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Abstract—Modern GPUs (Graphics Processing Units) can be
used for general purpose parallel computation. Users can de-
velop parallel programs running on GPUs using programming
architecture called CUDA (Compute Unified Device Architec-
ture). The Matrix Chain Product Problem is an optimization
problem for finding parentheses of the matrix chain that gives
the minimum total number of multiplications necessary to
compute the product of the matrix chain. It is well known that
this problem can be solved using the dynamic programming
technique in O(n3) time using tables of size O(n2). The main
contribution of this paper is to present an efficient parallel
implementation of this O(n3)-time algorithm on the GPU. In
our implementation, we have considered the architecture and
programming issues of the GPU system. The experimental
results show that, for a chain of 16384 matrices generated
at random, our implementation in the Nvidia GeForce GTX
480 achieves a speedup factor of 40 over a conventional CPU
implementation.

Keywords-Dynamic Programming; Matrix Chain Product;
GPGPU; CUDA; Parallel Processing;

I. INTRODUCTION

Recent Graphics Processing Units (GPUs), which have
a lot of processing units, can be used for general purpose
parallel computation. Since GPUs have very high memory
bandwidth, the performance of GPUs greatly depends on
memory access. CUDA (Compute Unified Device Architec-
ture) [1] is the architecture for general purpose parallel com-
putation on GPUs. Using CUDA, we can develop parallel
algorithms to be implemented in GPUs. Therefore, many
studies have been devoted to implement parallel algorithms
using CUDA [2], [3], [4], [5], [6], [7].

Matrix Chain Product Problem is an optimization problem
for finding the best parentheses of the matrix chain that min-
imizes the total number of multiplications [8]. Suppose that
a chain of three or more matrices to be multiplied is given.
The total number of multiplication may vary depending on
the order of multiplication. For example, given 3 matrices
A, B, and C, of size 5×1, 1×5, and 5×1, respectively, let
us evaluate the total number of multiplications to compute
the product A · B · C. We have two ways to compute the
product: (1) A × B is computed first (i.e.(A · B) · C) and
(2) B × C is computed first (i.e. A · (B · C)). Since the
multiplication of the matrix is associative, the results of the
both ways are the same. Note that, the product of an l×m

matrix and an m × n matrix needs lmn multiplications
and the size of the resulting matrix is l × n. In case of
(1), the product A · B = X needs 5 × 1 × 5 = 25
multiplications and the size of the resulting matrix is 5× 5.
After that, the remaining product X ·C needs 5×5×1 = 25
multiplications. Thus, the total number of multiplications is
50. On the other hand, in case of (2), the product B ·C = Y
needs 1 × 5 × 1 = 5 multiplications, and the size of the
resulting matrix is 1 × 1. The remaining product A · Y
needs 5 × 1 × 1 = 5 multiplications. The total number of
multiplications is only 10 and thus, we should select (2). If
we have only three matrices to be multiplied, we can easily
find which product should be computed first in the same
way. However, if we have more than three matrices, it is not
trivial to find the best parentheses that minimizes the total
number of multiplications.

Since the number of possible parenthesizations of a
chain of n matrices is the Catalan number [8] (2n)!

(n+1)!n! =
Ω(4n/n3/2), it is impossible to evaluate the number of
multiplications for every parenthesization. It is known that
the dynamic programming technique can be applied to solve
the Matrix Chain Product problem in O(n3) time [9] using
tables of size O(n2).

The main contribution of this paper is to present a parallel
implementation of this O(n3)-time dynamic programming
based algorithm in the GPU. In our implementation, we
have considered the architecture and programming issues
of the GPU system. CUDA can execute a lot of Threads
in parallel. An array of Threads constitutes a Block, and
an array of Blocks constitutes a Grid. To allocate the Grid
in a GPU system, the host PC calls a special C function
called Kernel. Each Block in a Grid is assigned to one of
the Streaming Multiprocessor in the GPU. If the number
of Blocks is larger than that of Streaming Multiprocessors,
two or more Blocks may be arranged in one Streaming
Multiprocessor. Each Streaming Multiprocessor has usually
32 processor cores which execute Threads in a Block in
parallel. To minimize the computing time in the GPU, it is
important to balance the numbers of Blocks in a Kernel
and that of Threads in a Block. and a single Streaming
Multiprocessor can execute multiple Threads with several
processing cores in parallel. In our proposed implementation
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with CUDA, we implemented three Kernels each of which
is a kind of function call on the GPU. The granularity of
these three Kernels differs for Blocks and Threads. The
feature of Matrix Chain Product Problem with dynamic
programming is that the amount of the computation varies
during the computation. Because of the variation of the
amount of the computation, the parallelism of the parallel
execution may change. We have evaluated the three Kernels
for each step in the algorithm to determine the efficient
allocation. According to the result, in our implementation,
the fastest Kernel is selected dynamically to achieve efficient
parallel execution on the GPU. We have implemented it in
a modern GPU system, Nvidia GeForce GTX 480 with 480
processing cores. The experimental results show that our
implementation can achieve a speed-up factor of 40 over
the sequential implementation on the CPU.

The remaining parts of this paper is organized as follows;
Section II introduces concrete algorithm of dynamic pro-
gramming for Matrix Chain Product Problem. Section III
shows GPGPU features in CUDA. Section IV proposes
an implementation of Matrix Chain Multiplication Problem
on the GPU. The experimental results show in Section V.
Finally, Section VI offers concluding remarks.

II. A DYNAMIC PROGRAMMING ALGORITHM FOR

MATRIX CHAIN PRODUCT

This section briefly describes the dynamic programming
algorithm for Matrix Chain Product Problem. Let P =
〈p0, p1, . . . , pn〉 be a sequence of dimensions of matrix Ai

for i = 1, 2, . . . , n, such that the size of Ai is pi−1 × pi.
Recall that the product of an l ×m matrix and an m × n
matrix needs lmn multiplications and the size of the result-
ing matrix is l × n. Let mi,j(1 ≤ i ≤ j ≤ n) denote the
minimum number of multiplications to compute the product
of Ai ·Ai+1 · · · · ·Aj . The goal of the Matrix Chain Product
Problem is to compute the m1,n and to find the parentheses
that gives the minimum number m1,n of multiplications.
The idea of the dynamic programming based algorithm is to
compute every mi,j as follows.

First, it should be clear that

mi,i = 0.

Also, the product of Ai of size pi−1 × pi and Ai+1 of size
pi×pi+1 can be computed by pi−1pipi + 1 multiplications.
Thus, we have

mi,i+1 = pi−1pipi+1.

We assume that mi,js have been already computed for all
i, j (1 ≤ i ≤ j ≤ n) such that j − i < α. In other
words, we have computed the minimum total number of
multiplications of AiAi+1 · · ·Aj of α or less matrices. For
j − i = α and i < k < j, we need mi,k multipli-
cations to compute the product AiAi+1 · · ·Ak . Similarly,
we need mk+1,j multiplications to compute the product

AkAk+1 · · ·Aj . Since the sizes of the resulting matrices are
pi−1×pk and pk×pj , respectively, the product of these two
matrices needs pi−1pkpj multiplications. Thus, we have,

mi,j = min
i≤k<j

(mi,k + mk+1,j + pi−1pkpj).

In the dynamic programming based algorithm, tables m
and s are used. Table m is used to store the value of mi,j

and Table s records the index k that achieves the minimum
number of multiplications in computing mi,j for separating
mi,j into mi,k and mk+1,j . Namely, table s shows the
parentheses for the optimal cost. The value of mi,j gives the
cost of optimal parentheses to subproblems. The value m1,n

shows the optimal parentheses for the input. The details of
this algorithm are spelled out as follows:

Matrix Chain Product Algorithm
1. mi,i ← 0 for every i (1 ≤ i ≤ n)
2. mi,j ←∞ for every i and j (1 ≤ i < j ≤ n)
3. for l← 2 to n do
4. for i← 1 to n− l + 1 do
5. j ← i + l − 1
6. for k ← i to j − 1 do
7. q ← mi,k + mk+1,j + pi−1pkpj

8. if q < mi,j then mi,j ← q, si,j ← k

The algorithm first computes mi,i ← 0 for i = 1, 2, . . . , n,
that means the minimum costs for chains of length 1, in
line 1, Then they are used to compute mi,i+1 for i =
1, 2, . . . , n − 1, that shows the minimum costs for chains
of length l = 2, during the first execution of the loop in
lines 3–8. The second time through the loop, it computes
mi,i+2 for i = 1, 2, . . . , n − 2, that shows the minimum
costs for chains of length l = 3, and so forth. At each step,
the value mi,j , that is computed in lines 7–8, depends only
on table entries mi,k and mk+1,j that are already computed.

Figure 1 illustrates an example of tables m and s for a
chain of A1, A2, . . . , A6 of size 2× 9, 9× 3, 3× 1, 1× 4,
4 × 11, and 11 × 5, respectively. From the value of m1,6

in Table m, the optimal cost that is the minimum number
of multiplications is 154. Also, the optimal parentheses is
(A1(A2A3))((A4A5)A6) from table s.

It should be clear that the last 6 lines are dominant in this
algorithm. A simple inspection of the nested loop structure
yields a running time of O(n3). Also, the algorithm uses
tables m and s of size O(n2).

III. CUDA ARCHITECTURE

NVIDIA CUDA is a general purpose parallel computing
architecture introduced by NVIDIA. It includes the CUDA
Instruction Set Architecture (ISA) and the parallel compute
engine in the GPU. To program to the CUDA architecture,
developers can use C language which is one of the most
widely used high-level programming languages.
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Figure 1. An example of tables m and s computed for n = 6

CUDA-enabled GPUs have hundreds of cores that can
collectively run thousands of computing Threads. Each core
has registers and memories. The on-chip Shared Memory
allows parallel tasks running on these cores to share data
without sending it over the system memory bus.

A. Hardware architecture

CUDA-enabled GPUs consist of several Streaming Mul-
tiprocessors and two kinds of memory, Shared Memory and
Global Memory. A Streaming Multiprocessor consists of
multiple processor cores and a Shared Memory. Figure 2
shows an overview of the CUDA hardware architecture.
Global Memory is large but slow, whereas Shared Memory
is small but fast.

B. A design of programming environment

In CUDA parallel programming model, a hierarchy of
Thread groups consists of a Grid, Block and Thread. The
Grid contains multiple Blocks and a Block contains multiple

Figure 2. CUDA Hardware Architecture

Threads. A Block is always allocated to a single Stream-
ing Multiprocessor, and a single Streaming Multiprocessor
executes Threads in the Block in parallel. Threads in a
same Block can be synchronized, however, Threads cannot
be synchronized if they are executed in different Blocks.
Also, since threads in a block is allocated to a Streaming
Multiprocessor, they can access to the same shared mem-
ory of the Streaming Multiprocessor. However, threads in
different blocks cannot access to the same shared memory.
By contrast, all Threads have access to the same Global
Memory.

1) Kernel: CUDA C extends C language by allowing the
programmer to define C functions, called Kernels, that, when
called, are executed in parallel by Threads. We configure the
number of Blocks and Threads.

In this paper, each diagonal entry is computed in a single
Kernel call. Therefore, when the number of matrices is n,
Kernel is called n− 1 times.

2) Warp and Coalescing: The Streaming Multiprocessor
creates, manages, schedules, and executes Threads in groups
of 32 parallel Threads called Warps. In the Block allocated to
each Streaming Processor, Threads in the same Warp execute
instructions all together concurrently. When all Threads in
the same Warp access 32 sequential and aligned values in
the Global Memory, the GPU will automatically combine
them into a single transaction.

In this time, if all the Threads access same or continuous
memory address, all data are fetched at once. It is called
Coalescing. This speed-up is very effective, then memory
arrangement and access by Threads are very important.

IV. GPU IMPLEMENTATION

In this section, we show an implementation of dynamic
programming for Matrix Chain Product using a GPU. Dy-
namic Programming algorithm for Matrix Chain Product
Problem can be parallelized in two ways. One way is the
loop in lines 4–8 of Matrix Chain Product Algorithm in
Section II. This loop computes the costs in the diagonal
entries of tables m and s in Figure 1. Each execution for
i in the loop is independent of the others. Another one is
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Figure 3. The number of iterations of the loop in lines 4–8 for each l

Figure 4. The number of iterations of the loop in lines 6–8 for each l

the loop in lines 6–8. This loop computes the cost for one
entry of tables. It is a section to search minimum number of
multiplication for a single subproblem. This also does not
have dependency, therefore we can compute in parallel, too.

Let us consider the amount of the computation of Matrix
Chain Product Algorithm with dynamic programming for
each step. We focus on the amount for each execution of the
loop in lines 4–6 that computes each diagonal entry of tables
s and m. There are two loops that correspond to lines 4–8
and 6–8. Figures 3 and 4 show the numbers of iterations for
each l, respectively. According to the figures, the number of
computed entries is decreased if l is increased. On the other
hand, the amount of the computation to compute each entry
is increased if l is increased. The number of total iterations
for l is a product of the numbers of iterations of the two
loops. Figure 5 shows the amount of the computation for
each l. the amount of the computation is varied with l.
Therefore, the parallelism in parallel execution depends on
l.

In CUDA, it is not easy to obtain good parallelization
performance since the performance depends on various
factors, for example, Occupancy, a number of Streaming
Multiprocessors, amount of computation, and so on [10].
In particular, Matrix Chain Product algorithm has 2 par-
allelization points and these computation amount changes
for l. If a specific allocation is best at the beginning of

Figure 5. The amount of the computation for each l

process, it is maybe not best allocation at the end of
process, or it could be the worst allocation. According to the
discussion above, the best allocation cannot be determined
uniquely. In our implementation, there are three types of
parallelism OneThreadPerOneEntry, OneBlockPerOneEntry,
and BlocksPerOneEntry. They are Kernels in the CUDA
architecture that performs execution for one diagonal entry
in tables m and s. The execution corresponds to computation
in lines 4–8. The difference of them is the number of Blocks
and Threads for computing one entry that is the execution
in the lines 6–8. The details of them are shown as follows.
OneThreadPerOneEntry: This is a Kernel that allocates
one Thread to compute one entry in the tables m and s.
The execution in the lines 6–8 is done by one Thread. Each
Thread computes the cost for one entry and stores the result
to the Global Memory in parallel. Since each Block has
multiple Treads, in this Kernel, several entries are computed
by one Block.
OneBlockPerOneEntry: This Kernel allocates one Block to
compute one entry in the tables m and s. The execution in
lines 6–8 is done by several Threads in one Block. Each
Block divides the computation for the entry and assigns
them to each Thread. Each Thread computes the cost for the
allocated range and stores the result to the Shared Memory in
parallel. After that the minimum one is computed and stored
to the Global Memory by one Thread. Since each Block has
multiple Threads, in this Kernel, multiple Threads in each
Block compute one entry. The parallelism is middle between
OneThreadPerOneEntry and BlocksPerOneEntry.
BlocksPerOneEntry: This Kernel allocates multiple Blocks
to compute for one entry. This Kernel consists of two Kernel
calls to synchronize between Blocks. One is to compute
the costs by Blocks in parallel. The other is to obtain the
minimum one. In first Kernel call, the computation for one
entry is divided and they assigned to each Block. Each Block
computes the cost for the allocated parts and stores the
result to the Shared Memory with several Threads in parallel.
After that the minimum one for each Block is computed and
stored to the Global Memory by one Thread. To obtain the
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minimum one, one Block computes the minimum and stores
the result to the Global Memory.

In OneThreadPerOneEntry, the number of processed data
is the most. On the other hand, in BlocksPerOneEntry, the
number of processed data is the least. However, OneThread-
PerOneEntry requires the least Threads, and BlocksPer-
OneEntry requires the most Threads. The number of pro-
cessed data and Threads in Kernel OneBlockPerOneEntry is
between OneThreadPerOneEntry and BlocksPerOneEntry.

In OneThreadPerOneEntry, to perform Coalescing access
for Global Memory, memory mapping of tables m and s is
changed as follows. Tables m and s are two-dimensional
arrays. In ordinarily, these arrays are mapped to one-
dimensional array as shown in Figure 6(a). However, this
implementation will cause diagonal access by Threads (Fig-
ure 6(b)). Threads should access the memory in sequential
address for Coalescing effect. Then, if memory sequence is
as Figure 6(c), we change their memory mapping to the 2-D
array. Because of this mapping, Threads could access serial
memory address. Note that since Coalescing access can be
done in the identical Block, Coalescing access cannot be
used in OneBlockPerOneEntry and BlocksPerOneEntry.

V. PERFORMANCE EVALUATION

We have evaluated our Matrix Chain Product algorithm
implemented on the GPU. For the purpose of comparison,
we have also implemented a conventional software approach
running on a single CPU on a PC. We have used Nvidia
GeForce GTX 480 with 480 processing cores (15 Streaming
Multiprocessors which has 32 processing cores) running in
1.4GHz and 3GB memory. To evaluate software approach
that is the sequential program in C language, we have used
Intel Core i7 870 running in 2.93GHz and 8GB memory.

First, we have evaluated three Kernels OneThreadPer-
OneEntry, OneBlockPerOneEntry, and BlocksPerOneEntry
for the whole computation. We have measured execution
time to compute Matrix Chain Product for a chain of 16384
matrices, that are generated randomly, for all kernels. In this
evaluation, we used each Kernel for the whole computation.
Tables I shows the execution time of each Kernels for various
settings of the number of Threads and Blocks. According to
the table, the execution time depends of the settings of the
number of Threads and Blocks and OneThreadPerOneEntry
with 32 Threads per Block is the best performance.

Next, we have evaluated three Kernels OneThreadPer-
OneEntry, OneBlockPerOneEntry, and BlocksPerOneEntry
for computing diagonal entries that corresponds to each
execution of the loop in lines 3–8. Figure 7 (a)–(c) shows the
execution time of the three Kernels for l. In this evaluation,
we used the fastest setting for each Kernel and l. We can
see that the shapes of these three graphs are similar to that
of the graph in Figure 5. From the results, Figure 7 (a)–
(c) shows the execution time such that the fastest Kernel
for each l is selected. Table II shows which Kernel is

Table II
OPTIMAL COMBINATION OF KERNELS

Range for l Fastest Kernel
2 ≤ l ≤ 3668 OneBlockPerOneEntry

3669 ≤ l ≤ 15406 OneThreadPerOneEntry
15407 ≤ l ≤ 15662 OneBlockPerOneEntry
15663 ≤ l ≤ 16384 BlocksPerOneEntry

Table III
COMPUTING TIME FOR n = 16384

GPU[s] CPU[s] Speed-up
701.6 29,282 41.7

selected for l. According the results, the execution time of
the combination of the Kernels using Table II is shown
in Table III. Compared with the execution time of CPU
implementation, GPU implementation achieved approximate
40 times speed up. Note that due to the page limitation, we
have shown only the case where the number of matrices is
16384. The best combination for other cases depends on the
number of matrices. However, it can be also obtained by the
same manner.

VI. CONCLUDING REMARKS

In this paper, we have proposed an implementation of
Matrix Chain Product Problem on the GPU. In the pro-
posed implementation with CUDA, we implemented three
types of Kernels that is a kind of function call on the
GPU. The granularity of these three Kernels is different.
Based on the variation of the amount of the computation
during the computation. In our implementation, the fastest
Kernel is selected dynamically to achieve efficient parallel
execution on the GPU. In practice, we have implemented it
in a modern GPU system, Nvidia GeForce GTX 480. The
experimental results have shown that, for a chain of 16384
matrices that are generated randomly, our implementation
achieves a speedup factor of 40 over the sequential CPU
implementation. Although an O(n log n)-time algorithm for
the Matrix Chain Product Problem is known [11], [12], our
implementation gives a new technique to implement a table-
based dynamic programming algorithm.
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