
Fast Ellipse Detection Algorithm using Hough Transform on the GPU

Yasuaki Ito, Kouhei Ogawa, and Koji Nakano
Department of Information Engineering,

Hiroshima University
1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527, Japan

{yasuaki, kogawa4, nakano}@cs.hiroshima-u.ac.jp

Abstract—GPUs (Graphics Processing Units) are specialized
microprocessors that accelerate 3D or 2D graphics operations.
Recent GPUs, which have many processing units connected
with a global memory, can be used for general purpose parallel
computation. To utilize the powerful computing ability, GPUs
are widely used for general purpose computing. The main
purpose of this paper is an ellipse detection algorithm with
Hough transform. The feature of our algorithm is that to reduce
computational time and space, the parameter spaces in the
Hough transform are decomposed for each parameter and each
parameter is computed in series. Also, we implemented our
algorithm on a modern GPU system. The experimental results
show that, for an input image with size of 2040×2040, our GPU
implementation can achieve a speedup factor of approximately
64 times over the sequential implementation without the GPU
support.

Keywords-Ellipse detection; Hough transform; GPU; CUDA;

I. INTRODUCTION

Random bin picking is one of the systems with highest
interest of the industry, in order to automate the production
process. It is to locate and move parts randomly placed,
and jumbled in generic bins with a computer vision system
and a robot arm. However, there are some problems such
as extreme part overlap and occlusion, significant lights
variability and shadowing, shortage of distinct features on
parts, and collision avoidance with other parts, tools, and
bins. To reduce the difficulty, parts with markers are utilized
to locate them. Especially, circle markers are used for robot
vision [1] because a circle must be seen as an ellipse from
any angle as shown in Figure 1. In this paper, we focus on
the ellipse detection to find such circle markers.

Hough transform is a technique that finds shapes in
images [2]. It has been used to extract lines, circles, el-
lipses and arbitrary shapes. The Hough transform defines
a mapping from the image into a parameter space that is
represented by an accumulate array. The parameter space
is defined by parameterizing detected shapes. Based on
each edge point of the image, the mapping adds a vote
to corresponding elements in the accumulate array. The
elements that are increased represent associated parameters
based on the detected shapes. Therefore, the elements that
are voted intensively correspond to the parameters of the
shapes in the image space.

In general, the technique of the Hough transform can be
directly used for any parameterized curve. Let us consider
the detection of ellipses using Hough transform. An ellipse
can be defined by the five parameters, its center (cx, cy), the
major axis a, the minor axis b, and the slope θ as shown
in Figure 2. To detect ellipses, a five-dimensional parameter
space is necessary, that is, O(N5) space is necessary to store
the parameter space, where N is the size of each dimension
of the parameter space. Also, it takes O(N5)-time to vote
for each edge point and search intensive elements in the
accumulate array. Therefore, the generalization of the Hough
transform implies an exponential increase in computational
time and space requirements. For this reason, to reduce its
computational complexity, most of methods based on the
original Hough transform have been proposed [3]. One of
the important ways to reduce the computation has been the
use of geometric properties of shapes to decompose the
parameter space.

Many algorithms for ellipse detection have been proposed
in the past. Ming et al. have shown an ellipse detection algo-
rithm using bounding boxes [4]. Yao et al. have proposed a
robust GA-based ellipse detection [5]. Also, ellipse detection
algorithms using Hough transform have been proposed using
parameter space decomposition [6], [7], [8]. To reduce
the number of votes to the accumulate array, randomized
Hough transform is utilized by voting for random selected
points [9], [10], [11], [12], [13].

The main contribution of this paper is to present a new
ellipse detection algorithm based on Hough transform. The
idea of this algorithm is to reduce the computing time
and space using the parameter space decomposition in the
Hough transform. Specifically, center coordinates, a slope,
and two axes that define an ellipse are detected in series.
In each detection, based on the edge image, voting to the
parameter space is used same as the Hough transform. In
the center detection, middle points of every two edge points
are voted. To detect the slope, perpendicular bisectors of
every two edge points are voted. Voting the lengths of
two axes, a major axis and a minor axis are found. In
each computation, it is not always to detect the correct
parameters for the effect of noise or other objects. Therefore,
we find totally P 3 ellipse candidates, P center candidates,
P 2 slope candidates and P 3 axes candidates, as shown

2011 Second International Conference on Networking and Computing

978-0-7695-4569-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICNC.2011.61

313

Center Detection

Slope Detection

Axes Detection

Ellipse Evaluation

P candidates…

… … ……

… …

…

…

…

… …

P2 candidates

P3 candidates

Edge image

Figure 3. Overview of the proposed ellipse detection algorithm

Figure 1. Industrial parts with circle markers

Center (xc, xc)

Slope θ

Major axis a

Minor axis b

Figure 2. Five parameters of an ellipse

in Figure 3. After detecting P 3 ellipse candidates, each
candidate is checked whether it is a true ellipse or not, using
Euclid distance map of the edge image. Recall that, when
the Hough transform is used directly, it takes O(N5) time
using an accumulate array of size O(N5). However, in the
proposed algorithm, a two-dimensional parameter space for
each computation is used. The proposed algorithm runs in
O(N2 + NE) using an accumulate array of size O(N2),
where E is the number of the edge points in the edge image
from the input image.

The proposed algorithm is similar to the Hough transform
based algorithm with parameter space decomposition [6],
[7], [8]. The difference is that in the proposed algorithm, the
parameter space is decomposed into three two-dimensional
spaces. Also, after voting, each detected ellipse is checked
whether it is a true ellipse or not using Euclid distance map.

GPUs (Graphics Processing Units) are specialized micro-
processors that accelerate 3D or 2D graphics operations.
Recent GPUs, which have many processing units connected
with a global memory, can be used for general purpose
parallel computation. CUDA (Compute Unified Device Ar-
chitecture) [14] is an architecture for general purpose parallel
computation on GPUs. Using CUDA, we can develop paral-
lel algorithms to be implemented in GPUs. Therefore, many
studies have been devoted to implement parallel algorithms
using CUDA [15], [16].

Also, we have implemented it in a modern GPU system,
Nvidia GeForce GTX 480. In this GPU implementation,
we have considered many programming issues of the GPU

314

system such as coalescing access of global memory, uti-
lization of a shared memory that is an on-chip memory.
Our GPU implementation has achieved approximately 64
times speedup over a CPU implementation without the GPU
support.

The reminder of this paper is organized as follows:
Section II shows the proposed ellipse detection algorithm.
Section III briefly describes about CUDA architecture. The
GPU implementation is shown in Section IV. Section V
exhibits the performance of our proposed algorithm on the
GPU. Finally, Section VI offers concluding remarks.

II. ELLIPSE DETECTION ALGORITHM BASED ON HOUGH

TRANSFORM

This section describes our proposed ellipse detection algo-
rithm. The idea of this algorithm is to reduce the computing
time and space by decomposition of the parameter space in
the Hough transform. Given an input image of size M ×M ,
the details of this algorithm are spelled out as follows:
Ellipse Detection Algorithm

Step 1. An edge image is obtained from an input image.
Step 2. Euclid distance map is generated from the edge

image.
Step 3. An edge point list is generated from the edge

image.
Step 4. Center candidates are detected by voting mid-

points of every two edge points.
Step 5. Slope candidates are detected by voting perpen-

dicular bisectors of every two edge points.
Step 6. Axes candidates are detected by the result of

voting the length of axes for every edge point.
Step 7. Every candidate is evaluated with Euclid distance

map.

This algorithm is divided into two parts, preprocess and vote
parts. These two parts correspond to Steps 1 to 3 and Steps 4
to 7, respectively. The details of each step are shown, as
follows.

Step 1: To obtain an edge image, we utilize Canny edge
detection algorithm [17]. Canny edge detection algorithm is
the most commonly used image processing algorithm that
detects edges in images. It is known that we can obtain
accurate edges of input images. The computing time is
O(M2).

Step 2: Given an edge image, Euclidean Distance Map
(EDM) is a 2-D array of the same size such that each element
is storing the Euclidean distance to the nearest edge point
as shown in Figure 4. The array is used for Step 7. The
computing time is O(M2) whose details are shown in [15].

Step 3: In this algorithm, the edge image is scanned
again and again to utilize edge information. Since usually
the number of edge points is much smaller than that of non-
edge points in the image, an edge list that is a series of

1 1 1 1 1

1 1

1 1 1 1 1 1 1

1 1 2 2 1 1

1 1 2 2 1 1

1 1 1 1 1 1

1 1 1

1 1 1 1 1 0

2

2

2 2

2

22

2 2

22

2

2 2

2

5

55

8

8

5

5 0 0 0 0 0
0 0

0 0
0 0

0 0
0 0 0 0

(a) Edge image (b) Euclid distance map

Figure 4. Euclid Distance map

coordinates of all edge points is generated to avoid scanning
non-edge points. It takes O(M2)-time to generate it.

Step 4: In this step, centers of ellipses in the image
are detected. To find the center of the ellipse, coordinates
of midpoints for every two edge points are voted to an
accumulator that is a 2D array for the (x, y)-space. The
coordinates of the midpoints (xm, ym) of the two edge
points (x1, y1) and (x2, y2) are computed by the formulas,
xm = x1+x2

2 , ym = y1+y2
2 . If there is an ellipse in the image,

the votes for the center of the ellipse are concentrated. That
is, it is possible that the coordinate whose number of the
votes is large is the center of the ellipse. However, if there are
line segments, the votes on the segments are concentrated.
To avoid it, the voting for two points that are too close or
too far is not performed. In this voting method, it is not
always to detect the center of the ellipse for the effect of
noise or other objects. Therefore, after voting, we find the
largest P peaks that correspond to the P points are detected
as center candidates. Let N be the size of each dimension
of the (x, y)-parameter space. To store the parameter space,
an accumulate array of size O(N2) is necessary. Since a
middle point is voted for each two edge points, it takes
O(E2)-time to vote for all the pairs of edge points, where
E is the number of the edge points. Also, if P � N , to
search P center candidates, O(N2)-time is necessary. The
total computing time in Step 4 is O(E2 + N2) = O(N2)
because E2 < N2.

Step 5: In this step, the slope of ellipses in the image are
detected. Since an ellipse is symmetry for its two axes, if
we can find the slope of the axes, the slope of the ellipse
is determined. To find the symmetry axes of the ellipse,
perpendicular bisectors for every two edge points are voted
to an accumulator that is a 2D array for the (ρ, θ)-space.
Let us consider polar consideration of a line. A line is
represented by the formula ρ = x cos θ + y sin θ, where
ρ represents the distance between the line and the origin,
while θ is the angle of the line normal to the line (Figure 5).
Therefore, a perpendicular bisector for two points (x1, y1)
and (x2, y2) is computed by the formulas:

θ = tan−1 y2 − y1

x2 − x1
,

315

x

y

θ

ρ

O

Figure 5. Polar consideration of a line

ρ =
(x1 + x2) cos θ + (y1 + y2) sin θ

2
.

Perpendicular bisectors for every two edge points are voted
to an accumulator that is a 2D array for the (ρ, θ)-space. In
the (ρ, θ)-space, parameters whose center is (cx, cy) are on
the curve ρ = cx cos θ+cy sin θ. Since two axes of an ellipse,
a major axis and a minor axis, are orthogonal, the number of
the votes on the curve for two angles whose difference is 90
degree is large. The two angles whose number of the votes
is large are found as the slope of the axes. After voting,
we find the largest P peaks for each candidate detected in
Step 4 and the slopes are detected as the slope candidates.
That is, P 2 candidates are found in this step. To store the
(ρ, θ)-parameter space, an accumulate array of size O(N2)
is necessary. Since a perpendicular bisector is voted for each
two edge points, it takes O(E2)-time to vote for all the pairs
of edge points. Since there are P center candidates, O(PN)-
time is necessary because, for each center candidate, the scan
in the parameter space is executed along the curve obtained
by the center candidate. Because P is much smaller than E
and N , it can be considered as a constant. Therefore, the
total computing time in Step 5 is O(PN + E2) = O(N +
E2).

Step 6: In this step, the remainder parameters a and b
that are the length of the axes are detected. Let us consider
an ellipse through a point (x, y), whose center is (cx, cy)
and slope is θ. The length of the axes is computed by the
formula

b =

√
a2(−(cx − x) sin θ + (cy − y) cos θ)2

a2 − ((cx − x) cos θ + (cy − y) sin θ)2
.

To find the length of the axes, using the above formula, for
each edge point, the length b is voted for every a to an accu-
mulator that is a 2D array for the (a, b)-space. According to
the voting, the parameter whose number of the votes is large
is detected as the length of the axes. After voting, we find the
largest P peaks for each candidate detected in Step 4 and 5
and the axes are detected as the axes candidates. In this step,

5

1

2

2

0

0
5

1 1

1

1 1 1 1 1 1

1 1 2 2 1

1 2 2 1 1

1 1 1 1

1 1

1 1 1 1 1 0

2

2

2 2

2

2

2

22

2

2 2

2

55

8

8

5 0
0

0
1

1 0
0 0 0

0
1

0 0 0
0
0

1 1 1

0 1

1

1

0

Ellipse Candidate

Figure 6. Evaluation of the estimated ellipse

P 3 candidates are found. To store the (a, b)-parameter space,
an accumulate array of size O(N2) is necessary. Since for
each edge point, the length b is voted for every a, it takes
O(NE)-time to vote for all the edge points. Since there are
P 2 candidates, O(P 2NE)-time is necessary. Because P 2

can be considered as a constant, the total computing time in
Step 6 is O(N2 + P 2NE) = O(N2 + NE).

Step 7: In the above steps, P 3 ellipse candidates that are
defined by the five parameters are found. To confirm whether
the candidates are true ellipses or not, we evaluate them
with the Euclid distance map generated in Step 2. For each
ellipse, it is plotted on the Euclid distance map. the sum of
the distances on the plotted ellipse is computed (Figure 6).
If the ellipse is close to the edge points, the sum is small.
Therefore, in our algorithm, the ellipse whose sum is the
smallest in the P 3 ellipse candidates is detected as a true
ellipse. Let k denote the number of the plotted points for
each ellipse. For each ellipse candidate, it takes O(k)-time
to evaluate the candidate. The computing time for P 3 ellipse
candidates is also O(kP 3)-time.

According to the above, the total computing time of
the proposed algorithm is O(M2 + N2 + NE + kP 3) =
O(M2 + N2 + NE), because kP 3 is much smaller than
other terms. Considering the time of the ellipse detection, it
takes O(N2 + NE)-time.

Using the above method, we can detect only one ellipse
with combinatorial Hough transform. However, if there are
multiple ellipses in the image, only one of them is detected.
Therefore, the input images are divided into overlapped
subimages as shown in Figure 7. The size of each subimage
is large enough to include every ellipse. To detect ellipses
that stretch over the subimages, they overlap one-third
horizontally and vertically. Perform the above steps for each
subimage, we can detect multiple ellipses in the image.

III. COMPUTE UNIFIED DEVICE ARCHITECTURE

(CUDA)

Graphics Processing Units (GPUs) can achieve a high
computational throughput due to their large number of
processing cores and different memory spaces. All the
processing cores are organized into several streaming multi-
core processors as shown in Figure 8. For fully utilizing all

316

(a) Input image

(b) Overlapped subimages

Figure 7. Division of the input image

the processing cores of a GPU, numerous threads are re-
quired. Compute Unified Device Architecture (CUDA) [14]
organizes these threads into a large grid of thread blocks.
Each thread block contains a number of threads which can
be executed on an assigned streaming multi-core processor.
Threads of a thread block are organized into several warps
and each warp contains 32 threads. At a time, only a half
warp of a thread block can be executed by the assigned
streaming multi-core processor concurrently. The grid will
launch a segment of codes, named a kernel, to occupy a
GPU device at a time. Actually, CUDA is a new parallel
programming model and instruction set architecture. CUDA
comes with a software environment that allows developers
to use C-like high-level programming language.

Figure 8. CUDA Hardware Architecture

On the other hand, GPUs can provide different memory
spaces for different applications and each memory space has
its own advantages and drawbacks. In CUDA architecture,
each memory space has a corresponding specification. In
this paper we only introduce few of them shown as follows.

Global memory is a main device memory of GPUs and
which is off-chip memory. Therefore it has heavy access
latency to each processing core. Fortunately, CUDA provides
a technique known as coalescing [18] to hide the access

latency of the global memory. When 16 sequential threads
access 16 sequential and aligned values in the global mem-
ory, the GPU will automatically combine them into a single
transaction.

Shared memory is a sort of on-chip memory and which
is located within each streaming multi-core processor. It has
almost no access latency and only visible to the thread block
which is executed by the corresponding streaming multi-core
processor. In practice, the shared memory can be used as a
cache to hide the access latency of the global memory.

IV. GPU IMPLEMENTATION

In this section, we show an implementation of parallel
execution of ellipse detection using a GPU. The idea of our
GPU implementation is to reduce the number of access to
the global memory using the shared memory and coalescing.

In Step 1 and Step 2 shown in Section II, we use our
previous works that are implementations of Canny edge de-
tection and Euclid distance map algorithm on the GPU [16]
and [15], respectively.

The process of Steps 3 to 7 consists of three parts, that
is, we implement three kernels, EdgeListKernel, VoteKernel,
and EvaluationKernel. We explain the detail of them as
follows.

EdgeListKernel: In this kernel, an edge list shown in
Step 3 is generated, as follows. The edge image made in
Step 1 is divided into subimages that correspond to squares
of broken lines in Figure 7(a). For each subimage, a thread
block that consists of threads is performed in parallel. The
number of the threads in each thread block is the number of
pixels of a side of the subimage. The threads read the pixel
values of the edge image in column wise concurrently to
utilize the coalescing as shown in Figure 9. If edge pixel is
found, its coordinate is stored to the edge list in the shared
memory. Since the data in the shared memory is not utilized
over kernels, after all edge pixels in each subimage, the edge
list is stored to the global memory.

Figure 9. Coalescing access

VoteKernel: This kernel performs the process in Step 4
to Step 6. In this kernel, the process for each subimage
shown in Figure 6 is assigned to one thread block. Each
thread block is performed in parallel. Furthermore, every

317

thread block consists of multiple threads and the process for
each subimage is performed in parallel using the threads.
The voting process in Step 4 to Step 6 is performed on
the global memory using the edge lists that are made in
EdgeListKernel. To perform voting concurrently, the atomic
function that performs a read-modify-write atomic operation
provided by CUDA [18] are used.

EvaluationKernel: This kernel evaluates the ellipse can-
didates detected in Step 7. That is, the candidates are
checked whether each of them is a true ellipse or not
using the edge list and Euclid distance map. This kernel
also assigns one thread block for each subimage shown in
Figure 6. Each thread block evaluates the ellipse candidates
detected in each subimage in parallel. Each thread block is
composed by threads. Each of the threads evaluates one or
more candidates in parallel.

V. PERFORMANCE EVALUATION

We have implemented and evaluated our proposed el-
lipse detection algorithm on the GPU. For the purpose
of comparison, we have also implemented a conventional
software approach without support of the GPU. We have
used Nvidia GeForce GTX 480 with 480 processing cores
(15 streaming multi-core processors which has 32 processing
cores) running in 1.4GHz and 3GB memory. To evaluate
software approach, we have used Intel Xeon E5540 running
in 2.0GHz and 6GB memory.

Table I shows performance of our proposed ellipse de-
tection on the GPU. We have used an input image of the
size 2048×2048 that has industrial parts with circle markers
shown in Figure 1. Figure 10 is the edge image obtained
in Step 2. Note that to focus on the performance of the
ellipse detection, we have evaluated the performance except
the edge detection in Step 1 and generating Euclid distance
map in Step 2. The size of subimage has been set to
96×96, which is large enough to include a circle marker
that looks a ellipse. Also, we have executed our algorithm
for P = 5, where P is the number of detected candidates
in each step for every subimage. That is, in Step 4 of
the algorithm, 5 center candidates are detected. In Step 5,
5 slope candidates for each center candidate are detected.
Similarly, in Step 6, 5 axes candidates for each center and
slope candidate are detected. In total, P 3 = 53 = 125
ellipse candidates are found for each subimage. After that,
one ellipse in the candidates is detected with the evaluation
of the ellipses in Step 7. According to the result, all

Table I
PERFORMANCE OF ELLIPSE DETECTION ON THE GPU

CPU [ms] GPU[ms] Speed-up
EdgeListKernel 8.72 0.70 12.45

VoteKernel 33373.40 298.78 111.70
EvaluationKernel 14942.42 446.42 33.47

Total 48324.54 745.90 64.79

Figure 10. Result of the edge detection

the ellipses in the image are detected. Also, the result of
the GPU implementation is equivalent to that of the CPU
implementation. According to the table, the computing time
of every kernel of the GPU implementation is shorter than
that of the CPU implementation. We have achieved 64.79
times speedup in total

VI. CONCLUSIONS

In this paper, we have presented a fast ellipse detection
algorithm based on Hough transform. The parameters that
define an ellipse are computed by voting for each parameter.
Also, we have implemented it with a modern GPU system,
Nvidia GeForce GTX 480. Comparing to the performance
of the CPU implementation, the GPU implementation have
achieved 64.79 times speedup.

REFERENCES

[1] Y. Mochizuki, A. Imiya, and A. Torii, “Circle-marker detec-
tion method for omnidirectional images and its application
to robot positioning,” in Proceedings of International Con-
ference on Computer Vison, 2007, pp. 1–8.

[2] P. V. C. Hough, “Method and means for recognizing complex
patterns,” U.S. Patent 3,069,654, 1962.

[3] J. Illingworth and J. Kittler, “A survey of the Hough trans-
form,” Computer Vision, Graphics, and Image Processing,
vol. 44, pp. 87–116, 1988.

[4] C.-M. Chang, “Detecting ellipses via bounding boxes,” Asian
Journal of Health and Information Sciences, vol. 1, no. 1, pp.
73–84, 2006.

[5] J. Yao, N. Kharma, and P. Grogono, “Fast robust GA-based
ellipse detection,” in Proceedings of the 17th International
Conference on Pattern Recognition, vol. 2, 2004, pp. 859–
862.

[6] A. S. Aguado, M. E. Montiel, and M. S. Nixon, “On using
directional information for parameter space decomposition in
ellipse detection,” Pattern Recognition, vol. 29, no. 3, pp.
369–381, 1996.

[7] R. Krishnapuram and D. Casasent, “Hough space transforma-
tions for discrimination and distortion estimation.” Computer
Vision, Graphics, and Image Processing, vol. 38, pp. 299–
316, 1987.

318

[8] P. S. Nair and A. T. Saunders, Jr., “Hough transform based
ellipse detection algorithm,” Pattern Recognition Letters,
vol. 17, no. 7, pp. 777–784, 1996.

[9] L. Xu, E. Oja, and P. Kultanen, “A new curve detection
method: randomized hough transform (RHT),” Pattern Recog-
nition Letters, vol. 11, no. 5, pp. 331–338, 1990.

[10] R. A. McLaughlin, “Randomized Hough transform: Improved
ellipse detection with comparison,” Pattern Recognition Let-
ters, vol. 19, no. 3-4, pp. 299–305, 1998.

[11] C. A. Başca, M. Taloş, and R. Brad, “Rondomized Hough
transform for ellipse detection with result clustering,” in
Proceedings of International Conference on Computer as a
Tool, vol. 2, 2005, pp. 1397–1400.

[12] K. Hahn, Y. Han, and H. Hahn, “Ellipse detection using a
randomized Hough transform based on edge segment merging
scheme,” in Proceedings of the 6th WSEAS International
Conference on Signal Processing, Robotics and Autoaimton,
2007, pp. 1–6.

[13] J. K. Lee, B. A. Wood, and T. S. Newman, “Very fast ellipse
detection using GPU-based RHT,” in Proceedings of 19th
International Conference on Pattern Recognition, 2008, pp.
1–4.

[14] NVIDIA Corporation., NVIDIA, CUDA Architecture,
http://www.nvidia.com/object/cuda home new.html.

[15] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Im-
plementations of parallel computation of Euclidean distance
map in multicore processors and GPUs,” in Proceedings
of International Conference on Networking and Computing,
November 2010, pp. 120–127.

[16] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge
detection using a GPU,” in Proceedings of International
Workshop on Advances in Networking and Computing, 2010,
pp. 279–280.

[17] J. F. Canny, “A computational approach to edge detection,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 8, no. 6, pp. 679–698, November 1986.

[18] NVIDIA, NVIDIA CUDA Programming Guide, July 2009.

319

