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Abstract—A GPU (Graphics Processing Unit) is a specialized
processor for graphics processing. GPUs have the ability to
perform high-speed parallel processing using its many pro-
cessing cores. To utilize the powerful computing ability, GPUs
are widely used for general purpose processing. The main
contribution of this paper is to show a new template matching
algorithm using pixel rearrangement. Template Matching is a
technique for finding small parts of an image which match
a template image. The feature of our proposed algorithm
is that using pixel rearrangement, multiple low-resolution
images are generated and template matching for the low-
resolution images is performed to reduce the computing time.
Also, we implemented our algorithm on a GPU system. The
experimental results show that, for an input image with size of
4096 × 4096 and a template image with size of 256 × 256, our
implementation can achieve a speedup factor of approximately
78 times over the conventional sequential implementation.

Keywords-Template matching; GPU; CUDA; Parallel pro-
cessing;

I. INTRODUCTION

GPU (Graphics Processing Unit) is a hardware device
equipped with many processors that are specialized in the
graphics processing. Recent GPUs can be used for not
only the graphics processing but also the general purpose
processing because GPUs have the high speed computing
with their high parallelism. CUDA (Compute Unified Device
Architecture) is a developing environment to utilize GPUs
for a general purpose processing [1]. Using CUDA, we can
develop parallel algorithms to be implemented on GPUs
and many studies have been devoted to implement parallel
algorithms [2], [3].

Template matching is one of the techniques for detecting
a given template from an image that is called a base image,
and examine whether the template exists in the base image
to be detected. It is widely used for industrial manufacturing,
robot navigation, geographical research, image registration,
etc [4], [5], [6], [7]. Figure 1 shows an example of template
matching.

Given a template image and a base image, template
matching is to find a position such that a subimage in
the base image is the most similar to the template image.
There are some measurements of the similarity between a
template image and a subimage of the base image. In this
paper, we use the normalized correlation coefficient as the

(b) Template image

(a) Base image (c) The result of template matching

Figure 1. Example of Template Matching

similarity measure [8]. It is a normalized measurement with
the average and standard deviation of a template image and
a base image.

To reduce the computing time of template matching,
numerous methods have been developed. One of the most
famous methods is coarse-to-fine template matching [4], [9],
[10]. It locates a low-resolution template image into the low-
resolution base image, and then refines the search at higher
resolution levels. In this algorithm, it is important to make
low-resolution images because the low-resolution template
image is not always found in the low-resolution base image.
For example, let us consider the case that a low-resolution
image is made by sampling every two pixels. When a
base image and a template image are checkered patterns
as shown in Figure 2, their low-resolution images may be
different from each other. Although the base image includes
the template image, it occurs that the template matching
may be failed. To avoid such faults by sampling, blurred
low-resolution images are made by low-pass filter such as
Gaussian filter, Laplacian filter, wavelet transform, and so
on [11], [12], [13], [14], [15]. However, it is not always
possible to find the low-resolution template image. On the
other hand, to accelerate the speed of template matching,
various methods supported by hardware acceleration with
GPUs [16], [14], [17], [18] and FPGAs [19], [20] have been
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Figure 2. Low-resolution images by sampling

presented.
The main contribution of this paper is to present a new

template matching algorithm with pixel rearrangement. This
algorithm generates low-resolution images by rearranging
pixels of the base image. In the existing sampling-based
algorithms, one low-resolution image is generated, and tem-
plate matching is performed for the image. However, our
algorithm generates k2 low resolution images by sampling
every k pixels. The sampling is performed for the base image
shifted pixel by pixel from 0 to k−1 pixels. Therefore, in our
algorithm, given an n × n base image, k2 sampled images
whose size is n

k × n
k are generated. More specifically, let I ′s,t

(1 ≤ s, t ≤ k) be k2 sampled images, and they are sampled
from a base image such that each sampled image is

I ′s,t(x, y) = I(kx + s, ky + t) (1 ≤ x, y ≤ k).

Figure 3 shows an example of sampling for k = 3. Since
the size of a base image is 6 × 6, k2 sampled images
of size 2 × 2 are generated. The readers should have no
difficulty to confirm that the size of a base image is equal
to the total size of the k2 sampled images. Therefore,
we can say that our sampling manner is equivalent to
rearrangement of a base image. Also, a template image
is reduced by sampling every k pixels. Figure 4 shows
an example of base image and its low-resolution images
with pixel rearrangement for k = 64. In this example,
k2 = 4096 low-resolution images are generated. Although
the base image and template image are checkered patterns
shown in Figure 2, at least one low-resolution image includes
the same pattern as the low-resolution template. In other
words, if the base image includes the template image, it
is always to find it in one of the low-resolution images
using our template matching with pixel rearrangement. After
that, we perform template matching for the low-resolution
template image and each sampled base image. Form the

results thus obtained, template matching is performed for
the corresponding positions in the original base image.
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Figure 3. Pixel rearrangement for k = 3

Also, we have implemented it in a modern GPU system,
Nvidia GeForce GTX 480. Our GPU implementation has
achieved approximately 78 times speedup over a conven-
tional CPU implementation,

The remainder of this paper is organized as follows:
Section II introduces the similarity between two images.
Section III shows the proposed template matching with pixel
rearrangement. Section IV briefly describes about CUDA
architecture. The GPU implementation is shown in Sec-
tion V. Section VI exhibits the performance of our proposed
algorithm on the GPU. Finally, Section VII offers concluding
rearms.

II. THE IMAGE SIMILARITY BETWEEN A TEMPLATE

IMAGE AND A BASE IMAGE

The main purpose of this section is to define the similarity
R(T, I) for a template image T and a base image I to clarify
our work in this paper.

There are many measurements of the similarity in tem-
plate matching. In this paper, we use the normalized cor-
relation coefficient as the similarity [8]. The normalized
correlation coefficient is used to measure the correlation
between two variables. We use it to evaluate the similarity
of a template image and a base image in template matching
as follows.

First, let us define the similarity of two images A and
B of the same size. For simplicity, we assume that they
are square, that is, the size of two images is m × m. Let
A(i, j) and B(i, j) denote the intensity level of an (i, j) pixel
(1 ≤ i, j ≤ m) of A and B, respectively. The normalized
correlation coefficient R(A, B) between the two images A
and B is computed by the following formula:

R(A, B) =

∑
1≤i,j≤m

(A(i, j) − A)(B(i, j) − B)

√ ∑
1≤i,j≤m

(A(i, j) − A)
∑

1≤i,j≤m

(B(i, j) − B)

154



64

Base  image

4096

4096

4096 low-resolution
base images

64

I’0,0 I’1,0 I’2,0

I’0,1 I’1,1 I’2,1

I’0,2 I’1,2 I’2,2

I’63,0

I’63,1

I’0,63 I’1,63 I’63,63I’2,63

I’63,2

Figure 4. Example of base image and its low-resolution images with pixel rearrangement for k = 64

where A = 1
m2

∑
A(i, j) and B = 1

m2

∑
B(i, j) are the av-

erage pixel values of A and B, respectively. The normalized
correlation coefficient R(A, B) takes a real number in the
range [−1, +1]. Larger value of the normalized correlation
coefficient implies that two images A and B are more
similar. It should be clear that the normalized correlation
coefficient R(A, B) can be computed in O(m2) time by a
sequential algorithm in an obvious way.

Suppose that a base image I and a template image T are
given. Let n × n and m × m (n > m) be the size of a
base image I and a template image T , respectively. Also,
let I(x, y) and T (x, y) denote the intensity levels of (x, y)
pixels in I and T , respectively. Let I[x, y] (1 ≤ x, y,≤
n−m+1) denote an m×m subimage of I that includes all
pixels I(i′, j′) (x ≤ i′ ≤ x+m−1 and y ≤ j′ ≤ y+m−1).
We define the similarity R(T, I) between a template T and
a base image I as follows:

R(T, I) = max
1≤x,y≤n−m+1

R(T, I[x, y]).

Clearly, R(T, I) is larger if I has a more similar subimage
to T . Also, the position (x, y) that gives the maximum value
of R(T, I[x, y]) corresponds to the most similar subimage
I[x, y] to the template image T . Let us evaluate the com-
puting time necessary to compute R(T, I) and the most
similar position R(T, I) by a sequential algorithm. For an
m×m template image T and a subimage I[x, y], the value
of R(T, I[x, y]) can be computed in O(m2) time. Hence,
the evaluation of R(T, I[x, y]) for all I[x, y] (1 ≤ x, y ≤
n−m + 1) takes (n−m + 1)2 ×O(m2) = O(n2m2) time.

III. TEMPLATE MATCHING WITH PIXEL ARRANGEMENT

This section describes our proposed template matching
algorithm with pixel arrangement. Given an n×n base image
I and an m × m template image T , in this algorithm, k2

low-resolution base images I ′s,t (1 ≤ s, t ≤ k) by pixel
rearrangement such that

I ′s,t(x, y) = I(kx + s, ky + t) (1 ≤ x, y ≤ k),

as shown in Figure 5. The size of each I ′s,t is n/k × n/k.

I’0,0 I’1,0
I’k-1,0

I’0,1 I’1,1
I’k-1,1

I’0,k-1 I’1,k-1
I’k-1,k-1

k2 low-resolution base images

Base  image

(0,0) (1,0) (k-1,0)

(0,1) (1,1) (k-1,1)

(0,k-1) (1,k-1) (k-1,k-1)

Figure 5. Pixel rearrangement

Also, a low-resolution template image T ′ is generated by
sampling every k pixels. After that, template matching for
the low-resolution template image and each low-resolution
base image is performed. After that, we perform template
matching for the low-resolution template image and each
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sampled base image. Form the results, template matching
is performed for the corresponding positions in the original
base image. When an n × n base image and an m × m
template image are given, our proposed template matching
algorithm with pixel rearrangement as follows.
Template Matching Algorithm with Pixel Rearrangement

Step 1. A low-resolution template image T ′ is generated
by sampling every k pixels from a template image.
After that, k2 low-resolution base images I ′s,t (1 ≤
s, t ≤ k) are generated by pixel rearrangement.

Step 2. For each I ′s,t, the similarity R(T ′, I ′s,t) is com-
puted. If the similarity is larger than a threshold
value t, its coordinate is made a candidate position
for the next step.

Step 3. The candidate positions are transformed to corre-
sponding positions in the original base image. For
each position, the similarity between original base
image and the template image is computed.

Step 4. The position that has the largest similarity is
output as the result.

The details of each step are shown, as follows.
Step 1: In this step, a low-resolution template image T ′

is generated by sampling every k pixels from an m × m
template image. Since the size of T ′ is m

k × m
k , it takes

O(m2

k2 )-time. After that, to obtain k2 low-resolution base
images I ′s,t (1 ≤ s, t ≤ k), pixel rearrangement is performed
such that

I ′s,t(x, y) = I(kx + s, ky + t) (1 ≤ x, y ≤ k),

as shown in Figure 5. The size of each I ′s,t is n
k × n

k . Since
the above operation is just rearranging pixels in the base
image, its computing time is O(n2).

Step 2: In Step 2, template matching between the low-
resolution template image T ′ and each low-resolution base
image I ′s,t is performed, that is computing similarities
R(T ′, I ′s,t) (1 ≤ s, t ≤ k), In the template matching, if the
similarity is larger than a certain threshold t, its coordinate
is stored as a candidate position for the next step. Since the
sizes of each low-resolution image and the low-resolution
template image are n

k × n
k and m

k × m
k , O(n2m2

k4 )-time is
necessary to perform each template matching. Therefore, this
step takes O(n2m2

k2 ) in total.
Step 3: In this step, the candidate positions are trans-

formed to corresponding positions in the original base im-
age. We assume that the number of the candidate positions
is l found in Step 2 and let pi = (xi, yi) (1 ≤ i ≤ l)
be the transformed candidate positions. For each pi, tem-
plate matching is performed, that is computing similarities
R(T, I[xi, yi]). It takes O(m2)-time to perform the template
matching for each pi. Therefore, the total computing time
in this step is O(lm2).

Step 4: In Step 4, the maximum similarity position in
Step 3 is output as the result. To find the maximum position
from l candidates, it takes O(l)-time.

According to the above, the total running time is
O(n2m2

k2 + lm2). If l is small, it is close to O(n2m2

k2 ).

IV. COMPUTE UNIFIED DEVICE ARCHITECTURE

(CUDA)

Graphics Processing Units (GPUs) can achieve a high
computational throughput due to their large number of
processing cores and different memory spaces. All the
processing cores are organized into several streaming multi-
core processors as shown in Figure 6. For fully utilizing
all the processing cores of a GPU, numerous threads are
required. Compute Unified Device Architecture (CUDA) [1]
organizes these threads into a large grid of thread blocks.
Each thread block contains a number of threads which can
be executed on an assigned streaming multi-core processor.
Threads of a thread block are organized into several warps
and each warp contains 32 threads. At a time, only a half
warp of a thread block can be executed by the assigned
streaming multi-core processor concurrently. The grid will
launch a segment of codes, named a kernel, to occupy a
GPU device at a time. Actually, CUDA is a new parallel
programming model and instruction set architecture. CUDA
comes with a software environment that allows developers
to use C-like high-level programming language.
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Figure 6. CUDA Hardware Architecture

On the other hand, GPUs can provide different memory
spaces for different applications and each memory space has
its own advantages and drawbacks. In CUDA architecture,
each memory space has a corresponding specification. In
this paper we only introduce few of them shown as follows.

Global memory is a main device memory of GPUs and
which is off-chip memory. Therefore it has heavy access
latency to each processing core. Fortunately, CUDA provides
a technique known as coalescing [21] to hide the access
latency of the global memory. When 16 sequential threads
access 16 sequential and aligned values in the global mem-
ory, the GPU will automatically combine them into a single
transaction.

Shared memory is a sort of on-chip memory and which
is located within each streaming multi-core processor. It has
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almost no access latency and only visible to the thread block
which is executed by the corresponding streaming multi-core
processor. In practice, the shared memory can be used as a
cache to hide the access latency of the global memory.

V. GPU IMPLEMENTATION

In this section, we show an implementation of parallel
execution of template matching with pixel rearrangement
using a GPU. The idea of our GPU implementation is to
reduce the number of access to the global memory using the
shared memory. In Step 1 and Step 2 shown in Section III,
since the execution for each low-resolution image can be
performed in parallel the execution for each low-resolution
image can be performed in parallel. Therefore, one thread
block is assigned to the execution for each low-resolution
image and every thread block runs in parallel. Moreover,
in each thread block, pixel rearrangement in Step 1 and
template matching for low-resolution in Step 2 are executed
with plural threads in parallel.

Suppose that an n × n base image and an m × m
template image are given and they are stored to the global
memory. First, a grid which consists of k2 thread blocks is
performed. Each thread block is composed of 512 threads
and performs the process for one of the k2 low-resolution
base images I ′s,t (1 ≤ s, t ≤ k) in Step 1 and Step 2.
Each thread block reads corresponding pixels of I ′s,t from
the base image in the global memory and store them to
the shared memory. Similarly, it reads the low-resolution
template image T ′ by sampling every k pixels and store them
to the shared memory. Then, using I ′s,t and T ′ in the shared
memory, the similarity R(T ′, I ′s,t) is computed in parallel
using 512 threads. Each thread computes the similarity and
the result is stored to the shared memory. In the computation
of the similarity, we utilize sequential similarity detection
algorithm (SSDA) [22] to reduce the computing time. SSDA
accelerates the computation of the normalized correlation
coefficient by reducing unnecessary computation for a cer-
tain threshold value. In our implementation, the similarity
is computed such that it is no less than 0.95. The positions
whose similarity is no less than 0.95 are stored to the global
memory as candidate positions. The process of the above
can be done using the shared memory except reading the
input images and storing the results to reduce the number
of access to the global memory.

After computation of the similarity for each I ′s,t, the
similarity for the original resolution of the base image
and the template image is computed, which corresponds to
Step 3. If the number of candidate positions found in the
previous step is l, the similarity for each candidate position
is computed by l thread blocks that is composed of 512
threads. Each thread block transforms the position in the
low-resolution base image to that in the original resolution
base image. Then, it reads a corresponding m × m subim-
age in the transformed position and the original resolution

template image. Since the memory reading mostly accesses
sequential pixels in the global memory, almost all accesses
are benefited by coalescing access. In this computation of
the similarity, SSDA is utilized to reduce the computing
time. After computing the similarity, it is stored in the
global memory. Then, the maximum similarity position of l
candidate positions is output using one thread block that is
composed of one thread, which corresponds to Step 4.

VI. PERFORMANCE EVALUATION

We have implemented and evaluated our proposed tem-
plate matching with pixel rearrangement on the GPU. For
the purpose of comparison, we have also implemented a
conventional software approach without support of the GPU.
We have used Nvidia GeForce GTX 480 with 480 processing
cores (15 streaming multi-core processors which has 32
processing cores) running in 1.4GHz and 3GB memory. To
evaluate software approach, we have used Intel Core i7 870
running in 2.93GHz and 8GB memory.

To evaluate our proposed algorithm, we have compared
the execution time of template matching with and without
pixel rearrangement in software implementation. Table I
shows the performance. We have used a base image shown
in Figure 4 and two template images shown in Figure 7
that are included in the base image. Also, in the template
matching with pixel rearrangement, we have used the param-
eter k = 64, that is we have generated 642 low-resolution
base images by sampling every 64 pixels. Since the sizes of
the base image and the template images are 4096 × 4096
and 256 × 256, the sizes of one of the low-resolution base
images and the low-resolution templates image are 64× 64
and 4 × 4, respectively. In the implementation with pixel
rearrangement, the number of candidate positions found in
Step 2 for template images (a) and (b) was 76 and 1873,
respectively. The computing time depends on the number of
candidate positions. Therefore, the computing time is dif-
ferent between them. The results of both are equivalent and
using pixel rearrangement, our proposed algorithm achieved
approximately 2000 times speedup. Since the speedup factor
is no more than k2 = 642 = 4096 as shown in Section III,
the result is reasonable.

256

256

(a) (b)

256

256

Figure 7. Template Images
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Table II
PERFORMANCE OF TEMPLATE MATCHING WITH PIXEL REARRANGEMENT ON THE GPU

Template image (a)
Step1 and Step2 [ms] Step3 [ms] Step4 [ms] Total [ms] Speed-up

CPU 3900.063 9.092 0.001 3909.156 —
GPU 33.692 1.261 0.007 34.954 111.837

Template image (b)
Step1 and Step2 [ms] Step3 [ms] Step4 [ms] Total [ms] Speed-up

CPU 4095.032 506.867 0.008 4601.906 —
GPU 33.356 24.956 0.008 58.320 78.908

Table I
PERFORMANCE OF TEMPLATE MATCHING WITH AND WITHOUT PIXEL

REARRANGEMENT IN THE SOFTWARE IMPLEMENTATION

Template image (a)
Without With

pixel rearrangement pixel rearrangement
Step 1 [ms] — 421.504
Step 2 [ms] — 3478.559
Step 3 [ms] 9287119 9.092
Step 4 [ms] 58.183 0.001
Total [ms] 9287177.183 3909.156
Speed-up — 2375.750

Template image (b)
Without With

pixel rearrangement pixel rearrangement
Step 1 [ms] — 422.634
Step 2 [ms] — 3672.240
Step 3 [ms] 9231575 506.867
Step 4 [ms] 55.910 0.008
Total [ms] 9231630.910 4601.749
Speed-up — 2006.114

Table II shows performance of our proposed template
matching on the GPU and the performance of the software
implementation. We have also used a base image shown
in Figure 4 and two template images shown in Figure 7.
Note that Step 1 and Step 2 in the GPU implementation
are executed by the identical thread block. Therefore, the
computing time of the two steps is shown by the total time
of them in the table. The results of the GPU are equivalent
to that of the CPU implementation and GPU implementation
achieved at least approximately 78 times speedup.

VII. CONCLUSIONS

In this paper, we have presented a template matching algo-
rithm with pixel rearrangement. Using pixel rearrangement,
multiple low-resolution images are generated and template
matching for the low-resolution images is performed to
reduce the computing time. Also, we have implemented it
with a modern GPU system, Nvidia GeForce GTX 480.
Comparing to the performance of the CPU implementation,
the GPU implementation have achieved approximately 78
times speedup.
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