � threads
� ���, � �
�, � � �, � �� �
� are partitioned into �

�
warps

� ����� �
�, � � �, � � �
�
�
� such that� ��� � �� ������ � ���

� �
�� � � � � � ��� �
� � � �
�� (� � � � �
�
�
). Warps

are dispatched for memory access in turn, and � threads
in a warp try to access the memory at the same time. In
other words, � ����� �
�� � � � �� � �

�
�
� are dispatched

in a round-robin manner if at least one thread in a warp
requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access. When � ��� is dispatched, � threads in � ��� send
memory access requests, at most one request per thread, to
the memory. We also assume that a thread cannot send a new
memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory
access request, it must wait at least � time units to send a
new memory access request.

We next define the Unified Memory Machine (UMM) of
width � and latency � as follows. Let ��� � ��� ������ �
� �
�� � � � ���� �
� � � �
�� denote the -th address
group. We assume that memory cells in the same address
group are processed at the same time. However, if they are
in the different groups, one time unit is necessary for each
of the groups. Also, similarly to the DMM, � threads are
partitioned into warps and each warp accesses the memory
in turn.

Figure 2 shows examples of memory access on the DMM
and the UMM. We assume that each memory access request
is completed when it is dequeued from the pipeline. Two
warps � ��� and � �
� access to ������������
�������
and ��
�����

����
�������, respectively. In the DMM,
memory access requests by � ��� are separated into two
pipeline stages, because ���� and ��
�� are in the same
bank ��	�. Those by � �
� occupies 1 stage, because all
requests are in distinct banks. Thus, the memory requests
occupy three stages, and it takes 	 � � �
 � � time units
to complete the memory access. In the UMM, memory
access requests by � ��� are destined for three address
groups. Hence the memory requests occupy three stages.
Similarly those by � �
� occupy two stages. Hence, it takes
� � ��
 � � time units to complete the memory access.

Finally, we define the Hierarchical Memory Machine
(HMM). The HMM consists of � DMMs and a single
UMM as illustrated in Figure 1. Each DMM has � memory
banks and the UMM also has � memory banks. We call
the memory banks of each DMM the shared memory and
those of the UMM the global memory. Each DMM works
independently. Threads are partitioned into warps of �

threads, and each warp is dispatched for memory access to
the shared memory in turn. Further, each warp of � threads
in all DMMs can send memory access requests to the global
memory. Figure 1 illustrates the architecture of the HMM
with � � 	 DMMs. Each DMM and the UMM has � � �
memory banks.

III. COALESCED AND CONFLICT-FREE MEMORY ACCESS

This section evaluates the performance of coalesced mem-
ory access for the global memory and the conflict-free
memory access for the shared memory. These memory
access operations are key ingredients of our ASM algorithm.

A round of memory access is an operation such that
all threads perform a single memory access to the shared
memory or the global memory. A round of memory access
by a warp of � threads is coalesced if all memory access
by a warp destined for the same address group of the global
memory. Also, that by a warp is conflict-free if all memory
access by a warp destined for the distinct memory banks of
the shared memory. We also say that a round of the memory
access by all of the � threads is coalesced if memory access
by all of the �

�
warps is coalesced. Also, that by � threads is

conflict-free if memory access by every warp is conflict-free.

Let us evaluate the time necessary for coalesced and
conflict-free memory access. Suppose that � (� �) threads
perform a round of coalesced memory access to the global
memory. Since we have �

�
warps each of which sends �

memory requests to the same address group, it takes �
�

time
units to send all � memory requests. After that ��
 time
units are necessary to complete the memory requests by the
last warp. Thus, it takes �

�
���
 time units to complete a

round of coalesced memory access by � threads. Similarly, a
round of conflict-free memory access for the shared memory
takes �

�
time units to send all memory requests and ��
 time

units are necessary to complete the memory requests by the
last warp. Thus, a round of coalesced memory access for the
global memory and that of conflict-free memory access for
the shared memory by � threads take 	� �

�
� �� time units

and 	� �
�
��� time units, respectively. Suppose that � threads

access to � (� �) words of the global memory in �
�

rounds.
If all rounds are coalesced memory access for the global
memory, it takes 	� �

�
� �� � �

�
� 	� �

�
� ��

�
� time units.

Similarly, �
�

rounds memory access for the shared memory
take 	� �

�
� ��

�
� time units. Thus, we have,

Lemma 1: The coalesced memory access to � words of
the global memory and the conflict-free memory access to
� words of the shared memory take 	� �

�
� ��

�
� time units

and 	� �
�
� ��

�
� time units, respectively, if � � � � �.

IV. APPROXIMATE STRING MATCHING

The main purpose of this section is to define the approx-
imate string matching (ASM).

As a preliminary, we first define the edit distance (ED)
of two strings [15]. Suppose that source string � �
���� � � ��� of length � and destination string � �
���� � � � �� of length � are given. Without loss of generality,
we can assume that � � �. We want to change � into
� using the following three operations: (1) insertion of a
character, (2) deletion of a character, and (3) replacement of
a character. The ED of two strings is the minimum number
of operations to change one string to the other. For later
reference, let ������ � denote the ED of � and � .

The approximate string matching, a more flexible version
of the edit distance, is a task to compute the value of
������� � defined as follows:

������� � � ���������� �� � � � is a substring of � �

Clearly, ������� � is small if � has a substring similar
to � .

We use a matrix � of size ���
�	 ���
� to compute
the ASM. Each ������ (� � � � �� � � � �) is used to
store the following value:

���
������

������� � � ��	� �������� � � � ����

Note that ���� � � ��	 is a null string (i.e. string with length 0)
if � � �. Once all values of � is computed, we can compute

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�-stage pipeline registers

�

057 15

10 11 12 9

 ���

 ���UMM

0

5

715

10

11

12

9

�-stage pipeline registers

057 15

10 11 12 9

 ���

 ���DMM

0

5

715

10

11

12

9

����

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�

���� ���� ���� ��	�

����

����

��	�

Each pipeline stage stores
memory access requests
destined for the different
banks

Each pipeline stage stores
memory access requests
destined for the same address
group

Figure 2. Examples of memory access on the DMM and the UMM

the value of ������� � by the following formula:

������� � � ���
�����

������

All values of � and ������� � can be computed by the
following parallel algorithm. The key idea is to compute
the values of the matrix � from the top-left corner to the
bottom-right corner as illustrated in Figure 3. Let “� 	
� ��”
denote the binary value such that it is 1 if �	
� �� and 0 if
�	 � �� . The details of the parallel algorithm is spelled out
as follows:

[Parallel ASM algorithm]
for �
 to � do in parallel ������� �
for �� � to � do in parallel �������� �

for
 �
 to ����
 do
for ��
 to � do in parallel

begin
 �
 � ��

if
 � � � then
������� ��������� �
� �
� ����
��� �
�
����
�� �
� � �����
� �����

end
output ���������� � � � � ��

Please see [14] for the details of this parallel ASM algorithm.
Clearly, when the values of � for
 is computed, only

those for
 �
 and
 � � are used. Thus, it is sufficient to
use a matrix � of size 		 ���
� that stores values of � for

� �,
�
, and
. We assume that ��
 is a multiple of
� to guarantee that ������ and �� ������ are in different banks
of the shared memory iff �
� ��. If this is not the case, we
use a matrix � of size 	 	 ��� �
� such that �� �
 is
the minimum multiple of � exceeding � �
. Let � be a
matrix of size 		���
� such that the value of each ������

�

�

 �

 � �

0

1

2

3

4

5

0 0 0 0 0 0

0 0 0 1 1 1

1 1 1 0 1 1

2 1 1 1 1 2

3 2 2 1 1 1

4 3 2 2 2 3

�

�

0 0

0 0

1 1

1 1

2 2

1 2

� � 1 2 3 4 5 6 7

8

9

10

11

12

Figure 3. Illustrating a parallel algorithm for computing matrix �

(� � � � �� � � � �) are stored in �� �� 	����. The
ASM can also be computed using array � as follows:

[Improved parallel ASM algorithm]
������ � �

for
 � � to ����
 do
begin

for �� � to � do in parallel
begin
 �
 � ��

if � � � then �� �� 	����� �
else if � � then �� �� 	����� �

else if
 � � � then
�� �� 	����� ������� �
� �� 	���� �
�
�� �� 	����
� �
� ��� �
� �� 	����
�
������
� �����

end
if �� �� 	���� � ������ then ������ � �� �� 	����

end
output minval

Let us evaluate the computing time using � (� �) threads

on the DMM. The for-loop for a fixed
 involves the
following memory access operations:

� reading from ��
������ ��
���
�� � � � � ��
�����
�,
� reading from ��
���
�� ��
������ � � � � ��
�������,
� reading from ��
���
�� ��
������ � � � � ��
�����, and
� writing in ��
������ ��
���
�� � � � � ��
�������
�.

where
	 � �
 � �� �� 	 (� � � � �). For simplicity, we
consider that the memory access is omitted if the index of
arrays above is out of range. It should be clear that each of
these memory access operations is conflict-free. Thus, each
of them can be done in 	��

�
���

�
� time units using � threads

on the DMM from Lemma 1. Since these memory access
operations are performed � � � �
 times, this algorithm
runs in �� � � �
� � 	��

�
� ��

�
� � 	���

�
� ���

�
� time

units. Thus, we have,
Lemma 2: The ASM of two strings of length � and �

(� � �) can be computed in 	���
�

� ���
�
� time units using

� (� � � � �) threads on the DMM.

V. A PARALLEL ASM ALGORITHM ON THE HMM

This section is devoted to show a parallel algorithm for
the ASM using � DMMs on the HMM. We assume that
� and � of length � and � each are stored in the global
memory of the HMM. Also, we assume that � and � are
large enough such that � � �� and � � ��. Since ��

threads on the HMM can work at the same time, it makes
sense to assume that � � ��.

The idea is to partition � into � substrings and to
compute the ASM of � and every substring in parallel.
Let � � ����

�
. For simplicity, we assume that � is

an integer. We partition � into � substrings such that
�	 � �	�	�� � � � ��	�������� for all � (� � � � � �
).
Clearly, every �	 (� � � � � �
) has � � �� characters.
Also, �	 � �	�� � ��	�����	����� � � � ��	�������� and
thus �	 � �	�� has �� characters. Hence, any substring of
length at most �� is included in one of �	’s, and we have
������� � � �����������	� � � � � � ��
�.

The idea of parallel processing is to compute each
�������	� (� � � � ��
) by a DMM as follows:
[Parallel ASM algorithm on the HMM]
Step 1: Each ������ reads � and �	 from the global
memory and writes them in the shared memory.
Step 2: Each ������ computes �������	� in parallel.
Step 3: Each ������ writes the value of �������	� in
the global memory.
Step 4: Compute �����������	� � � � � � ��
�.

We assume that we use �
�

threads for each of the � DMMs
and evaluate the computing time. In Step 1, to read �

by � DMMs, the reading operation for �� characters are
performed by � threads. Hence, from Lemma 1, it takes
	���

�
����

�
� time units to read � from the global memory.

Similarly, the reading of every �	 from the global memory
takes 	� ������

�
� �������

�
� time units. Also, writing �

and �	 in the shared memory of each DMM is performed

independently. From Lemma 1, writing operations of � and
�	 take 	��

�
� ��

�
� time units and 	� ���

�
� ������

�
�

time units, respectively. Therefore, Step 1 takes 	� �����
�

�
������

�
� � 	�����

�
� �������

�
� time units from � � �

�
.

In Step 2, the computation of each ������� 	� takes
	� ������

�
� �������

�

�

� � 	� �������
��

� ��������
�

� time
units from Lemma 2. Note that, � � �

�
� � must be

satisfied to use Lemma 2. In Step 3, one thread in ������
writes the value of �������	� in the global memory. Since
we have � DMMs, Step 3 takes 	�� � �� � 	� �

�
� ��

time units from � � ��. Finally, Step 4 computes the
minimum of �������	� in 	� �

�
� ��

�
��� time units using

� threads on the UMM using the algorithm in [16], [17]. The
computing time of the four steps combined, the ASM can be
computed in 	� ����

�
� �������

��
� �������

�
� ��������

�
�

time units.
Lemma 3: The ASM of two strings of length � and

� (� � �) can be computed in 	� ����
�

� �������
��

�
�������

�
� ��������

�
� using � threads (�� � � � ��) on

the HMM with � DMMs, width � shared memory latency
�, and global memory latency �.

The parallel ASM algorithm for Lemma 3 uses up
to �� threads. If � is too small, the latency overhead
	� �������

�
� ��������

�
� may be dominant. We need to

use more threads to hide this latency overhead. For this
purpose, we partition � into more substrings. Suppose that
we partition � into � (� �) substrings ��� ��� � � � � ����

such that each substring �	 (� � � � � �
) has � � ��
characters, where � � ����

�
. We use � threads to compute

each �������	�. More specifically, � � �� threads
are arranged in � DMMs, and each DMM computes �

�

�������	�s using ��
�

threads. If this is the case, each of
the four steps takes the following computing time: Step 1:
	�����

�
� �������

�
� time units, Step 2: 	� �������

��
�

��������
�

� time units, Step 3: 	����� � 	� �
�
��� time

units, and Step 4: 	��
�
���

�
��� time units. Thus, the ASM

can be computed in 	� ����
�

� �������
��

� �������
�

�
��������

�
� � 	����

�
� ������

��
� ��

�
� ���

�
� � � ���

time units. Thus, we have,
Theorem 4: The ASM of two strings of length � and �

(� � �) can be computed in 	� ���
�

�������
��

� ��
�
����

�
�

����� using � threads (�� � � � ��) on the HMM.
If � is large enough such that � � �, we can simplify the
computing time as follows:

Corollary 5: The ASM of two strings of length � and �
(� � �) can be computed in 	� �

�
� ��

��
� ��

�
� ���

�
� using

� threads on the HMM if � � �.

VI. EXPERIMENTAL RESULTS

We have implemented our parallel ASM algorithm for
the HMM on the GPU and the sequential ASM algorithm
on a single CPU. Table I shows the experimental results

Table I
THE RUNNING TIME (MILLISECONDS) OF PARALLEL ASM ALGORITHM ON THE HMM FOR �� � � �� (� �

��)

GPU CUDA blocks � CPU speed-up
��� � � 16 32 64 128 256 512 1024 2048

32 178.2 89.23 44.92 23.46 23.53 23.64 23.90 24.38 701.8 29.9
64 178.6 89.71 46.74 29.13 29.13 29.18 29.39 30.01 1364 46.8
128 181.1 92.66 55.81 48.40 48.51 48.92 50.16 53.36 2683 55.4
256 187.0 112.2 95.77 93.16 91.83 93.83 100.1 113.3 5295 57.7
512 236.5 191.0 184.6 181.3 185.0 197.9 224.1 277.9 10560 58.2
1024 419.6 423.8 432.3 449.4 483.4 551.5 687.7 960.0 27720 66.1

on GeForce GTX-580 GPU and Intel Xeon CPU X7460
(2.66GHz). GeForce GTX-580 GPU has 16 streaming mul-
tiprocessors. The size � of a warp is 32. The table shows
the running time for � with 4M (� ���) characters and �

with 32, 64, 128, 256, 512, 1024, and 2048. We partition the
input � into � �16, 32, 64, 128, 256, 512, 1024 substrings,
and � CUDA blocks of � threads are invoked to compute
�������	� (� � � � ��
). Strings of � and � are stored
as arrays of 8-bit unsigned char initialized by random 0/1
values in the global memory. Since � and � are random 0/1
strings, “�	
� ��” is true with probability �

� . Such strings
are unfavorable for GPUs, because the resulting values of
“�	
� ��” by all threads in a warp are not the same with
high probability. From the table, the ASM of two strings
of 1024 and 4M (� ���) characters can be computed in
419.6ms when � �
�, while the sequential algorithm can
compute it in 27720ms. Thus, our implementation on the
GPU attains a speedup factor of 66.1 over the single CPU
implementation.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[2] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU imple-
mentation of computing euclidean distance map with efficient
memory access,” in Proc. of International Conference on
Networking and Computing. IEEE CS Press, Dec. 2011,
pp. 68–76.

[3] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” in Proc.
of International Conference on Networking and Computing.
IEEE CS Press, Dec. 2011, pp. 153–159.

[4] NVIDIA Corporation, “NVIDIA CUDA C programming
guide version 5.0,” 2012.

[5] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple-
mentations of a parallel algorithm for computing euclidean
distance map in multicore processors and GPUs,” Interna-
tional Journal of Networking and Computing, vol. 1, no. 2,
pp. 260–276, July 2011.

[6] NVIDIA Corporation, “NVIDIA CUDA C best practice guide
version 3.1,” 2010.

[7] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic
programming for the optial poygon triangulation on the
GPU,” in Proc. of International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP, LNCS
7439). IEEE CS Press, Sept. 2012, pp. 1–15.

[8] K. Nakano, “Simple memory machine models for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops. IEEE CS Press, May 2012, pp. 788–
797.

[9] ——, “The hierarchical memory machine model for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops, May 2013, pp. 591–600.

[10] P. H. Sellers, “The theory and computation of evolutionary
distances: Pattern recognition,” Journal of Algorithms, vol. 1,
no. 4, pp. 359–373, December 1980.

[11] E. Ukkonen, “Algorithms for approximate string matching,”
Information and Control, vol. 64, no. 1–3, pp. 100–118,
January–March 1985.

[12] G. Myers, “A fast bit-vector algorithm for approximate string
matching based on dynamic programming,” Journal of the
ACM, vol. 46, no. 3, pp. 395 – 415, May 1999.

[13] Y. Utan, M. Inagi, S. Wakabayashi, and S. Nagayama, “A
GPGPU implementation of approximate string matching with
regular expression operators and comparison with its FPGA
implementation,” in Proc. Int. Conf. Parallel and Distributed
Processing Techniques and Applications, July 2012.

[14] K. Nakano, “Efficient implementations of the approximate
string matching on the memory machine models,” in Proc.
of International Conference on Networking and Computing,
Dec. 2012, pp. 233–239.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms. MIT Press, 1990.

[16] K. Nakano, “An optimal parallel prefix-sums algorithm on the
memory machine models for GPUs,” in Proc. of International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP, LNCS 7439). Springer, Sept. 2012,
pp. 99–113.

[17] ——, “Asynchronous memory machine models with barrier
syncronization,” in Proc. of International Conference on
Networking and Computing, Dec. 2012, pp. 58–67.

