2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

Simple Memory Machine Models for GPUs

Koji Nakano
Department of Information Engineering
Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan
Email: nakano @ cs.hiroshima-u.ac.jp

Abstract—The main contribution of this paper is to introduce
two parallel memory machines, the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM). Unlike
well studied theoretical parallel computational models such as
PRAMs, these parallel memory machines are practical and
capture the essential feature of memory access of NVIDIA
GPUs. As a first step of the development of algorithmic
techniques on the DMM and the UMM, we first evaluated
the computing time for the contiguous access and the stride
access to the memory on these models. We then go on to present
parallel algorithms to transpose a two dimensional array on
these models. Finally, we show that, for any given permutation,
data in an array can be moved along a given permutation both
on the DMM and on the UMM. Since the computing time
of our permutation algorithms on the DMM and the UMM
is equal to the sum of the lower bounds obtained from the
memory bandwidth limitation and the latency overhead, they
are optimal from the theoretical point of view.

Keywords-memory banks, parallel computing models, paral-
lel algorithms, stride memory access, matrix transpose, array
permutation, GPU, CUDA

I. INTRODUCTION
A. Background

The research of parallel algorithms has a long history of
more than 40 years. Sequential algorithms have been devel-
oped mostly on the RAM (Random Access Machine) [1]. In
contrast, since there are a variety of connection methods and
patterns between processors and memories, many parallel
computing models have been presented and many parallel
algorithmic techniques have been shown on them. The most
well-studied parallel computing model is the PRAM (Par-
allel Random Access Machine) [2], [3], [4], which consists
of processors and a shared memory. Each processor on the
PRAM can access any address of the shared memory in a
time unit. The PRAM is a good parallel computing model in
the sense that parallelism of each problem can be revealed
by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that
can be accessed by all processors in the same time, it is not
feasible.

The GPU (Graphical Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [5], [6], [7], [8]. Latest GPUs are
designed for general purpose computing and can perform

978-0-7695-4676-6/12 $26.00 © 2012 IEEE
DOI 10.1109/IPDPSW.2012.98

788

computation in applications traditionally handled by the
CPU. Hence, GPUs have recently attracted the attention
of many application developers [5], [9]. NVIDIA provides
a parallel computing architecture called CUDA (Compute
Unified Device Architecture) [10], the computing engine for
NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more
efficient than multicore processors [11], since they have
hundreds of processor cores.

CUDA uses two types of memories in the NVIDIA GPUs:
the global memory and the shared memory [10]. The global
memory is implemented as a off-chip DRAM, and has large
capacity, say, 1.5-4 Gbytes, but its access latency is very
long. The shared memory is an extremely fast on-chip mem-
ory with lower capacity, say, 16-64 Kbytes. The efficient
usage of the global memory and the shared memory is a
key for CUDA developers to accelerate applications using
GPUs. In particular, we need to consider the coalescing of
the global memory access and the bank conflict of the shared
memory access [6], [11], [12]. To maximize the bandwidth
between the GPU and the DRAM chips, the consecutive
addresses of the global memory must be accessed in the
same time. Thus, threads should perform coalesced access
when they access to the global memory.

The address space of the shared memory is mapped into
several physical memory banks. If two or more processor
cores access to the same memory banks in the same time,
the access requests are processed sequentially. Hence to
maximize the memory access performance, processor cores
should access to distinct memory banks to avoid the bank
conflicts of the memory access.

B. Our Contribution: Introduction to the Discrete Memory
Machine and the Unified Memory Machine

The first contribution of this paper is to introduce simple
parallel memory bank machine models that capture the
essential features of the coalescing of the global memory
access and the bank conflict of the shared memory access.
More specifically, we present two models, the Discrete
Memory Machine (DMM) and the Unified Memory Machine
(UMM), which reflect the essential features of the shared
memory and the global memory of NVIDIA GPUs.

IEEE
computer
® psouety

The architectures of the DMM and the UMM are il-
lustrated in Figure 1. In both architectures, the processing
elements (PEs) are connected to the memory banks (MBs)
through the memory management unit (MMU). A single
address space of the memory is mapped to the MBs in an
interleaved way such that the data of address ¢ is stored in
the (¢ mod w)-th bank, where w is the number of MBs. The
main difference of the two architectures is the connection of
the address line between the MMU and the MBs, which can
transfer an address value. In the DMM, the address lines
connect the MBs and the MMU separately, while a single
address line from the MMU is connected to the MBs in
the UMM. Hence, in the UMM, the same address value is
broadcast to every MB, and the same address of the MBs can
be accessed in each time unit. On the other hand, different
addresses of the MBs can be accessed in the DMM. Since
the memory access of the UMM is more restricted than that
of the DMM, the UMM is less powerful than the DMM.

wnnnnn address line data line
PE PE PE PE PE PE PE PE
| MMU | | MMU |
MB |[MB ||MB||MB |
MB MB MB MB
DMM UMM
Figure 1. The architectures of the DMM and the UMM

The performance of algorithms of the PRAM is usually
evaluated using two parameters: the size n of the problem
and the number p of processors. For example, it is well
known that the sum of m numbers can be computed in
O(3 +logp) time on the PRAM [2]. We will use additional
two parameters, the width w and the latency [of the memory
when we evaluate the performance of algorithms on the
DMM and on the UMM. The width w is the number of
memory banks and the latency [is the number of time units
to complete the memory access. Hence the performance of
algorithms on the DMM and the UMM is evaluated as a
function of n (the size of a problem), p (the number of
processors), w (the width of a memory), and [(the latency
of a memory). In typical NVIDIA GPUs, the width w of
global and shared memory is 16 or 32. Also the latency [
of the global memory is 400-800 clock cycles.

We also introduce the bandwidth limited PRAM
(BPRAM). In the BPRAM of width w, any w processors
out of the p processors can access to the memory in a time
unit. Clearly, the BPRAM is less powerful than the PRAM

789

and is more powerful than DMM and the UMM. Unlike
the DMM and the UMM, the BPRAM has no restriction
of the addresses of memory access and 1 memory access
latency. We use the BPRAM to show the goodness of the
performance of algorithms on the DMM and the UMM. If
the computing time of an algorithm to solve some problem
on the DMM or the UMM is almost the same as that on the
BPRAM, we can say that the algorithm on the DMM or the
UMM is close to optimal.

Please note that the DMM and the UMM are theoretical
models of parallel computation, that capture the essential
feature of the global memory and the shared memory of
NVIDIA GPUs. NVIDIA GPUs have other features such
as hierarchical architecture grid/block/thread, and the cache
of the global memory. However, if these aspects are in-
corporated in our theoretical parallel models, they will be
complicated and need more parameters. The development
of algorithms on such complicated model may have too
much non-essential and tedious optimizations. Thus, we
have introduces two simple parallel models, the DMM and
the UMM, which focuses on the memory accesses of the
global memory and the shared memory of NVIDIA GPUs.

In [13], the authors have presented a GPU memory model
and presented a cache-efficient FFT. However, their model
focuses on the cache mechanism and ignores the coalescing
and the bank conflict. Also, in [14], acceleration techniques
for GPU have been discussed. Although they are taking care
of the limited bandwidth of the global memory, the details
of the memory architecture are not considered. As far as
we know, this paper is the first work that introduces simple
theoretical parallel computing models for GPUs. We believe
that the development of algorithms on these models are
useful to investigate algorithmic techniques for the GPUs.

C. Our Contribution: Fundamental Algorithms on the DMM
and the UMM

The second contribution of this paper is to evaluate the
performance of two memory access methods, the contiguous
access and the stride access on the DMM and the UMM.
The reader should refer to Figure 2 for illustrating these two
access methods. We will show that the contiguous access of
an array of size n can be done in O(+ %l) time units on
the DMM and the UMM. Also, the contiguous access and
the stride access can be done in O(7) time units on the
BPRAM. Thus, the contiguous access of the DMM and the
UMM is optimal when wl < p, because ;> > % if this is
the case. Further, we will show that the stride access of the
DMM can be done in O(3 - GCD(%, w) + %l) time units
on the DMM, where GCD(Z,w) is the greatest common
divisor of % and w. Hence, the stride access of the DMM
is optimal 1f % and w are co-prime and wl < p. The stride
access of the UMM can be done in O(min(n, §; - % + ”;l))
time units. Hence, the stride access of the UMM needs an
overhead of a factor of %.

PE(0)PE(1)PE(2)PE(3)

(i)] ——————3—-"E(0)

113161 ——5—— 6B
¢ | 1p | 9t

plIp|1p |1k o5 e

v v v A 4

contiguous access stride access

Figure 2. The contiguous access and the stride access for p = 4 and

n = 16.

The third contribution of this paper is to show algorithms
for transposing a two dimensional array and for permutation
of an array on the DMM and the UMM. We first show that
the DMM and the UMM can transpose a two dimensional
array of size \/n x y/n in O(Z + ";l) time units. We
generalize this result to permute data in an array of the
memory. Suppose that a permutation of an array of size n is
given. The goal is to move data stored in an array along
the given permutation. Quite surprisingly, for any given
permutation of an array of size m, data can be moved in
O(%+ %l) time units both on the DMM and on the UMM.

w
From the results of the second and the third contributions,

we have one important observation as follows. The factor
in the computing time comes from the bandwidth limitation
of the memory. It takes at least 7 time units to access whole
data in an array of size n from the memory bandwidth w.
Also, the factor %’ comes from the latency overhead. From
the memory access latency [/, each processor cannot send
next access request in [time units. It follows that, each
processor can access to the memory once in / time units and
each of the [time units can have expected ¥ access requests
by processors. Hence, %l time units are necessary to access
all of the elements in an array of size n. Further, to hide the
latency overhead factor 2 from the bandwidth limitation
factor % the number p of the processors must be no less
than wl. We can confirm this fact from a different aspect.
We can think that the memory access request are stored in
a pipeline buffer of size [for each memory bank. Since we
have w memory banks, we have wl pipeline registers to store
memory access requests at all. Since at most one memory
request per processor are stored in the wl pipeline registers,
wl < p must be satisfied to fill the pipeline registers full of
memory access requests.

This paper is organized as follows. We first define the
DMM and the UMM in Section II. In Section III, we
evaluate the performance of the DMM and the UMM for
the contiguous access and the stride access to the memory.
Section IV presents algorithms that perform the transpose

of two dimensional array on the DMM and the UMM. In
Section V, we show that any permutation on an array can be
done efficiently on the DMM. Finally, Section VI presents
an permutation algorithm on the UMM.

II. PARALLEL MEMORY MACHINES: DMM AND UMM

Let us start with defining PRAM (Parallel Random Access
Machine), the most popular shared memory parallel machine
model. The PRAM consists of p processors and a shared
memory. The shared memory is an array of memory cells,
each of which can store a word of data. Each of the pro-
cessors can select a memory cell in the array independently,
and can perform read/write operation in a time unit. Please
see [2] for the details of the PRAM.

We introduce a memory bandwidth limited PRAM. We
assume that w memory cells can be read/written in a time
unit. If more than w memory cells are accessed, the w
operations are automatically serialized. More specifically,
if p memory cells are accessed, w read/write operations
performed in each time unit. and it takes [Z] time to
complete the p read/write operations. We call such PRAM
the Bandwidth-limited PRAM (BPRAM).

We next introduce the Discrete Memory Machine (DMM)
of width w and latency [. Let m[i] (i > 0) denote a memory
cell of address 7 in the memory. Let B[j] = {m[j],m[j +
w],m[j + 2w],m[j + 3w],...} (0 < j < w — 1) denote the
Jj-th bank. Clearly, a memory cell m|i] is in the (i mod w)-
th memory bank. We assume that memory cells in different
banks can be accessed in a time unit, but no two memory
cells in the same bank can be accessed in a time unit.
Also, we assume that [time units are necessary to complete
an access request and continuous requests are processed in
a pipeline fashion through the memory management unit.
Thus, it takes k + ! — 1 time units to complete k£ continuous
access requests to a particular bank.

Blo] B[] B[2] B3]

0 1 2 3 0 1 2 3 |Al[0]

40567 |4 |5]|6/7 |

8 9 1110 (|11 8 9 | 10 | 11 |A4[2

20[13][14||15] |12 |13 | 14 | 15 |
T T 71 1

address groups of UMM

memory banks of DMM

Figure 3. Banks and address groups for w = 4

We assume that p processors are partitioned into £ groups
of w processors called warps. More specifically,p processors

are partitioned into £ warps W (0), W(1),... W (& — 1)
such that W (i) = {PE(i - w),PE(i - w + 1),...,PE((i +
1)-w—1)} (0 <i < £ —1). Warps are activated for
memory access in turn, and w processors in a warp try
to access the memory in the same time. In other words,
wW(0),W(1),...,W(w — 1) are activated in a round-robin
manner if at least one processor in a warp requests memory
access. If no processor in a warp needs memory access, such
warp is not activated and is skipped. When W () is activated,
w processor in W (i) sends memory access requests, one
request per processor, to the memory. We also assume that
a processor cannot send a new memory access request until
the previous memory access request is completed. Hence, if
a processor send a memory access request, it must wait for
[time units to send a next memory access request.

Let us evaluate the time for memory access using Figure 4
on the DMM for p = 8, w = 4, and [= 3. Suppose
that processors in W (0) try to access m[0], m[1], m[5], and
m[10], and those in W (1) try to access m[8], m[9], m[14],
and m[15]. First, memory access requests to m[0], m[1], and
m[10] are sent to the banks B[0], B[1], B[2] first, and then
access requests to m[5] are sent to the bank B[1]. After
that, memory access requests to m[8], m[9], m[14], m[15].
are sent to the bank B[0], B[1], B[2], B[3]. Since we have
latency I = 3, all of these memory requests are completed
in 3+ 17— 1= 25 time units on the DMM.

OOERE
4 @ 6 7
8 9 11
12 | 13 || 14|} 15

Figure 4. An example of memory access

We next define the Unified Memory Bank Machine (UMM
for short) of width w as follows. Let A[j] = {m[j-w], m[j -
w+1],...,m[(j + 1) - w — 1]} denote the j-th address
group. We assume that memory cells in the same address
group are processed in the same time. However, if they are
in the different groups, one time unit is necessary for each
of the groups. Also, similarly to the DMM, p processors are
partitioned into warps and each warp access to the memory
in turn.

Again, let us evaluate the time for memory access using
Figure 4 on the UMM for p = 8, w = 4, and | = 3.

791

To complete the memory access requests by W(0), those
to A[0] is performed for m[0] and m[1]. After that, access
requests to A[l] is performed for m[5] and then that to
A[2] is performed for m[10]. Next, memory access requests
by W(1) are processed. First, memory access to A[2] is
requested for m[8] and m[9], and then that to A[3] is
requested for m[14] and m[15]. Since we have latency | = 3,
all of these memory request are processedin 5+1—-1=7
time units on the UMM.

III. SEQUENTIAL MEMORY ACCESS OPERATIONS

We begin with simple operations to evaluate the potential-
ity of the DMM and the UMM. Let p and w be the number
of processors and the width of the machines. We assume that
an array m of size n is arranged in the memory. Let m][i]
(0 <4 <n—1) denote the i-th word of the memory. We
assume that n > p > w. We consider two access operations
to the memory such that each of the p processors reads
§ = % memory cells out of the n memory cells. Again, the
readers should refer to Figure 2. In the contiguous access,
the first p memory cells are accessed by the p processors.
Next, the second p memory cells are accessed. In this way,
all n memory cells are accessed in turn. In the stride access,
the memory is partitioned into p groups of % consecutive
memory cells each. A processor is assigned to each group
and the assigned processor accesses memory cells in the
group sequentially. The contiguous access and the stride

access are written as follows.

[Contiguous Access]
fort < 0tos—1
for ¢ <~ 0 to p — 1 do in parallel
PE(i) accesses to m[i + ¢ - p]

[Stride Access]
fort<0tos—1
for ¢ <~ 0 to p — 1 do in parallel
PE(i) accesses to m[i - s + t]

In the contiguous access, w processors in each warp
access memory cells in different memory banks. Hence,
the memory access by a warp takes [time unit. Also, the
memory access by a warp is processed in every 1 time unit.
Since we have £ warps, p memory cells can be accessed
by p processors in £ + [— 1 time units. Consequently, the
contiguous access takes (£ +1—1)-s5s=O(Z& + %) time
units on the DMM. In the contiguous access on the UMM,
each warp access to the memory cells in the same address
group. Thus, the memory access by a warp takes / time unit
and the whole contiguous access runs in O(Z + %l)

The performance analysis of the stride access on the
DMM is a bit complicated. Let us start with a simple case:
s = w. In this case, the p processors access to p memory
cells m[t], m[w+t], m[2w+t],...,m[(p—1)w+1t] for each
t (0 <t < w — 1). Unfortunately, these memory cells are

in the same memory bank B[t]. Hence, memory access by
a warp takes w 4+ [— 1 time units and the memory access
to these p memory cells takes w - 2 +1 -1 =p+1 -1
time units. Thus, the stride access when s = w takes at least
(p+1-1)-2=0(n+ %l) time units.

Next, let us consider general case. The w processors in the
first warp access to m[t],m[s + t],m[2s + t],...,m[(w —
1)s + t]. for each ¢t (0 < ¢ < w — 1). These w memory
cells are allocated in the banks B[t mod w], B[(s + t) mod
w], B[(2s + t) mod w], ..., B[((w — 1)s + t) mod w]. Let
L = LCM(s,w) and G = GCD(s, w) be the Least Common
Multiple and the Greatest Common Divisor of s and w,
respectively. From the basic number theory, it should be
clear that t mod w = (£ - s + ¢) mod w, and the values
of tmod w, (s +t)mod w, ..., (£ —=1)-s+t) modw
are distinct. Thus, the w memory cells are in the %
& banks B[t mod w], B[(s + t) mod w], B[(2s + t) mod
w],...,B[((§ — 1)s + t) mod w] equally, and each bank
has G memory cells of the w memory cells. Hence, the w
processor in a warp takes G + [— 1 time units for each ¢,
and the p processors takes G- £ 41— 1 time units for each ¢.
Therefore, the DMM takes (G- £ +1—1).5 = O(2< + %l)
time to complete the stride access. If s = w then G = w
and the time for the stride access is O(n + %l) If s and w

nl
)

are co-prime, G = 1 and the stride access takes O +
time units.

Finally, we will evaluate the computing time of the stride
access on the UMM. If s > w (i.e. n > pw), then the w
memory cells are accessed by w processors in a warp are in
the different address group. Thus, w processors access to w
memory cells in w + ! — 1 time units, and the stride access
takes (w-%—i—l—l)-%:O(n—}—%l)) time. When s < w
(i.e. n < pw), the w memory cells accessed by w processors
in a warp are in at most f%} < s address groups.
Hence, the stride access by p processors for each ¢ takes at
most s - % + 1 — 1 time, and thus, the whole stride access
takes (5 +1-1)-2 =O0(3 + %’) time. Consequently, the
stride access can be completed in O(min(n, 22) + %’)) for
all s = 2. Finally, we have,

Theorem 1: The contiguous access and the stride access
on the PRAM, the BPRAM, the DMM, and the UMM can
be done in time units shown in Table I.

IV. TRANSPOSE OF A TWO DIMENSIONAL ARRAY

Suppose that two dimensional array a of size v/n X v/ is
arranged in the memory. We assume that a[i][j] (0 < i,j <
v/n — 1) is located in the (i - v/n + j)th memory cell of
the memory. The transpose of a two dimensional array is a
task to move a word of data stored in a[i][j] to a[j][i] for
all (0<14,j <v/n—-1).

Let us start with a straightforward transpose algorithm
using the contiguous access and the stride access. The
following algorithm transposes a two dimensional array a

size /n X \/n.

792

[Straightforward transpose algorithm]
fort + 0 to % —
for i < 0 to p — 1 do in parallel
je(t-p+i)/vn
k< (t-p+i) mod \/n
PE(i) performs exchange a[j][k] +> a[k][7]

For each t, the processors performs the contiguous access
and the stride access, which takes O(1) time on the PRAM
and O(Z) time on the BPRAM. Hence, the PRAM and the
BPRAM can transpose a two dimensional array in O(3)
time units and O(£) time units, respectively.

Since the straightforward algorithm contains the stride
access, it is not difficult to see that the DMM and the UMM
takes O(1> -GCD(y/n, w)+ %l) time units and O(min(n, 3 -
%) + %l) time units for transposing a two dimensional array,
respectively. On the DMM, GCD(v/n,w) = w if /n is
divisible by w. If this is the case, the transpose takes O(n)
time units the DMM. We will show that, regardless of the
value of 7, the transpose can be done in O(7: + %l) time
both on the DMM and on the UMM.

We first show an efficient transposing algorithm on the
DMM. The key idea is to access the array in diagonal
fashion. We use a two dimensional array b of size n X n
as a work space.

[Transpose by the diagonal access on the DMM]
for t < 0 to % -
for ¢ <~ 0 to p — 1 do in parallel
j(t-p+i)//n
k<« (t-p+i) mod/n
PE(i) performs b[j][k] < a[j][k]
fort < 0 to % -1
for ¢ <~ 0 to p — 1 do in parallel
j(t-p+i)/v/n
k<« (t-p+i) mod/n
PE() performs
al(j + k) mod v/a)[k] « b[K][(j + k) mod /]

The readers should refer to Figure 5 for illustrating the
indexes of processors reading from memory cells in b and
writing from memory cells in @ for n = p 16 and
w = 4. From the figure, we can confirm that processors
PE(j-440),PE(j-4+1),PE(j-4+2), PE(j-4+3) read from
memory cells in diagonal location of b and write to memory
cells in diagonal location of a for every 5 (0 < j < 3). Thus,
reading and writing memory banks by w processors in a
warp are different. Hence p processors can copy p memory
cells in £ 4/ time units and thus the total computing time
is(E+10)-2=0(;+ %l) time. Therefore, we have,

Lemma 2: The transpose of a two dimensional array of
size \/n X /n can be done in O(Z + %l) time using p
processors on the DMM with memory width w and latency
l.

Next, we will show that the transpose of a two dimen-

Table 1
THE RUNNING TIME FOR THE CONTIGUOUS ACCESS AND THE STRIDE ACCESS

Operation PRAM | BPRAM DMM UMM

Contiguous Access O(%) o) o + %l)l o(&+ ”71) l
i n n o, nl i n, nyy nl

Stride Access O(p) o) oL -G+ ") | O(min(n, 2 p) + %)

n —#data, p =#processors, w =memory bandwidth, G = GCD(%,H})

b a
PE(0) | PE(4) | PE(8) |PE(12)| | PE(0) [PE(13) |PE(10) | PE(7)
PE(13)| PE(1) | PE(5) | PE(9) | | PE(4) | PE(1) |PE(14) |[PE(11)
PE(10) |[PE(14)| PE(2) | PE(6) | | PE(8) | PE(5) | PE(2) [PE(15)
PE(7) |PE(11) |PE(15) | PE(3) | |PE(12) | PE(9) | PE(6) | PE(3)

The indeices of processors reading
from memory cells of b

The indeices of processors writing
in memory cellsof a

Figure 5. Transposing on the DMM

sional array can be also done in O(2 + %’) on the UMM if
every processor has a local memory that can store w words.
As a preliminary step, we will show that the UMM can
transpose a two dimensional array of size w x w in O(w+1)
time units using w processors with each processor having a
local storage of size w. We assume that each processor has
local memory that can store w words. Let /; denote the local
memory of PE(4), and {;[0],;[1],...l;{w — 1] can store a
word of data.

[Transpose by the rotating technique on the UMM]
fort<O0Otow—1
for i <~ 0 to w — 1 do in parallel
PE(i) performs [;[t] < a[t][(t + i) mod w]
fort <~ 0Otow—1
for i <~ 0 to w — 1 do in parallel
PE(i) performs a[t][(t — i) mod w] < ;[(t — i) mod w]

Let (i,7) denote the value stored in a[i][7] initially. The
readers should refer to Figure 5 for illustrating how these
values are transposed.

Let us confirm that the algorithm above correctly trans-
pose two dimensional array a. In other words, we will show
that, when the algorithm terminates, a[é][j] stores (j,i). It
should be clear that, the value stored in /;[t] is (¢, (t+%) mod
w). Since ((t — i) mod w, t) is stored in /;[(t — ¢) mod w],
it is also stored in a[t][(t — 7) mod w] when the algorithm
terminates. Thus, every a[i][j] (0 < i,j < w — 1) stores

793

(j,i). This completes the proof of the correctness of our
transpose algorithm on the UMM.

Let us evaluate the computing time. In the reading oper-
ation [;[t] < a[t][(t + 7) mod w], w memory cells a[t][(t +
0 mod w)], a[t][(t+1 mod w)], ..., a[t][(t+w—1 mod w)]
are in the different memory banks. Also, in the writing op-
eration a[t][(t — i) mod w] + ;[(t — ¢) mod w], w memory
cells a[t][(t — 0 mod w)], a[t][(t — 1 mod w)],...,a[t][(t —
(w — 1) mod w)] are in the different memory banks. Thus,
each reading and writing operation can be done in / time
units and this algorithm runs in O(w + [) time units.

The transpose of a larger two dimensional array of size
/1 X /n can be done by repeating the transpose of two
dimensional array of size w x w. More specifically, the two
dimensional array is partitioned into Vn o /n subarrays
of size w x w. Let A[i][j] (0 < 4,7 < 2 — 1) denote
the subarray of size w x w. First, each subarray A[i][j] are
transposed independently using w processors. After that, the
corresponding words of A[é][j] and A[j][i] are swapped for
all © and j in an obvious way.

Let us evaluate the computing time to complete the
transpose of a \/n X y/n two dimensional array. Suppose
that we have p (< %) processors and partition the p
processors into £ groups with w processors each. We assign
/e 1% subarrays to each group of w processors.
The p processors can transpose 2 subarrays in parallel in
O(w- (£ +1)) = O(p+wl) time units. This transpose of
subarrays are repeated 1% times, the total computing time
for the subarray transpose is - O(p + wl) = O(3 + %l)
time units. Clearly, the swap operation of subarrays can be
also done in O(+ %l) time units. Thus we have,

Lemma 3: The transpose of a two dimensional array of
size \/n X y/n can be done in O(2 + %l) time on the UMM
with each processor having local memory of w words.

n

V. PERMUTATION OF AN ARRAY ON THE DMM

In Section IV, we have shown that the transpose a two
dimensional array on the DMM and the UMM can be done
in O(& + %’) time units. The main purpose of this section
is to show algorithms that perform any permutation of an
array. Since a transpose is one of the permutations, the
results of this section is a generalization of those presented
in Section IV.

lo

I3

0,00 | (0,1) | (0,2) | (0,3) 0,0) | [(0,1) | |(0,2) | [(0,3) 0,00 | (1,00 | 2,0) | (3,0)
(1,0) (1,1) (1,2) (1,3) (1,1) (1,2) (1,3) (1,0) 0,1) (1,1) 2,1) 3,1)
— —

20 | 2D | 22) | 23 22) (23|20 | [@20D 02) | (1,2) | 2,2) | (3,2)
30 | GD | 32 | 33 33) [[Go] |G| [3B2) ©0,3) | (1,3 | (2,3) | 3,3)
Figure 6. Transposing on the UMM

Let a be a one dimensional array of size n, and P be a
permutation of (0, 1,...,n —1). The goal of permutation of
an array is to move a word of data stored in a[i] to a[P(i)]
for every ¢ (0 < i < n —1). Note that, permutation is given
in offline. We will show that, for given any permutation P,
permutation of an array can be done efficiently on the DMM
and the UMM.

Let us start with a permutation algorithm on the PRAM
and the BPRAM. Suppose we need to do permutation of an
array a of size n and permutation P is given. We use an
array b of size n as a work space.

[Straightforward permutation algorithm]
fort(—Oto%—ldo
for j <~ 0 to p — 1 do in parallel
tt-p+j
PE(j) performs b[i] < a[i]
fort<—0to%—1do
for 7 <~ 0 to p — 1 do in parallel
i< t-p+3j
PE(j) performs a[P()] < b[i]

It should be clear that the above algorithm rums in O()
time on the PRAM and in O(%) time on the BPRAM.

This straightforward permutation algorithm also works
correctly on the DMM and the UMM. However, it takes
a lot of time to complete the permutation. In the worst case,
this straightforward algorithm takes O(n) time on the DMM
and the UMM if all writing operation to a[P(j)] are in the
same bank on the DMM or in the different address groups
on the UMM. We will show that any permutation of an array
of size n can be done in O(+ + %l) time units on the DMM
and the UMM.

If we can schedule reading/writing operations for per-
mutation such that w processors in a warp read from
distinct banks and write in distinct banks on the DMM, the
permutation can be done efficiently. For such scheduling,
we uses an important graph theoretic result [15], [16] as
follows:

794

Theorem 4 (Konig): A regular bipartite graph with degree
p 1s p-edge-colorable.
Figure 7 illustrates an example of a regular bipartite graph
with degree 4 painted by 4 colors. Each edge is painted by
4 colors such that no node is connected to edges with the
same color. The readers should refer to [15], [16] for the
proof of Theorem 4.

Figure 7. A regular bipartite graph with degree 4

Suppose that a permutation P of (0,1,...,n — 1) on
DMM with width w is given. We draw a bipartite graph
G = (U,V,E) of P as follows:

« U={0,1,2,...,w— 1} is a set of nodes,

e V=40,1,2,...,w — 1} is a set of nodes, and

« for each pair source ai] and destination a[P(7)], E has

an edge connecting ¢ mod w(€ U) and P(i) mod w(€
V).
From Theorem 4, G (U,V,E) is i-colorable. Let
Co, €1, --,Cz_1 be aset w edges painted by the same color.

Letp;; (0<i< 7 -1,0<j <w-—1) denote a node in V'
such that (j,p; ;) in ¢;. In other words, each ¢; has w edges
0,pi0),(1,pi1), ..., (w—1,p; 1), and no two edges of
them share a node. Recall that each edge corresponds to a
source and its destination. Let s;; (0 < i < & — 1,0 <
j < w — 1) denote a source corresponds to (j,p; ;). It
should have no difficulty to confirm that, for each ¢, w val-
ues s; 0 mod w, s;,; mod w, ..., Ss;,—1 mod w are distinct,
because the corresponding w edges do not share a node.
Similarly, for each i, w values P(s;) mod w, P(s;1) mod
w,...,P(siw_1) mod w are distinct. Thus, we have an
important lemma as follows:

Lemma 5: Let s;; be a source defined above. For each
i, we have, (1) a[sio],a[si1],...a[siw—1] are in different
modules, and (2) a[P(s;0)],a[P(si1)], ... a[P(siw—1)] are
in different modules.

We can perform the bank conflict-free permutation using
s;,;. We use an array b of size n as a work space. The details
are spelled out as follows.

[Permutation algorithm on the DMM]
fort(—Oto%—ldo
for j < 0 to p — 1 do in parallel
i+t-p+j
PE(j) performs b[i] < ali]
fort(—Oto%—ldo
for j <~ 0 to p — 1 do in parallel
i<t-p+j
k Si/w,i mod w
PE(j) performs a[P (k)] < b[k]

The first for-loop copies all words in a to b. The second for-
loop copies all words in b to a based on P. Thus, a word
of data stored in a[k] (0 < k < n —1) is moved to a[P(k)],
and permutation is performed correctly.

We will show that this permutation algorithm terminates
in O(% + %l) time units. It should be clear that, in the first
for-loop, w words in a read by w processors in a warp are
different modules. Similarly, w words in b written by a warp
are different modules. Thus, the operation b[j] < a[j] by a
warp is bank conflict-free and can be done in O(l) time and
p processors perform it in O(Z + 1) time. Thus, the first
for-loop can be done in 3 - O(L +1) = O(3; + %) time.
From Lemma 5, the second for-loop is also bank conflict-
free. Thus we have,

Theorem 6: Any permutation on an array of size n can
be done in O(3 + %’) time units on the DMM.

VI. PERMUTATION OF AN ARRAY ON THE UMM

The main purpose of this section is to show a permutation
algorithm on the UMM. Our permutation algorithm uses the
transpose algorithm on the UMM presented in Section IV.

We start with a small array. Suppose that we have an array
a of size w and permutation P on it. Since all elements in
a are in the same address group, they can be read/written in

795

a time unit. Thus, any permutation of an array a of size w
can be done in O(!) time.

Next, we show a permutation of an array a of size w?.
We can consider that a permutation is defined on a two
dimensional array a. In other words, the goal of permutation
is to move a word of data stored in a[i][j] to a[P(i - w +
J)/w][P(i-w+j) mod w] for every i and j. We first assume
that a permutation P is row-wise, that is, P(i-w+j)/w =i
for all 4 and j. We use p processors (w < p < w?). In other
words, we have £ warps W (0), W (1),...,W (£ —1) with
w processors each. The details of the row-wise permutation
algorithm are as follows.

[Row-wise permutation algorithm]
fort + 0 to “’Tf -1

for i < 0 to £ do in parallel
W (i) performs permutation of the (¢ - £ + 7)-th row.

For each ¢ and i, W (i) can perform a permutation of a row
in O(l) time. Hence, for each t, W(0), W (1),...,W(£)
can perform row-wise permutation of 2 rows in O(Z +1)
time.2 Thus, the row-wise pc;rmutation algorithm terminates
in 2 (£ +1) =0(w+ “’Tl) time.
We next show any permutation can be done in O(w+ “’Tzl)
time on the UMM using the row-wise permutation algorithm
and Theorem 4. For a given permutation P on a two dimen-
sional array a, we draw a bipartite graph G = (U, V, E) as
follows:
e« U =14{0,1,...,w — 1} is a set of w nodes such that
each node corresponds to a column of a.
e V={0,1,...,w — 1} is a set of w nodes such that
each node corresponds to a row of a.
o E is a set of w? edges such that, an edge connecting
node ¢ in U and node j in V' corresponds to a word of
data moved from the i-th column to the j-th row of a

by permutation P.

For example if a word of data in a[1][3] is moved to a[2][4]
by permutation, an edge is drawn from node 1 in U and node
4in V. Clearly, G is a regular bipartite graph with degree w.
From Theorem 4, this bipartite graph can be painted using
w colors such that w edges painted by the same color never
share a node.

Suppose that, for a given permutation P on two dimen-
sional array a of size w X w, we have painted edges in
w colors ¢g,c1,...¢pu_1. Let (,7) denote a word of data
stored in a[¢][;] initially. We can think that (7, j) is assigned
one of the w colors. It should be clear that w words of
data in each row are painted by distinct w colors. The key
idea of permutation is to move words of data using painted
colors. The details of the permutation routing on the UMM
are spelled out as follows.

[Permutation on the UMM]
Step 1: Move words of data such that a word with color ¢;

is moved to the i-th column in the same row by the row-
wise permutation.

Step 2: Transpose two dimensional array a.

Step 3: Move words of data such that a word with destina-
tion i-th row is stored in the i-th column in the same row.
Step 4: Transpose two dimensional array a.

Step 5: Move words of data such that a word with destina-
tion ¢-th column is stored in the i-th column by the row-wise
permutation.

Let us see the data movement of the above permutation
algorithm for w 4 using Figure 8 and confirm the
correctness of the algorithm. We assume that each a[i][j] is
initially storing a word data (x,y) if a data stored in a[i][j
should be moved to a[z][y] along permutation as illustrated
in the figure. In the figure, every destination is painted by
four colors such that

« four destinations in each row are painted by different

colors, and

« four destinations painted by a particular color has four

distinct row destinations (0, x), (1, %), (2, %), and (3, *).
After Step 1, four destinations in the ¢-th column are painted
by i-th color, and thus they are four distinct row destinations.
After Step 2, each row has four destinations with distinct
row destinations. Hence after Step 3, four destinations to be
moved to i-th row are in the ¢-th column. By transposing
in Step 4, every destination is in the right row destination.
Finally, permutation is completed by row-wise permutation
in Step 5.

Clearly, Steps 1, 3, and 5 that involve row-wise permuta-
tion can be done in O(w + szl) time units on the UMM.
From Lemma 3, transpose performed in Steps 2 and 4 can be
done in O(w + “’—21) time on the UMM with each processor
having local memory of w words. Thus, we have

Lemma 7: Any permutation of an array of size w? can be
done in O(w + szl) time on the UMM with each processor
having local memory of w words.

We go on to show permutation algorithm on a larger array
a. Suppose we need to perform permutation of array a of
size w*. We can consider that an array a is a two dimensional
array of size w? x w?. We use the permutation algorithm
for Lemma 7 for row-wise permutation of the two dimen-
sional array of size w? x w?. Similarly to the permutation
algorithm for Lemma 7, we generate a bipartite graph with
G = (U,V, E) such that U and V has w? nodes each and
E has w* edges corresponding to a word of data. It should
be clear that we can perform the permutation on a using
G by row-wise permutation and the transpose. First, let us
evaluate the computing time for the row-wise permutation.
When w < p < w?, we execute a row permutation in
row-by-row. Since each row permutation can be done in
O(w + w%’) time, the row-wise permutation can be done

in O(w+ w%l) cw? = O(w3 + w%l) time. When w? < p, we

796

(2.0)

©.,1)

(1,2) (1,2)

(3,3) (3,3)

(L))
1.2
2.0
(3.3)
After Step 4 After Step 5
Figure 8. Illustrating a data movement of the permutation algorithm on
the UMM

artition the rocessors into 2 groups of w? processors
w

each. Each group of w? processors can perform a row
permutation in O(w + 1) time. Thus, row-wise permutation
of £; rows can be done in O(w - 23 +1) = O(£ +1) time
using p processors. Since we have w? rows, this operation

is repeated “’7 times, the whole permutation can be done in
4 4
O(E+1)-%- = O(w?+ “’Tl) Also, the transpose of the two
. . . « « . 4

dimensional array of size w? x w? be done in O(w? + “’Tl)
time from Lemma 3. Since the permutation of an array can
be done by executing the row-wise permutation three times
and the transpose twice, the pgrmutation of an array of size
w* can be done in O(w? + “’Tl) time.

We can use the same technique for a permutation of an
array of size w®. The readers should have no difficulty to

confirm that any permutation can be done in O(w” +
time on the UMM using p processors.

Repeating the same technique, we can obtain a permu-
tation of an array of size n = w? . In other words,
the permutation of an array of size w>" can be done by
executing the row-wise permutation recursively three times
and the transpose twice for an array of size w2 If the
size n of an array satisfies n < wOW) | that is, m = 0(1),
then the depth of the recursion is constant. Thus, we have,

Theorem 8: Any permutation of an array of size n can be

done in O(2 + %l) time on the UMM with each processor
o)

wil
<)

having local memory of w words, provided that n < w

VII. CONCLUSION

In this paper, we have introduced two parallel memory
machines, the Discrete Memory Machine (DMM) and the
Unified Memory Machine (UMM). We first evaluated the
computing time of the contiguous access and the stride
access of the memory on the DMM and the UMM. We
then presented an algorithm to transpose a two dimensional
array on the DMM and the UMM. Finally, we have shown
that any permutation of an array of size n can be done in
o(&+ %l) time units on the DMM and the UMM with width
w and latency [. Since the computing time just involves the
bandwidth limitation factor % and the latency overhead %l,
the permutation algorithms are optimal.

Although the DMM and the UMM are simple, they
capture the characteristic of the shared memory and the
global memory of NVIDIA GPUs, Thus, these two parallel
computing models are promising for developing algorithmic
techniques for NVIDIA GPUs. As a future work, we plan
to implement various parallel algorithms developed for the
PRAM so far on the DMM and on the UMM. Also, NVIDIA
GPUs have small shared memory and large global memory.
Thus, it is also interesting to consider a hybrid memory
machine such that processors are connected to a small
memory of DMM and a large UMM.

REFERENCES

[1] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures
and Algorithms. Addison Wesley, 1983.

[2] A. Gibbons and W. Rytter, Efficient Parallel Algorithms.

Cambridge University Press, 1988.

[3] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction

to Parallel Computing. Addison Wesley, 2003.

[4] M. J. Quinn, Parallel Computing: Theory and Practice.

McGraw-Hill, 1994.

Mor-

[51 W. W. Hwu, GPU Computing Gems Emerald Edition.

gan Kaufmann, 2011.
[6] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU imple-
mentation of computing euclidean distance map with efficient
memory access,” in Proc. of International Conference on
Networking and Computing, Dec. 2011, pp. 68-76.

797

(7]

(8]

(91

[10]

(11]

[12]

(13]

[14]

(15]

(16]

A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” in Proc.
of International Conference on Networking and Computing,
Dec. 2011, pp. 153-159.

Y. Ito, K. Ogawa, and K. Nakano, “Fast ellipse detection
algorithm using hough transform on the GPU,” in Proc.
of International Conference on Networking and Computing,
Dec. 2011, pp. 313-319.

K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic
programming for the matrix chain product on the GPU,”
in Proc. of International Conference on Networking and
Computing, Dec. 2011, pp. 320-326.

NVIDIA CUDA C Programming Guide Version 4.0, 2011.

D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple-
mentations of a parallel algorithm for computing euclidean
distance map in multicore processors and GPUS,” Interna-
tional Journal of Networking and Computing, vol. 1, pp. 260—
276, July 2011.

NVIDIA CUDA C Best Practice Guide Version 3.1, 2010.

N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A
memory model for scientific algorithms on graphics proces-
sors,” in Proc. of the ACM/IEEE Conference on Supercom-
puting, 2006, pp. 6-6.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W. mei W. Hwu, “Optimization principles and
application performance evaluation of a multithreaded gpu
using cuda,” in Proc. of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, 2008,
pp. 73-82.

K. Nakano, “Optimal sorting algorithms on bus-connected
processor arrays,” IEICE Trans. Fundamentals, vol. E76-A,
no. 11, pp. 2008-2015, Nov. 1993.

R. J. Wilson, Introduction to Graph Theory, 3rd edition.
Longman, 1985.

