International Journal of Foundations of Computer Science
© World Scientific Publishing Company

INSTANCE-SPECIFIC SOLUTIONS FOR ACCELERATING THE
CKY PARSING OF LARGE CONTEXT-FREE GRAMMARS

JACIR L. BORDIM

Advanced Telecommunications Research International - ATR, Adaptive Communications
Research Labs, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan

OSCAR H. IBARRA

Department of Computer Science, University of California, Santa Barbara,
Santa Barbara, California, 93106, USA.

YASUAKI ITO

School of Information Science, Japan Advanced Institute of Science and Technology - JAIST,
Tatsunokuchi, Ishikawa 923-1292, Japan.

and

KOJI NAKANO
School of Engineering, Hiroshima University,
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Japan.

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

The main contribution of this paper is an FPGA-based implementation of an
instance-specific hardware which accelerates the CKY (Cocke-Kasami-Younger) pars-
ing of context-free grammars. Given a context-free grammar G and a string z, the CKY
parsing determines whether G derives x. We developed a hardware generator that creates
a Verilog HDL source to perform the CKY parsing for any fixed context-free grammar
G. The generated source is embedded in an FPGA using the design software provided by
the FPGA vendor. The results show that our instance-specific hardware solution attains
an astonishing speed-up factor of up to 3,700 over traditional software solutions.

Keywords: CKY Parsing, FPGAs, Reconfigurable Architectures, Reconfigurable Com-
puting.

1. Introduction

An FPGA (Field Programmable Gate Array) is a programmable VLSI in which
a hardware design can be embedded quickly. Typical FPGAs consist of an array
of programmable logic elements, distributed memory blocks, and programmable
interconnections between them. The logic block usually contains either a two-input

logic function or a 4-to-1 multiplexer and several flip-flops. The distributed memory
block is usually a dual-port RAM on which a word of data for possibly distinct
addresses can be read/written at the same time. Using the design tools supplied
by the FPGA vendors, the user hardware logic design can be embedded into the
FPGAs. Our goal is to use FPGAs to accelerate useful computations. In particular,
the challenge is to develop FPGA-based solutions that are faster and more efficient
than traditional software solutions.

The approach for accelerating computations using FPGAs is inspired by the
notion of partial computation [12]. Let f(x,y) be a function to be evaluated in order
to solve a given problem. Suppose that such a function is repeatedly evaluated only
for a fixed . When this is the case, the computation of f(z,y) can be simplified by
evaluating an instance-specific function f, such that f,(y) = f(z,y). For instance,
imagine a problem such that an algorithm to solve it evaluates f(z,y) = 2® +2%y+y
repeatedly. If f(z,y) is evaluated only for = 2, then the formula can be simplified
such that fo(y) = 84 5y. The optimization of function f, for a particular z is called
a partial computation.

It is very challenging to build hardware solutions that are optimized to compute
fe(y) for a fixed x and various y. More specifically, the goal is to present instance-
specific solutions for problems that involves a function evaluation for f(z,y) satis-
fying the following properties:

1. The value of a fixed instance = depends on the instance of the problem, and
2. The value of f(x,y) is repeatedly evaluated for various y to solve the problem.

Actually, several important problems have been solved by instance-specific hard-
wares [3, 11, 13].

The main contribution of this paper is to present instance-specific solutions for
accelerating the parsing of context-free grammars [16]. Let f(G,z) be a function
such that G is a context-free grammar, x is a string, and f(G, z) returns a Boolean
value such that f(G,x) returns TRUE iff G derives x. It is well-known that the
CKY (Cocke-Kasami-Younger) parsing [1] computes f(G,z) in O(n?) time, where n
is the length of z [1]. The parsing of context-free languages has many applications in
various areas including natural language processing [5, 18], compiler construction [1],
informatics [17], among others.

Several studies have been devoted for accelerating the parsing of context-free
languages [3, 4, 9, 15, 18]. It has been shown that parsing of a string of length n
can be done in O((logn)?) time using n® processors on the PRAM [9]. Also, using
the mesh-connected processor arrays, the parsing can be done in O(n?) time using
n processors as well as in O(n) time using n? processors [15]. Later in [4], Chang,
Ibarra and Palis developed an algorithm that runs on a systolic array with n?
finite-state processors with one-way communication that runs in linear time. Then
in [10], Ibarra, Jiang, and Wang showed that parsing can be accomplished on a
one-way linear array of n? finite-state processors in linear time. Since these parallel
algorithms need at least n processors, they are unrealistic for large n. Ciressan
et al. [6, 7] have presented a hardware for the CKY parsing for a restricted class

(context-free grammar G)

Our hardware generator

[Verilog HDL source of]

the CKY parser host PC

Design tool
FPGA strings 1, 2, x3,... C)
/ = Lo
>

fa(zy), fa(z2), fa(xs), ...

Figure 1: The CKY Hardware Parsing System.

of context-free grammar and have tested it using FPGA. However, the production
rules are stored in the memory, and the hardware design and the control algorithm
are essentially the same as those on the mesh-connected processors [4, 10, 15], and
they are not instance-specific.

As pointed out by Ninomiya et. al. [14], recent Natural Language Processing has
received a great deal of attention from the research community, however the work
has been limited to theoretical speculation or experiments with small grammars.
Also in [14], the authors proposed a parallel implementation to parse grammars of
Japanese language with a significant number of rules (18,891) and non-terminal
symbols (206). Their parallel implementation performed parsing of sentences of
length 85-95 in 22.2 seconds on a parallel computer AP1000+ with 256 Sun Sparc
CPUs (50MHz). In a recent paper [3], Bordim, Ito, and Nakano presented an
FPGA-based implementation for accelerating the CKY parsing and tested it on
the Altera APEX20K family FPGA [2]. Their implementation achieved a speed-up
factor of nearly 750 over traditional software approaches with rules ranging from 32
to 8,192, input string length of 32, and with both 32 and 64 non-terminal symbols.
Although these results are a significant improvement over traditional approaches,
they work only for small input sequences and a constrained number of production
rules. The main limitation of the earlier approach was the need to store computed
values in the FPGA memory blocks, which is impractical for large input sequences.

For the purpose of instance-specific solution for parsing context-free languages,
we present a hardware generator that produces a Verilog HDL source that performs
the CKY parsing for any given context-free grammar G. The key ingredient of
the produced design is a hardware component for computing a binary operator ®¢
such that 2V x 2 — 2N where N is the set of non-terminal symbols in G. More
specifically, let U and V be a set of non-terminals in G that derive strings « and
B, respectively. The operator U ®¢ V' returns the set of non-terminals that derive
af (i.e. the concatenation of o and). The CKY parsing algorithm repeats the
evaluation of ®¢ for O(n?) times. The details of ®¢ will be explained in Section 2.

In order to compute all possible derivations of the input string =, the CKY algo-
rithm uses a two-dimensional array, called the CKY Table. In this work we consider
two different hardware approaches to speed-up the computation of the CKY algo-

rithm. In the first approach, both the component for computing ® and the CKY
table are implemented in FPGAs. In the second approach, the component for com-
puting ®¢ is implemented in FPGA while the CKY table is stored in the Host-PC’s
main memory. When evaluating ®¢, the necessary information is transferred from
the Host-PC to the FPGA via the PCI-bus. Note that today’s PCs can be embed-
ded with Gbyte-memory size while even the most advanced FPGAs are embedded
with only Mbyte-memory size. Thus, the second approach enables us to handle
larger input strings and larger grammars. We have verified our implementations
for rules ranging from 5,000 to 25,000 using either 256 or 512 non-terminal symbols
with the length of the input string ranging from 90 to 512. Clearly, our results are
good enough to parse a corpus like the one presented in [14].

Figure 1 illustrates our CKY hardware parsing system. The CKY hardware
parsing system takes the context-free grammar G as input and generates a Verilog
HDL source file of the CKY parser. The Verilog HDL source is compiled using
the ISE Logic Design Tool [20] and the object file obtained is downloaded into the
Xilinx Virtex-II family FPGAs [19]. The programmed FPGA compute fg(x), i.e.
determines if G derives = for a given string x. Given strings x1, %2, 3, ... by the
host PC, the FPGA computes and returns fg(z1), fo(x2), fa(x3), ... to the host.

Traditional sequential software approaches compute ®¢ by checking all p pro-
duction rules in O(p) time. Hence, a sequential software implementation of the CKY
parsing algorithm runs in O(n®p) time. The proposed instance-specific hardware
solution evaluates ®¢ in O(logb) time. Thus, the CKY parsing can be computed
in O(n3logb) time. Since b < p always hold, our hardware solution is much faster,
from the theoretical point of view, than the traditional software approaches.

We have implemented and evaluated the performance of our instance-specific
hardware solution on the Xilinx Virtex-II family FPGA. To evaluate the perfor-
mance of our hardware solution we provided a traditional software implementation
as counterpart. The performance evaluation has been carried out on an IBM PC-
compatible (Xeon 2.8GHz processor). The results show that our instance-specific
hardware solution attains an astonishing speed-up factor of nearly 3,700 over tra-
ditional software solutions.

This paper is organized as follows: Section 2 briefly describes the CKY parsing
scheme and a traditional software implementation. Section 3 presents the details
of our instance-specific hardware solutions for the CKY parsing. Section 4 evalu-
ates the performance of our instance-specific hardware solutions and compare the
obtained results to the software solutions. Finally, Section 5 is a brief conclusion.

2. The CKY Parsing and a Software Solution

This section briefly describe the CKY parsing and a traditional software solution.
Let G = (N,X, P,S) denote a context-free grammmar such that N is a set of non-
terminal symbols, ¥ is a set of terminal symbols, P is a set of production rules,
and S (€ N) is the start symbol. A context-free grammar is said to be in Chomsky
Normal Form (CNF), if every production rule in P is in either form A — BC or
A — a, where A, B, and C are non-terminal symbols and a is a terminal symbol.

We are interested in the parsing problem for a context-free grammar in CNF.
More specifically, for a given CNF context-free grammar G and a string = over X,
the parsing problem is a problem to determine if the start symbol S derives x. For
example, let Gexample = (IV, X, P, S) be a grammar such that N = {S,A,B}, ¥ =
{a,b}, and P = {S - AB,S - BA,S - SS,A - AB,B - BA,A — a,B — b}.
The context-free grammar G derives abaab, because S derives it as follows:

S = AB = ABA = ABAA = ABAAB = --- = abaab.

We are going to explain the CKY parsing scheme that determines whether G
derives x for a CNF context-free grammar G and a string z. Let ¢ = zy25 - - - x,, be
a string of length n, where each z; (1 <i<n)isin X. Let T[i,j] (1 <i<j < n)
denote a subset of N such that every A in T'[¢, j] derives a substring a;xi41 - - - ;.
The idea of the CKY parsing is to compute every T'[i, j] using the following relations:

Tli,i] = {A|(A— ;)€ P}

T, j] = JU{A | (A BC) € P,B € Tli,k], and
k=i
CeTlk+1,j])

A two-dimensional array 7' is called the CKY table. A grammar G generates a
string iff S is in T[1,n]. Let ®¢ denote a binary operator 2V x 2V — 2NV such
that U ®gV ={A| (A — BC) € P,B €U, and C € V}. The details of the CKY
parsing are spelled out as follows:

CKY parsing

1. T[i,é] < {A| (A = a;) € P} foreveryi (1 <i<n)
2. T[i,j] + 0 for every i and j (1 <i<j < n)

3. for j < 2tondo

4, for i + j — 1 downto 1 do

5 for k< itoj—1do

The first two lines initialize the CKY table, and the next four lines compute the
CKY table. Figure 2 illustrates the CKY table for Gexample and the string abaab.
Since S € T'[1, 5], one can see that Gexample derives abaab.

Clearly, the last four lines are dominant in the CKY parsing. Let ¢ be the
computing time necessary to perform an iteration of the line 6. Then, line 6 is
executed for

times.
Let us evaluate the computing time ¢ necessary to perform line 6, i.e., necessary
to evaluate the binary operator ®¢. A traditional software approach (i.e, sequential

5 SA|sB| 0 |sA| B

408A4|sB]| 0 A b
i 3|sAalsB| A a

2 |sA| B a

1| A b

Figure 2: The CKY table for Gexampie and abaab.

algorithm), checks whether B € U and C' € V for every production rule A — BC' in
P. Clearly, using a reasonable data structure, this can be done in O(1) time. Hence,
U®¢gV can be evaluated in O(p) time, where p is the number of production rules in
P that has the form A — BC. Thus, using the above approach, the CKY parsing
can be computed in O(n3p) time. The performance evaluation of our hardware
implementation will use the aforementioned software solution as counterpart in the
performance evaluation (Section 4).

3. CKY Parsing Instance-Specific Hardware

This section is devoted to show our instance-specific hardware for the CKY
parsing. We first accelerate the evaluation of ®¢ by building a circuit for computing
®q in an FPGA. We then go on to show the hardware details to build this circuit.
Next, we present the details of a second hardware implementation in which the
CKY table is stored in the Host-PC.

Let N = {Ni,Na,...,Np} be a set of non-terminal symbols, where b is the
number of non-terminal symbols. Let U and V (€ 2V) be represented by b-bit
binary vectors ujus - - - up and vivs - - - vp, respectively, such that u; = 1 iff N; € U
and v; = 1 iff N; € V. Our goal is to compute the vector wiws ---wp, which
represents W = U ®¢ V. For a particular wg, we are going to show how wy, is
computed. Let N — N; N;, N, = Ny Nj,, ..., and, Ny — N; N; be the
production rules in P whose non-terminal symbol in the left-hand side is V. Then,
wy, is computed by the following formula:

Wy = (Uil/\'Ujl)\/(’uiz/\’l)jz)V"'\/(Uis/\'Ujs).

The task of our hardware generator is to read the production rules in P, which

are stored in a text file, and to generate a module to compute the vector wyws - - - wy.
Based on the production rules, our hardware generator creates a module written in a
Verilog-HDL source code, which computes each entry wy. A module in Verilog-HDL
is analogue to a procedure in a high-level language, such as C/Pascal languages, and
can be “called” from the main module. The main module comprehend a number of
functions, whose tasks are, among others, to control memory access and the FPGA-
PC interface. An example of the source code created by our hardware generator is
shown below.

1 module comp(u,v,w);
2 input [3:1] u,v;

3 output [3:1] w;

4 assign w[1] = (u[2] & v[3])
5 | (ul3] & v[2])

6 | (ul1] & v[11);

7 assign w[2] = (ul[2] & v[3]);
8 assign w[3] = (ul[3] & v[2]);
9 endmodule

The first line defines the module name and the parameters received and returned
by the module. The parameters are explicit defined as shown in lines 2 and 3. Each
entry of the output vector is computed in lines 4 through 8, which are computed
according to the production rules in P. The circuit of the above module is shown in
Figure 3. As shown above, wj; can be computed by a combinatorial circuit using s
AND-gates and s —1 OR-gates with fan-in 2. Furthermore, the depth of the circuit
(or the maximum number of gates over all paths in the circuit) is [log(s — 1)] + 1.
Since we have p production rules of the type A — BC in P, then wyws; - - -wp can be
computed by a circuit with p AND-gates and p—b OR-gates. Because s < b? always
hold, the depth of the circuit is no more than [log(b*—1)]+1 < 2logb+1. Thus, the
CKY parsing can be done in O(n?logb) time using this circuit. Figure 3 illustrates
a circuit for ®g,, .- Since Gexample has 5 production rules and 3 non-terminal
symbols, the circuit has 5 AND gates and 5 — 3 =2 OR gates.

The sequential algorithm we have discussed in Section 2 takes O(p) time to
evaluate ®g. On the other hand, our circuit for ®¢ has a delay time proportional
to O(logb). Since b < p always holds, the circuit for ®¢ is faster than the sequential
algorithm from the theoretical point of view. In what follows, we are going to show
the implementation details of our instance-specific hardware. Our first hardware
implementation of the CKY parsing uses the following basic components:

— a b-bit n?-word (dual-port) memory;
— a b-bit n-word (dual-port) memory;

— a CKY circuit for computing ®¢;

an array of b OR gates; and

a b-bit register.

L.[Ia' ST

w1 w2 w3

S A B

Figure 3: The circuit for computing ®¢

example *

b-bit n2-word memory b-bit n-word memory

H OO o

Input
—> CKY circuit

array of b OR gates

L CKY table

t

b-bit register

Figure 4: A hardware implementation for the CKY parsing.

Figure 4 illustrates our first implementation for the CKY parsing. The b-bit
n?-word memory stores the CKY table. The input, T'[1,1], T[2,2], ...,T[n,n] is
supplied to the b-bit n?-word memory. The b-bit n-word memory stores a row
of the CKY table that is being processed. In other words, it stores the j-th row
T11,7],T[2,4],...of the CKY table, where j is the variable appearing in line 3 of the
CKY parsing. The b-bit register stores the current value of T[4,], which is computed
in line 6 of the CKY parsing. The array of b OR gates is used to compute “(J”
in line 6. The b-bit n2-word memory supplies the b-bit vector representing T[i, k]
to the CKY circuit. Similarly, the b-bit n-word memory outputs the b-bit vector
for T[k + 1,7]. The CKY circuit receives them and computes the b-bit vector for
Ti, k]®cT[k+1,j]. Using this hardware implementation, line 6 of the CKY parsing
is computed in a clock cycle. Thus, the CKY parsing can be done in approximately
+n® clock cycles. Furthermore, the delay of the circuit is proportional to O(logb).
Thus, the computing time is O(n3 logb).

In the above approach, a large portion of the FPGA memory blocks is used
to store the CKY table. Hence, for large input strings, it might not be feasible
to store the CKY table in the FPGA due to limited amount of hardware. A way
to overcome this limitation is to store the CKY table in the Host-PC. Our second
implementation of the CKY parsing explores this alternative. This implementation
uses the same basic components of the first implementation, except for the b-bit
n2-word memory which is now stored in the Host-PC. The details of the second

hardware implementation are shown in Figure 5.

PC FPGA

b-bit nZ-word memory PC-FPGA interface

b-bit n-word memory

Input

PCI Bus

CKY circuit

array of b OR gates

- CKY table

b-bit register

Figure 5: Hardware implementation of the CKY parsing with the CKY table stored
in the Host-PC.

When the j-th row of the CKY table is computed, all the necessary information
is transferred from the Host-PC to the FPGA through the PCI-bus by DMA. The
CKY circuit retrieves the information needed to compute each entry T[i,j] in line
6. To be more precise, let us consider the computation of a particular row, say the
m-th row. The first element (i.e., the first entry) of the m-th row is provided by
the CKY table, since it is a terminal symbol. Such symbol is then stored in the
b-bit n-word memory. To compute the next entry T'[i, m], the information regarding
the already computed entries of the i-th column and m-th row are necessary. The
elements of the i-th column are provided by the Host-PC via the PCI-bus, while
the previously computed elements of the m-th row are provided by the b-bit n-word
memory (which is stored in the FPGA). Once the entry T'[i,m] is computed, its
result is stored in the b-bit n-word memory for later use. Upon completing the
computation of the m-row, all the computed elements are transferred to the Host-
PC through PCI bus, where they are stored. Although the computing time for our
second implementation is also O(n?logb) some overhead is introduced due to the
use of the PCI-bus. To reduce the overhead, we have used the DMA transfer though
the PCI-bus, which supports up to 32-bitx33MHz~ 1Gbit/sec.

The subsequent section shows the performance evaluation of our hardware im-
plementations and compare them with traditional software solutions.

4. Performance Evaluation

We have implemented and evaluated the performance of our instance-specific
solution on a Xilinx Virtex-II family FPGA (XC2V3000, speed grade 4, typical 3
Million gates with 1.7 Mbits embedded memory). In order to compare the perfor-
mance of our instance-specific solution, we have implemented two software solutions
and measured the performance on an IBM PC-compatible (Xeon 2.8GHz processor
with 2GB Memory) using Linux OS (Kernel 2.2.18-14smp). The software solution
has been implemented in C++ and compiled with the Intel C++ compiler for Linux
7.0.

Table 1 shows the performance of our first hardware approach and its corre-
sponding software solution for the CKY algorithm for b = 256 and n = 90, where n
represents the length of the input string and b represents the number of non-terminal
symbols. According to the timing analyzer of the ISE Logic Design Tool[20], our
implementation expected to run in approximately 35MHz for every value of n, b,
and p in 1, although the delay is proportional to O(logb) in theory. Actually, our
implementation works correctly in 40MHz on XC2V3000. Thus, it is expected to
run in 7'(90) = & - oamg (90° — 90) = 3.037msec, while the actual computing time
is 3.109msec. Hence, the miscellaneous overhead including the time for communi-
cation through the PCI-bus is only (3.109 — 3.037)/3.037 = 2.4%.

As shown in the table, a speed-up factor of more than 900 is experienced for
p = 5,000. Recall that the sequential algorithm checks whether or not B € U and
C € V for every production rule A — BC in P. Hence, the computing time of
the sequential algorithm is proportional to the number of production rules. That
is, the computing time of the software solution increases along with the number of
production rules. On the other hand, as we have mentioned, the computing time of
the hardware implementation is independent of the number of production rules. For
p = 10,000, the FPGA solution attains a speed-up factor of more than 1,900, and
for p = 15,000 we observed a speed-up factor of nearly 3,000. In [14], the authors
proposed a parallel implementation to parse grammars of Japanese language with
18,891 rules and 206 non-terminal symbols. Hence, we implemented our CKY
parsing hardware for p = 19,000 and b = 206, and observed a speed up factor of
nearly 3,700. The above instance-specific hardware solution with the CKY table
implemented in the FPGA utilizes up to 85% of the available memory blocks. This
fact prevented us for implementing hardware solutions for larger values of n. To
overcome this limitation, we proposed a hardware solution where the CKY table is
stored in the main memory of the Host-PC.

In what follows, we present the results of our second hardware implementation.
Table 2 shows the computing time of our second hardware approach along with
the computing time of the software solution. The performance evaluation has been
carried out for different values of n and p with the number of non-terminal symbols
fixed to 512 (i.e., b = 512).

The computing time for the CKY implementation in software follows the same
pattern observed in the previous table. As expected, the implementation of the CKY
table in the Host-PC adds a considerable overhead which has a profound impact

10

n| b D FPGA [ms] | Software [ms] | Speed-up
5,000 2,850 917

256 | 10,000 6,050 1,946

%0 15,000 3.109 9,100 2,927
206 | 19,000 11,490 3,696

Table 1: Performance of the CKY algorithm with the CKY Table implemented in
FPGA.

n b D FPGA [s] | Software [s] | Speed-up
15,000 23.54 49
128 20,000 0.476 33.49 70
25,000 42.84 90
15,000 119.05 31
256 | 512 | 20,000 3.819 276.47 72
25,000 356.23 93
15,000 1,653.95 54
512 20,000 30.456 2,246.00 74
25,000 2,823.00 93

Table 2: Performance of the CKY parsing with the CKY Table implemented in the
Host-PC

in the performance of the hardware solution. We have been able to implement our
second approach using up to 25,000 rules. We also attempted using 30,000 rules
which surpassed the amount of available resources of our FPGA, thus resulting in
“routing error”. Although the FPGA clock frequency is 40MHz, we speculate that
the time to access the PCI to send/receive data is responsible for a large part of
the introduced overhead. Notwithstanding, the hardware implementation with the
CKY table stored in the Host-PC attains an speed-up factor of up to 93 over the
software approach.

5. Concluding Remarks

The main contribution of this work was to present an FPGA-based implementa-
tion of an instance-specific hardware that accelerates the CKY parsing for context-
free grammars.

We have implemented our instance-specific hardware solution on the Xilinx
Virtex-II family FPGA. To evaluate the performance of our hardware solution
we provided a traditional software implementation as counterpart. The perfor-
mance evaluation has been carried out on an IBM PC-compatible (Pentium 4,
Xeon 2.8GHz). The results have shown that our instance-specific hardware solu-
tion attain an astonishing speed-up factor of nearly 3,700 over traditional software
solutions.

Acknowledgment

11

This work has been partially supported by Grant in Aid for Scientific Research
of JSPS and NSF Grants 11S-0101134 and CCR02-08595.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

A. V. Aho and J. D. Ullman. The Theory of Parsing Translation and Compiling.
Prentice Hall, 1972.

. Altera Corporation, APEX 20K Devices: System-on-a-Programmable-Chip Solu-

tions, http://www.altera.com/products/devices/apex/apx-index.html.

J. L. Bordim, Y. Ito, and K. Nakano, Accelerating the CKY Parsing Using FPGAs,
IEICE Transactions on Information and Systems, Vol. E86-D, No.5, pp.803-810,
2003.

J. Chang, O. Ibarra, and M. Palis, Parallel parsing on a one-way array of finite-state
machines, IEEE Transactions on Computers, C-36(1):64-75, 1987.

. E. Charniak, Statistical Language Learning, MIT Press, Cambridge, Massachusetts,

1993.

C. Ciressan, E. Sanchez, M. Rajman, and J.-C. Chappelier, An FPGA-based copro-
cessor for the parsing of context-free grammars, In Proc. of IEEE Symposium on
Field-Programmable Custom Computing Machines, 2000.

C. Ciressan, E. Sanchez, M. Rajman, and J.-C. Chappelier, An FPGA-based syn-
tactic parser for real-life almost unrestricted contert-free grammars, In Proc. of
International Conference on Field Programmable Logic and Applications (FPL),
pages 590-594, 2001.

Y. Futamura, K. Nogi, and A. Takano, Essence of generalized partial computation,
Theoretical Computer Science, 90:61-79, 1991.

A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge University
Press, 1988.

O. Ibarra, T. Jiang, and H. Wang Parallel Parsing on a One-way Linear Array of
Finite-state Machines, Theoretical Computer Science, vol. 85, pp. 53—74, 1991.

S. Ichikawa and S. Yamamoto, Data Dependent Circuit for Subgraph Isomorphism,
IEICE Transactions on Information and Systems”, Vol. E86-D, No.5, pp.796-802,
2003.

N. D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and Automatic Pro-
gram Generation, Prentice Hall, 1993.

K. Nakano and E. Takamichi, An Image Retrieval Systemn Using FPGAs, IEICE
Transactions on Information and Systems, Vol. E86-D, No.5, pp.811-818, 2003.

T. Ninomiya, K. Toriswa, K. Taura, and Jun-ichi Tsujii, A Parallel CK'Y Parsing Al-
gorithm on Large-Scale Distributed-Memory Parallel Machines, in Proceedings of the
Pacific Association for Computational Linguistics 97, pp. 223-231, Tokyo, Japan,
September, 1997. The Japanese version appeared in Proceedings of JSSST Work-
shop on Object-Oriented Computing (WOOC), Kanagawa, Japan, March, 1997.

S. R. Kosaraju, Speed of recognition of contert-free languages by array automata,
SIAM J. on Computers, 4:331-340, 1975.

J. C. Martin, Introduction to languages and the theory of computation (2nd Edition),
Mac-Graw Hill, 1996.

Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjélander, R. C. Underwood,
and D. Haussler, Stochastic context-free grammars for tRNA modeling, Nucleic Acids
Research, 22:5112-5120, 1994.

12

18. M. P. van Lohuizen, Survey on parallel context-free parsing techniques Technical
Report IMPACT-NLI-1997-1, Delft University of Technology, 1997.

19. Xilinx Inc., Virtex II FPGAs http://www xilinx.com

20. Xilinx Inc,, ISE Logic Design Tools,
http://www.xilinx.com/ise/design_tools/index.html

13

