
International Journal of Foundations of Computer Siene World Sienti� Publishing Company
INSTANCE-SPECIFIC SOLUTIONS FOR ACCELERATING THECKY PARSING OF LARGE CONTEXT-FREE GRAMMARSJACIR L. BORDIMAdvaned Teleommuniations Researh International - ATR, Adaptive CommuniationsResearh Labs, 2-2-2 Hikaridai, Keihanna Siene City, Kyoto 619-0288, JapanOSCAR H. IBARRADepartment of Computer Siene, University of California, Santa Barbara,Santa Barbara, California, 93106, USA.YASUAKI ITOShool of Information Siene, Japan Advaned Institute of Siene and Tehnology - JAIST,Tatsunokuhi, Ishikawa 923-1292, Japan.andKOJI NAKANOShool of Engineering, Hiroshima University,Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Japan.Reeived (reeived date)Revised (revised date)Communiated by Editor's nameABSTRACTThe main ontribution of this paper is an FPGA-based implementation of aninstane-spei� hardware whih aelerates the CKY (Coke-Kasami-Younger) pars-ing of ontext-free grammars. Given a ontext-free grammar G and a string x, the CKYparsing determines whether G derives x. We developed a hardware generator that reatesa Verilog HDL soure to perform the CKY parsing for any �xed ontext-free grammarG. The generated soure is embedded in an FPGA using the design software provided bythe FPGA vendor. The results show that our instane-spei� hardware solution attainsan astonishing speed-up fator of up to 3,700 over traditional software solutions.Keywords: CKY Parsing, FPGAs, Reon�gurable Arhitetures, Reon�gurable Com-puting.1. IntrodutionAn FPGA (Field Programmable Gate Array) is a programmable VLSI in whiha hardware design an be embedded quikly. Typial FPGAs onsist of an arrayof programmable logi elements, distributed memory bloks, and programmableinteronnetions between them. The logi blok usually ontains either a two-input1

logi funtion or a 4-to-1 multiplexer and several ip-ops. The distributed memoryblok is usually a dual-port RAM on whih a word of data for possibly distintaddresses an be read/written at the same time. Using the design tools suppliedby the FPGA vendors, the user hardware logi design an be embedded into theFPGAs. Our goal is to use FPGAs to aelerate useful omputations. In partiular,the hallenge is to develop FPGA-based solutions that are faster and more eÆientthan traditional software solutions.The approah for aelerating omputations using FPGAs is inspired by thenotion of partial omputation [12℄. Let f(x; y) be a funtion to be evaluated in orderto solve a given problem. Suppose that suh a funtion is repeatedly evaluated onlyfor a �xed x. When this is the ase, the omputation of f(x; y) an be simpli�ed byevaluating an instane-spei� funtion fx suh that fx(y) = f(x; y). For instane,imagine a problem suh that an algorithm to solve it evaluates f(x; y) = x3+x2y+yrepeatedly. If f(x; y) is evaluated only for x = 2, then the formula an be simpli�edsuh that f2(y) = 8+5y. The optimization of funtion fx for a partiular x is alleda partial omputation.It is very hallenging to build hardware solutions that are optimized to omputefx(y) for a �xed x and various y. More spei�ally, the goal is to present instane-spei� solutions for problems that involves a funtion evaluation for f(x; y) satis-fying the following properties:1. The value of a �xed instane x depends on the instane of the problem, and2. The value of f(x; y) is repeatedly evaluated for various y to solve the problem.Atually, several important problems have been solved by instane-spei� hard-wares [3, 11, 13℄.The main ontribution of this paper is to present instane-spei� solutions foraelerating the parsing of ontext-free grammars [16℄. Let f(G; x) be a funtionsuh that G is a ontext-free grammar, x is a string, and f(G; x) returns a Booleanvalue suh that f(G; x) returns TRUE i� G derives x. It is well-known that theCKY (Coke-Kasami-Younger) parsing [1℄ omputes f(G; x) in O(n3) time, where nis the length of x [1℄. The parsing of ontext-free languages has many appliations invarious areas inluding natural language proessing [5, 18℄, ompiler onstrution [1℄,informatis [17℄, among others.Several studies have been devoted for aelerating the parsing of ontext-freelanguages [3, 4, 9, 15, 18℄. It has been shown that parsing of a string of length nan be done in O((log n)2) time using n6 proessors on the PRAM [9℄. Also, usingthe mesh-onneted proessor arrays, the parsing an be done in O(n2) time usingn proessors as well as in O(n) time using n2 proessors [15℄. Later in [4℄, Chang,Ibarra and Palis developed an algorithm that runs on a systoli array with n2�nite-state proessors with one-way ommuniation that runs in linear time. Thenin [10℄, Ibarra, Jiang, and Wang showed that parsing an be aomplished on aone-way linear array of n2 �nite-state proessors in linear time. Sine these parallelalgorithms need at least n proessors, they are unrealisti for large n. Ciressanet al. [6, 7℄ have presented a hardware for the CKY parsing for a restrited lass2

ontext-free grammar GVerilog HDL soure ofthe CKY parserOur hardware generatorDesign tool host PCFPGA strings x1; x2; x3; : : :fG(x1); fG(x2); fG(x3); : : :Figure 1: The CKY Hardware Parsing System.of ontext-free grammar and have tested it using FPGA. However, the produtionrules are stored in the memory, and the hardware design and the ontrol algorithmare essentially the same as those on the mesh-onneted proessors [4, 10, 15℄, andthey are not instane-spei�.As pointed out by Ninomiya et. al. [14℄, reent Natural Language Proessing hasreeived a great deal of attention from the researh ommunity, however the workhas been limited to theoretial speulation or experiments with small grammars.Also in [14℄, the authors proposed a parallel implementation to parse grammars ofJapanese language with a signi�ant number of rules (18; 891) and non-terminalsymbols (206). Their parallel implementation performed parsing of sentenes oflength 85-95 in 22.2 seonds on a parallel omputer AP1000+ with 256 Sun SparCPUs (50MHz). In a reent paper [3℄, Bordim, Ito, and Nakano presented anFPGA-based implementation for aelerating the CKY parsing and tested it onthe Altera APEX20K family FPGA [2℄. Their implementation ahieved a speed-upfator of nearly 750 over traditional software approahes with rules ranging from 32to 8,192, input string length of 32, and with both 32 and 64 non-terminal symbols.Although these results are a signi�ant improvement over traditional approahes,they work only for small input sequenes and a onstrained number of produtionrules. The main limitation of the earlier approah was the need to store omputedvalues in the FPGA memory bloks, whih is impratial for large input sequenes.For the purpose of instane-spei� solution for parsing ontext-free languages,we present a hardware generator that produes a Verilog HDL soure that performsthe CKY parsing for any given ontext-free grammar G. The key ingredient ofthe produed design is a hardware omponent for omputing a binary operator
Gsuh that 2N � 2N ! 2N , where N is the set of non-terminal symbols in G. Morespei�ally, let U and V be a set of non-terminals in G that derive strings � and�, respetively. The operator U
G V returns the set of non-terminals that derive�� (i.e. the onatenation of � and �). The CKY parsing algorithm repeats theevaluation of
G for O(n3) times. The details of
G will be explained in Setion 2.In order to ompute all possible derivations of the input string x, the CKY algo-rithm uses a two-dimensional array, alled the CKY Table. In this work we onsidertwo di�erent hardware approahes to speed-up the omputation of the CKY algo-3

rithm. In the �rst approah, both the omponent for omputing
G and the CKYtable are implemented in FPGAs. In the seond approah, the omponent for om-puting
G is implemented in FPGA while the CKY table is stored in the Host-PC'smain memory. When evaluating
G, the neessary information is transferred fromthe Host-PC to the FPGA via the PCI-bus. Note that today's PCs an be embed-ded with Gbyte-memory size while even the most advaned FPGAs are embeddedwith only Mbyte-memory size. Thus, the seond approah enables us to handlelarger input strings and larger grammars. We have veri�ed our implementationsfor rules ranging from 5,000 to 25,000 using either 256 or 512 non-terminal symbolswith the length of the input string ranging from 90 to 512. Clearly, our results aregood enough to parse a orpus like the one presented in [14℄.Figure 1 illustrates our CKY hardware parsing system. The CKY hardwareparsing system takes the ontext-free grammar G as input and generates a VerilogHDL soure �le of the CKY parser. The Verilog HDL soure is ompiled usingthe ISE Logi Design Tool [20℄ and the objet �le obtained is downloaded into theXilinx Virtex-II family FPGAs [19℄. The programmed FPGA ompute fG(x), i.e.determines if G derives x for a given string x. Given strings x1; x2; x3; : : : by thehost PC, the FPGA omputes and returns fG(x1); fG(x2); fG(x3); : : : to the host.Traditional sequential software approahes ompute
G by heking all p pro-dution rules in O(p) time. Hene, a sequential software implementation of the CKYparsing algorithm runs in O(n3p) time. The proposed instane-spei� hardwaresolution evaluates
G in O(log b) time. Thus, the CKY parsing an be omputedin O(n3 log b) time. Sine b � p always hold, our hardware solution is muh faster,from the theoretial point of view, than the traditional software approahes.We have implemented and evaluated the performane of our instane-spei�hardware solution on the Xilinx Virtex-II family FPGA. To evaluate the perfor-mane of our hardware solution we provided a traditional software implementationas ounterpart. The performane evaluation has been arried out on an IBM PC-ompatible (Xeon 2.8GHz proessor). The results show that our instane-spei�hardware solution attains an astonishing speed-up fator of nearly 3,700 over tra-ditional software solutions.This paper is organized as follows: Setion 2 briey desribes the CKY parsingsheme and a traditional software implementation. Setion 3 presents the detailsof our instane-spei� hardware solutions for the CKY parsing. Setion 4 evalu-ates the performane of our instane-spei� hardware solutions and ompare theobtained results to the software solutions. Finally, Setion 5 is a brief onlusion.2. The CKY Parsing and a Software SolutionThis setion briey desribe the CKY parsing and a traditional software solution.Let G = (N;�; P; S) denote a ontext-free grammar suh that N is a set of non-terminal symbols, � is a set of terminal symbols, P is a set of prodution rules,and S (2 N) is the start symbol. A ontext-free grammar is said to be in ChomskyNormal Form (CNF), if every prodution rule in P is in either form A ! BC orA! a, where A, B, and C are non-terminal symbols and a is a terminal symbol.4

We are interested in the parsing problem for a ontext-free grammar in CNF.More spei�ally, for a given CNF ontext-free grammar G and a string x over �,the parsing problem is a problem to determine if the start symbol S derives x. Forexample, let Gexample = (N;�; P; S) be a grammar suh that N = fS;A;Bg, � =fa; bg, and P = fS ! AB;S ! BA;S ! SS;A ! AB;B ! BA;A ! a;B ! bg.The ontext-free grammar G derives abaab, beause S derives it as follows:S) AB) ABA) ABAA) ABAAB) � � �) abaab:We are going to explain the CKY parsing sheme that determines whether Gderives x for a CNF ontext-free grammar G and a string x. Let x = x1x2 � � �xn bea string of length n, where eah xi (1 � i � n) is in �. Let T [i; j℄ (1 � i � j � n)denote a subset of N suh that every A in T [i; j℄ derives a substring xixi+1 � � �xj .The idea of the CKY parsing is to ompute every T [i; j℄ using the following relations:T [i; i℄ = fA j (A! xi) 2 PgT [i; j℄ = j�1[k=ifA j (A! BC) 2 P;B 2 T [i; k℄; andC 2 T [k + 1; j℄gA two-dimensional array T is alled the CKY table. A grammar G generates astring x i� S is in T [1; n℄. Let
G denote a binary operator 2N � 2N ! 2N suhthat U
G V = fA j (A ! BC) 2 P;B 2 U; and C 2 V g. The details of the CKYparsing are spelled out as follows:CKY parsing1. T [i; i℄ fA j (A! xi) 2 Pg for every i (1 � i � n)2. T [i; j℄ ; for every i and j (1 � i < j � n)3. for j 2 to n do4. for i j � 1 downto 1 do5. for k i to j � 1 do6. T [i; j℄ T [i; j℄S(T [i; k℄
G T [k + 1; j℄)The �rst two lines initialize the CKY table, and the next four lines ompute theCKY table. Figure 2 illustrates the CKY table for Gexample and the string abaab.Sine S 2 T [1; 5℄, one an see that Gexample derives abaab.Clearly, the last four lines are dominant in the CKY parsing. Let t be theomputing time neessary to perform an iteration of the line 6. Then, line 6 isexeuted for T (n) = nXj=2 j�1Xi=1 j�1Xk=i t = t nXj=2 j�1Xi=1(j � i) = 16t(n3 � n)times.Let us evaluate the omputing time t neessary to perform line 6, i.e., neessaryto evaluate the binary operator
G. A traditional software approah (i.e, sequential5

a b a a bj
i1 2 3 4 5

12
453 AB

S;AS;B AA
S;B B;S;AS;AS;A
S;BS;A ;

Figure 2: The CKY table for Gexample and abaab.algorithm), heks whether B 2 U and C 2 V for every prodution rule A! BC inP . Clearly, using a reasonable data struture, this an be done in O(1) time. Hene,U
GV an be evaluated in O(p) time, where p is the number of prodution rules inP that has the form A ! BC. Thus, using the above approah, the CKY parsingan be omputed in O(n3p) time. The performane evaluation of our hardwareimplementation will use the aforementioned software solution as ounterpart in theperformane evaluation (Setion 4).3. CKY Parsing Instane-Spei� HardwareThis setion is devoted to show our instane-spei� hardware for the CKYparsing. We �rst aelerate the evaluation of
G by building a iruit for omputing
G in an FPGA. We then go on to show the hardware details to build this iruit.Next, we present the details of a seond hardware implementation in whih theCKY table is stored in the Host-PC.Let N = fN1; N2; : : : ; Nbg be a set of non-terminal symbols, where b is thenumber of non-terminal symbols. Let U and V (2 2N) be represented by b-bitbinary vetors u1u2 � � �ub and v1v2 � � � vb, respetively, suh that ui = 1 i� Ni 2 Uand vi = 1 i� Ni 2 V . Our goal is to ompute the vetor w1w2 � � �wb, whihrepresents W = U
G V . For a partiular wk, we are going to show how wk isomputed. Let Nk ! Ni1Nj1 , Nk ! Ni2Nj2 , : : :, and, Nk ! NisNjs be theprodution rules in P whose non-terminal symbol in the left-hand side is Nk. Then,wk is omputed by the following formula:wk = (ui1 ^ vj1) _ (ui2 ^ vj2) _ � � � _ (uis ^ vjs):The task of our hardware generator is to read the prodution rules in P , whih6

are stored in a text �le, and to generate a module to ompute the vetor w1w2 � � �wb.Based on the prodution rules, our hardware generator reates a module written in aVerilog-HDL soure ode, whih omputes eah entry wk. A module in Verilog-HDLis analogue to a proedure in a high-level language, suh as C/Pasal languages, andan be \alled" from the main module. The main module omprehend a number offuntions, whose tasks are, among others, to ontrol memory aess and the FPGA-PC interfae. An example of the soure ode reated by our hardware generator isshown below.1 module omp(u,v,w);2 input [3:1℄ u,v;3 output [3:1℄ w;4 assign w[1℄ = (u[2℄ & v[3℄)5 | (u[3℄ & v[2℄)6 | (u[1℄ & v[1℄);7 assign w[2℄ = (u[2℄ & v[3℄);8 assign w[3℄ = (u[3℄ & v[2℄);9 endmoduleThe �rst line de�nes the module name and the parameters reeived and returnedby the module. The parameters are expliit de�ned as shown in lines 2 and 3. Eahentry of the output vetor is omputed in lines 4 through 8, whih are omputedaording to the prodution rules in P . The iruit of the above module is shown inFigure 3. As shown above, wk an be omputed by a ombinatorial iruit using sAND-gates and s� 1 OR-gates with fan-in 2. Furthermore, the depth of the iruit(or the maximum number of gates over all paths in the iruit) is dlog(s� 1)e+ 1.Sine we have p prodution rules of the type A! BC in P , then w1w2 � � �wb an beomputed by a iruit with p AND-gates and p�b OR-gates. Beause s � b2 alwayshold, the depth of the iruit is no more than dlog(b2�1)e+1 � 2 log b+1. Thus, theCKY parsing an be done in O(n3 log b) time using this iruit. Figure 3 illustratesa iruit for
Gexample. Sine Gexample has 5 prodution rules and 3 non-terminalsymbols, the iruit has 5 AND gates and 5� 3 = 2 OR gates.The sequential algorithm we have disussed in Setion 2 takes O(p) time toevaluate
G. On the other hand, our iruit for
G has a delay time proportionalto O(log b). Sine b � p always holds, the iruit for
G is faster than the sequentialalgorithm from the theoretial point of view. In what follows, we are going to showthe implementation details of our instane-spei� hardware. Our �rst hardwareimplementation of the CKY parsing uses the following basi omponents:{ a b-bit n2-word (dual-port) memory;{ a b-bit n-word (dual-port) memory;{ a CKY iruit for omputing
G;{ an array of b OR gates; and{ a b-bit register. 7

u1 u2 u3
w1 w2 w3

v1 v2 v3S A B S A B

S A BFigure 3: The iruit for omputing
Gexample.b-bit n2-word memory b-bit n-word memoryCKY iruitb-bit registerarray of b OR gatesInput CKY tableFigure 4: A hardware implementation for the CKY parsing.Figure 4 illustrates our �rst implementation for the CKY parsing. The b-bitn2-word memory stores the CKY table. The input, T [1; 1℄; T [2; 2℄; : : : ; T [n; n℄ issupplied to the b-bit n2-word memory. The b-bit n-word memory stores a rowof the CKY table that is being proessed. In other words, it stores the j-th rowT [1; j℄; T [2; j℄; : : : of the CKY table, where j is the variable appearing in line 3 of theCKY parsing. The b-bit register stores the urrent value of T [i; j℄, whih is omputedin line 6 of the CKY parsing. The array of b OR gates is used to ompute \S"in line 6. The b-bit n2-word memory supplies the b-bit vetor representing T [i; k℄to the CKY iruit. Similarly, the b-bit n-word memory outputs the b-bit vetorfor T [k + 1; j℄. The CKY iruit reeives them and omputes the b-bit vetor forT [i; k℄
GT [k+1; j℄. Using this hardware implementation, line 6 of the CKY parsingis omputed in a lok yle. Thus, the CKY parsing an be done in approximately16n3 lok yles. Furthermore, the delay of the iruit is proportional to O(log b).Thus, the omputing time is O(n3 log b).8

In the above approah, a large portion of the FPGA memory bloks is usedto store the CKY table. Hene, for large input strings, it might not be feasibleto store the CKY table in the FPGA due to limited amount of hardware. A wayto overome this limitation is to store the CKY table in the Host-PC. Our seondimplementation of the CKY parsing explores this alternative. This implementationuses the same basi omponents of the �rst implementation, exept for the b-bitn2-word memory whih is now stored in the Host-PC. The details of the seondhardware implementation are shown in Figure 5.b-bit n2-word memory b-bit n-word memoryCKY iruitb-bit registerarray of b OR gatesInput CKY table
PC�FPGA interfaePCI BusPC FPGA

Figure 5: Hardware implementation of the CKY parsing with the CKY table storedin the Host-PC.When the j-th row of the CKY table is omputed, all the neessary informationis transferred from the Host-PC to the FPGA through the PCI-bus by DMA. TheCKY iruit retrieves the information needed to ompute eah entry T [i; j℄ in line6. To be more preise, let us onsider the omputation of a partiular row, say them-th row. The �rst element (i.e., the �rst entry) of the m-th row is provided bythe CKY table, sine it is a terminal symbol. Suh symbol is then stored in theb-bit n-word memory. To ompute the next entry T [i;m℄, the information regardingthe already omputed entries of the i-th olumn and m-th row are neessary. Theelements of the i-th olumn are provided by the Host-PC via the PCI-bus, whilethe previously omputed elements of the m-th row are provided by the b-bit n-wordmemory (whih is stored in the FPGA). One the entry T [i;m℄ is omputed, itsresult is stored in the b-bit n-word memory for later use. Upon ompleting theomputation of the m-row, all the omputed elements are transferred to the Host-PC through PCI bus, where they are stored. Although the omputing time for ourseond implementation is also O(n3 log b) some overhead is introdued due to theuse of the PCI-bus. To redue the overhead, we have used the DMA transfer thoughthe PCI-bus, whih supports up to 32-bit�33MHz� 1Gbit/se.The subsequent setion shows the performane evaluation of our hardware im-plementations and ompare them with traditional software solutions.9

4. Performane EvaluationWe have implemented and evaluated the performane of our instane-spei�solution on a Xilinx Virtex-II family FPGA (XC2V3000, speed grade 4, typial 3Million gates with 1.7 Mbits embedded memory). In order to ompare the perfor-mane of our instane-spei� solution, we have implemented two software solutionsand measured the performane on an IBM PC-ompatible (Xeon 2.8GHz proessorwith 2GB Memory) using Linux OS (Kernel 2.2.18-14smp). The software solutionhas been implemented in C++ and ompiled with the Intel C++ ompiler for Linux7.0.Table 1 shows the performane of our �rst hardware approah and its orre-sponding software solution for the CKY algorithm for b = 256 and n = 90, where nrepresents the length of the input string and b represents the number of non-terminalsymbols. Aording to the timing analyzer of the ISE Logi Design Tool[20℄, ourimplementation expeted to run in approximately 35MHz for every value of n, b,and p in 1, although the delay is proportional to O(log b) in theory. Atually, ourimplementation works orretly in 40MHz on XC2V3000. Thus, it is expeted torun in T (90) = 16 � 140MHz (903 � 90) = 3:037mse, while the atual omputing timeis 3:109mse. Hene, the misellaneous overhead inluding the time for ommuni-ation through the PCI-bus is only (3:109� 3:037)=3:037 = 2:4%.As shown in the table, a speed-up fator of more than 900 is experiened forp = 5,000. Reall that the sequential algorithm heks whether or not B 2 U andC 2 V for every prodution rule A ! BC in P . Hene, the omputing time ofthe sequential algorithm is proportional to the number of prodution rules. Thatis, the omputing time of the software solution inreases along with the number ofprodution rules. On the other hand, as we have mentioned, the omputing time ofthe hardware implementation is independent of the number of prodution rules. Forp = 10,000, the FPGA solution attains a speed-up fator of more than 1,900, andfor p = 15,000 we observed a speed-up fator of nearly 3,000. In [14℄, the authorsproposed a parallel implementation to parse grammars of Japanese language with18; 891 rules and 206 non-terminal symbols. Hene, we implemented our CKYparsing hardware for p = 19,000 and b = 206, and observed a speed up fator ofnearly 3,700. The above instane-spei� hardware solution with the CKY tableimplemented in the FPGA utilizes up to 85% of the available memory bloks. Thisfat prevented us for implementing hardware solutions for larger values of n. Tooverome this limitation, we proposed a hardware solution where the CKY table isstored in the main memory of the Host-PC.In what follows, we present the results of our seond hardware implementation.Table 2 shows the omputing time of our seond hardware approah along withthe omputing time of the software solution. The performane evaluation has beenarried out for di�erent values of n and p with the number of non-terminal symbols�xed to 512 (i.e., b = 512).The omputing time for the CKY implementation in software follows the samepattern observed in the previous table. As expeted, the implementation of the CKYtable in the Host-PC adds a onsiderable overhead whih has a profound impat10

n b p FPGA [ms℄ Software [ms℄ Speed-up5,000 2,850 917256 10,000 6,050 1,94690 15,000 3.109 9,100 2,927206 19,000 11,490 3,696Table 1: Performane of the CKY algorithm with the CKY Table implemented inFPGA. n b p FPGA [s℄ Software [s℄ Speed-up15,000 23.54 49128 20,000 0.476 33.49 7025,000 42.84 9015,000 119.05 31256 512 20,000 3.819 276.47 7225,000 356.23 9315,000 1,653.95 54512 20,000 30.456 2,246.00 7425,000 2,823.00 93Table 2: Performane of the CKY parsing with the CKY Table implemented in theHost-PCin the performane of the hardware solution. We have been able to implement ourseond approah using up to 25,000 rules. We also attempted using 30,000 ruleswhih surpassed the amount of available resoures of our FPGA, thus resulting in\routing error". Although the FPGA lok frequeny is 40MHz, we speulate thatthe time to aess the PCI to send/reeive data is responsible for a large part ofthe introdued overhead. Notwithstanding, the hardware implementation with theCKY table stored in the Host-PC attains an speed-up fator of up to 93 over thesoftware approah.5. Conluding RemarksThe main ontribution of this work was to present an FPGA-based implementa-tion of an instane-spei� hardware that aelerates the CKY parsing for ontext-free grammars.We have implemented our instane-spei� hardware solution on the XilinxVirtex-II family FPGA. To evaluate the performane of our hardware solutionwe provided a traditional software implementation as ounterpart. The perfor-mane evaluation has been arried out on an IBM PC-ompatible (Pentium 4,Xeon 2.8GHz). The results have shown that our instane-spei� hardware solu-tion attain an astonishing speed-up fator of nearly 3,700 over traditional softwaresolutions.Aknowledgment 11

This work has been partially supported by Grant in Aid for Sienti� Researhof JSPS and NSF Grants IIS-0101134 and CCR02-08595.Referenes1. A. V. Aho and J. D. Ullman. The Theory of Parsing Translation and Compiling.Prentie Hall, 1972.2. Altera Corporation, APEX 20K Devies: System-on-a-Programmable-Chip Solu-tions, http://www.altera.om/produts/devies/apex/apx-index.html.3. J. L. Bordim, Y. Ito, and K. Nakano, Aelerating the CKY Parsing Using FPGAs,IEICE Transations on Information and Systems, Vol. E86-D, No.5, pp.803{810,2003.4. J. Chang, O. Ibarra, and M. Palis, Parallel parsing on a one-way array of �nite-statemahines, IEEE Transations on Computers, C-36(1):64{75, 1987.5. E. Charniak, Statistial Language Learning, MIT Press, Cambridge, Massahusetts,1993.6. C. Ciressan, E. Sanhez, M. Rajman, and J.-C. Chappelier, An FPGA-based opro-essor for the parsing of ontext-free grammars, In Pro. of IEEE Symposium onField-Programmable Custom Computing Mahines, 2000.7. C. Ciressan, E. Sanhez, M. Rajman, and J.-C. Chappelier, An FPGA-based syn-tati parser for real-life almost unrestrited ontext-free grammars, In Pro. ofInternational Conferene on Field Programmable Logi and Appliations (FPL),pages 590{594, 2001.8. Y. Futamura, K. Nogi, and A. Takano, Essene of generalized partial omputation,Theoretial Computer Siene, 90:61{79, 1991.9. A. Gibbons and W. Rytter, EÆient Parallel Algorithms, Cambridge UniversityPress, 1988.10. O. Ibarra, T. Jiang, and H. Wang Parallel Parsing on a One-way Linear Array ofFinite-state Mahines, Theoretial Computer Siene, vol. 85, pp. 53{74, 1991.11. S. Ihikawa and S. Yamamoto, Data Dependent Ciruit for Subgraph Isomorphism,IEICE Transations on Information and Systems", Vol. E86-D, No.5, pp.796{802,2003.12. N. D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and Automati Pro-gram Generation, Prentie Hall, 1993.13. K. Nakano and E. Takamihi, An Image Retrieval System Using FPGAs, IEICETransations on Information and Systems, Vol. E86-D, No.5, pp.811{818, 2003.14. T. Ninomiya, K. Toriswa, K. Taura, and Jun-ihi Tsujii, A Parallel CKY Parsing Al-gorithm on Large-Sale Distributed-Memory Parallel Mahines, in Proeedings of thePai� Assoiation for Computational Linguistis '97, pp. 223{231, Tokyo, Japan,September, 1997. The Japanese version appeared in Proeedings of JSSST Work-shop on Objet-Oriented Computing (WOOC), Kanagawa, Japan, Marh, 1997.15. S. R. Kosaraju, Speed of reognition of ontext-free languages by array automata,SIAM J. on Computers, 4:331{340, 1975.16. J. C. Martin, Introdution to languages and the theory of omputation (2nd Edition),Ma-Graw Hill, 1996.17. Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sj�olander, R. C. Underwood,and D. Haussler, Stohasti ontext-free grammars for tRNA modeling, Nulei AidsResearh, 22:5112{5120, 1994. 12

18. M. P. van Lohuizen, Survey on parallel ontext-free parsing tehniques TehnialReport IMPACT-NLI-1997-1, Delft University of Tehnology, 1997.19. Xilinx In., Virtex II FPGAs http://www.xilinx.om20. Xilinx In., ISE Logi Design Tools,http://www.xilinx.om/ise/design tools/index.html

13

