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Abstract—Recent GPUs, which have many processing units
connected with a global memory, can be used for general pur-
pose parallel computation. Users can develop parallel programs
running on GPUs using programming architecture called CUDA
(Compute Unified Device Architecture). The main contribution of
this paper is to implement a Canny edge detection algorithm on
CUDA. The experimental result shows that our implementation
of Canny edge detection algorithm on CUDA achieves a speedup
factor of 61 over a conventional software implementation.
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1. INTRODUCTION

A GPU (Graphics Processing Unit) is a specialized mi-
croprocessor that accelerates 3D or 2D graphics operations.
Recent GPUs, which have many processing units connected
with a global memory, can be used for general purpose
parallel computation. CUDA (Compute Unified Device Ar-
chitecture) [1] is the architecture for general purpose parallel
computation on GPUs. Using CUDA, we can develop parallel
algorithms to be implemented in GPUs. So, many studies
have been devoted to implement parallel algorithms using
CUDA [2]-5].

Canny edge detection algorithm [6], one of the most com-
monly used image processing algorithms, detects high-quality
edges in images. Using this algorithm, we can obtain accurate
edges of input images. Essentially, Canny edge detection
consists of four steps; Step 1: Gaussian filtering, Step 2:
Sobel filtering, Step 3: non-maximum suppression, and Step 4:
hysteresis thresholding. In Step 1, Gaussian filtering is used
to filter out noises in the images by smoothing. This can be
done by convolution using a Gaussian filter kernel in Figure 1.
In Step 2, Sobel filtering is used to find the edge strength by
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filter
taking the gradient of the image. For this purpose, a pair of
Sobel filter kernels in Figure 2 is used to detect the intensity
changes for horizontal direction d, and the vertical direction
d,. Also, the magnitude M of edge and the gradient direction

are computed for each pixel by the formulas M =, /d2 + d2

and 6 = tan~!(5%), respectively. In Step 3, non-maximum
suppression is used to get thin edges in the image. In this
step, local maximum along the gradient direction is detected
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using M and . After that, in Step 4, hysteresis thresholding is
used to detect the final edges in image using two thresholding
values ¢_low and ¢_high. In this step, the pixels are classified
into three categories in terms of the value of the magnitude
M. If M > t_high, the pixel is classified as a strong edge. If
t_low < M < t_high, the pixel is classified as a weak edge.
If M < t_low, the pixel is classified as a non-edge. Based on
this classification, final edge pixels are determined as follows:
(1) A strong edge pixel is always an edge pixel. (2) A weak
edge pixel is an edge pixel if it is adjacent to an edge pixel.
(3) A non-edge pixel is never an edge pixel. Thus, we need to
traverse all weak edge pixels starting from strong edge pixels
to find all edge pixels. Figure 3 shows the process of Canny

edge detection.

Fig. 3. Canny edge detection process (a) Input image (b) Gaussian filtering
(c) Sobel filtering (d) Non-maximum suppression (e) Hysteresis thresholding
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In [7], the Canny edge detection was implemented on
CUDA. However, their algorithm has flaw. Their algorithm
may not traverse all weak edge pixels in Step 4. In their
algorithm, the input image is divided into subimages. The
weak edges are traversed in each subimage. To traverse the
weak edges which cross over other subimages, Step 4 for
subimages is performed fixed times. Thus, their algorithm may
not obtain the correct results. On the other hand, our method
can always traverse all weak edge and obtain correct results.

II. IMPLEMENTATION

Figure 4 shows the CUDA hardware (GPU) architecture [8].
GPU has several Streaming Multiprocessors (SMs) and a
global memory. Each SM has eight processor cores and
threads, units of processing on CUDA, run on them in parallel.
Also, each SM has a shared memory that can be accessed by its
eight processor cores. The global memory whose size is much
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larger than the shared memory can be accessed by all SMs.
However, the access time of the global memory is generally
longer. Therefore, shared memories are often used as a cache
memory of the global memory.
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Fig. 4. CUDA hardware (GPU) architecture

In our implementation, shared memories are efficiently used
to reduce the number of reading and writing operations for the
global memory. However, the input image must be stored in
global memory, because the shared memory is too small to
store it. The details of our implementation for the Canny edge
detection on CUDA are spelled out as follows.
Gaussian and Sobel filtering: The input image is divided
into subimages and each of them is assigned to a SM. Each
SM stores the assigned subimage into its shared memory and
convolutions of Gaussian filter and Sobel filter are computed
in parallel. After that, the resulting values of M and € are
written to the global memory.
Non-maximum suppression: Using the resulting values M
and 6, each thread checks whether the pixel is local maximum
or not. Pixels with a local maximum are recorded in the global
memory as candidates of edge pixels.
Hysteresis thresholding: We assign each subimage to a SM
and each pixel is processed by the corresponding thread. If the
pixel is a strong edge pixel, the thread starts to traverse weak
edge pixels adjacent to it. For this purpose, we use a stack for
such pixel. First, if the pixel is a strong edge pixel, we check all
neighboring pixels. The thread pushes each neighboring pixel
into the stack if it is a weak edge pixel. After that, thread pop
a pixel from the stack and do the same operation for this pixel.
This operation is repeated until the stack becomes empty. In
this way, weak edge pixels are traversed starting from a strong
edge pixel. Pixels traversed are labeled as a final edge pixel.
Figure 5 shows the process of the edge hysteresis thresholding.

III. EXPERIMENTAL RESULTS

We have evaluated the performance of our Canny edge
detection algorithm implemented on CUDA. For the purpose
of comparison, we have also implemented a conventional
software approach running on a single CPU on a PC. We
have used Tesla C1060 with 240 cores running in 1.3GHz and
4GB memory. To evaluate a conventional software approach,
we have used a PC server with Intel Xeon E5540 running in
2.0GHz and 6GB memory.

Table I shows the performance of CUDA and a single CPU.
The size of input image is 10240 x 10240. The data transfer
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Fig. 5. Process of Hysteresis Thresholding
TABLE I
PERFORMANCE OF GPU AND CPU
CPU GPU GPU
(without data transfer) (with data transfer)
Time [ms] | 22289.45 364.389 44429

is necessary for CUDA. CUDA implementation achieved
approximate 50 times speedup. If the data transfer time is
not included, CUDA implementation achieved approximate 61
times speedup.
IV. CONCLUSION
In this paper, we implemented the Canny edge detection
using CUDA. Comparing to the performance of CPU system,
CUDA can achieve 50 times speed-up.
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