
International Journal of Foundations of Computer S
ien
e

 World S
ienti�
 Publishing Company
INSTANCE-SPECIFIC SOLUTIONS FOR ACCELERATING THECKY PARSING OF LARGE CONTEXT-FREE GRAMMARSJACIR L. BORDIMAdvan
ed Tele
ommuni
ations Resear
h International - ATR, Adaptive Communi
ationsResear
h Labs, 2-2-2 Hikaridai, Keihanna S
ien
e City, Kyoto 619-0288, JapanOSCAR H. IBARRADepartment of Computer S
ien
e, University of California, Santa Barbara,Santa Barbara, California, 93106, USA.YASUAKI ITOS
hool of Information S
ien
e, Japan Advan
ed Institute of S
ien
e and Te
hnology - JAIST,Tatsunoku
hi, Ishikawa 923-1292, Japan.andKOJI NAKANOS
hool of Engineering, Hiroshima University,Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Japan.Re
eived (re
eived date)Revised (revised date)Communi
ated by Editor's nameABSTRACTThe main
ontribution of this paper is an FPGA-based implementation of aninstan
e-spe
i�
 hardware whi
h a

elerates the CKY (Co
ke-Kasami-Younger) pars-ing of
ontext-free grammars. Given a
ontext-free grammar G and a string x, the CKYparsing determines whether G derives x. We developed a hardware generator that
reatesa Verilog HDL sour
e to perform the CKY parsing for any �xed
ontext-free grammarG. The generated sour
e is embedded in an FPGA using the design software provided bythe FPGA vendor. The results show that our instan
e-spe
i�
 hardware solution attainsan astonishing speed-up fa
tor of up to 3,700 over traditional software solutions.Keywords: CKY Parsing, FPGAs, Re
on�gurable Ar
hite
tures, Re
on�gurable Com-puting.1. Introdu
tionAn FPGA (Field Programmable Gate Array) is a programmable VLSI in whi
ha hardware design
an be embedded qui
kly. Typi
al FPGAs
onsist of an arrayof programmable logi
 elements, distributed memory blo
ks, and programmableinter
onne
tions between them. The logi
 blo
k usually
ontains either a two-input1

logi
 fun
tion or a 4-to-1 multiplexer and several
ip-
ops. The distributed memoryblo
k is usually a dual-port RAM on whi
h a word of data for possibly distin
taddresses
an be read/written at the same time. Using the design tools suppliedby the FPGA vendors, the user hardware logi
 design
an be embedded into theFPGAs. Our goal is to use FPGAs to a

elerate useful
omputations. In parti
ular,the
hallenge is to develop FPGA-based solutions that are faster and more eÆ
ientthan traditional software solutions.The approa
h for a

elerating
omputations using FPGAs is inspired by thenotion of partial
omputation [12℄. Let f(x; y) be a fun
tion to be evaluated in orderto solve a given problem. Suppose that su
h a fun
tion is repeatedly evaluated onlyfor a �xed x. When this is the
ase, the
omputation of f(x; y)
an be simpli�ed byevaluating an instan
e-spe
i�
 fun
tion fx su
h that fx(y) = f(x; y). For instan
e,imagine a problem su
h that an algorithm to solve it evaluates f(x; y) = x3+x2y+yrepeatedly. If f(x; y) is evaluated only for x = 2, then the formula
an be simpli�edsu
h that f2(y) = 8+5y. The optimization of fun
tion fx for a parti
ular x is
alleda partial
omputation.It is very
hallenging to build hardware solutions that are optimized to
omputefx(y) for a �xed x and various y. More spe
i�
ally, the goal is to present instan
e-spe
i�
 solutions for problems that involves a fun
tion evaluation for f(x; y) satis-fying the following properties:1. The value of a �xed instan
e x depends on the instan
e of the problem, and2. The value of f(x; y) is repeatedly evaluated for various y to solve the problem.A
tually, several important problems have been solved by instan
e-spe
i�
 hard-wares [3, 11, 13℄.The main
ontribution of this paper is to present instan
e-spe
i�
 solutions fora

elerating the parsing of
ontext-free grammars [16℄. Let f(G; x) be a fun
tionsu
h that G is a
ontext-free grammar, x is a string, and f(G; x) returns a Booleanvalue su
h that f(G; x) returns TRUE i� G derives x. It is well-known that theCKY (Co
ke-Kasami-Younger) parsing [1℄
omputes f(G; x) in O(n3) time, where nis the length of x [1℄. The parsing of
ontext-free languages has many appli
ations invarious areas in
luding natural language pro
essing [5, 18℄,
ompiler
onstru
tion [1℄,informati
s [17℄, among others.Several studies have been devoted for a

elerating the parsing of
ontext-freelanguages [3, 4, 9, 15, 18℄. It has been shown that parsing of a string of length n
an be done in O((log n)2) time using n6 pro
essors on the PRAM [9℄. Also, usingthe mesh-
onne
ted pro
essor arrays, the parsing
an be done in O(n2) time usingn pro
essors as well as in O(n) time using n2 pro
essors [15℄. Later in [4℄, Chang,Ibarra and Palis developed an algorithm that runs on a systoli
 array with n2�nite-state pro
essors with one-way
ommuni
ation that runs in linear time. Thenin [10℄, Ibarra, Jiang, and Wang showed that parsing
an be a

omplished on aone-way linear array of n2 �nite-state pro
essors in linear time. Sin
e these parallelalgorithms need at least n pro
essors, they are unrealisti
 for large n. Ciressanet al. [6, 7℄ have presented a hardware for the CKY parsing for a restri
ted
lass2

ontext-free grammar GVerilog HDL sour
e ofthe CKY parserOur hardware generatorDesign tool host PCFPGA strings x1; x2; x3; : : :fG(x1); fG(x2); fG(x3); : : :Figure 1: The CKY Hardware Parsing System.of
ontext-free grammar and have tested it using FPGA. However, the produ
tionrules are stored in the memory, and the hardware design and the
ontrol algorithmare essentially the same as those on the mesh-
onne
ted pro
essors [4, 10, 15℄, andthey are not instan
e-spe
i�
.As pointed out by Ninomiya et. al. [14℄, re
ent Natural Language Pro
essing hasre
eived a great deal of attention from the resear
h
ommunity, however the workhas been limited to theoreti
al spe
ulation or experiments with small grammars.Also in [14℄, the authors proposed a parallel implementation to parse grammars ofJapanese language with a signi�
ant number of rules (18; 891) and non-terminalsymbols (206). Their parallel implementation performed parsing of senten
es oflength 85-95 in 22.2 se
onds on a parallel
omputer AP1000+ with 256 Sun Spar
CPUs (50MHz). In a re
ent paper [3℄, Bordim, Ito, and Nakano presented anFPGA-based implementation for a

elerating the CKY parsing and tested it onthe Altera APEX20K family FPGA [2℄. Their implementation a
hieved a speed-upfa
tor of nearly 750 over traditional software approa
hes with rules ranging from 32to 8,192, input string length of 32, and with both 32 and 64 non-terminal symbols.Although these results are a signi�
ant improvement over traditional approa
hes,they work only for small input sequen
es and a
onstrained number of produ
tionrules. The main limitation of the earlier approa
h was the need to store
omputedvalues in the FPGA memory blo
ks, whi
h is impra
ti
al for large input sequen
es.For the purpose of instan
e-spe
i�
 solution for parsing
ontext-free languages,we present a hardware generator that produ
es a Verilog HDL sour
e that performsthe CKY parsing for any given
ontext-free grammar G. The key ingredient ofthe produ
ed design is a hardware
omponent for
omputing a binary operator
Gsu
h that 2N � 2N ! 2N , where N is the set of non-terminal symbols in G. Morespe
i�
ally, let U and V be a set of non-terminals in G that derive strings � and�, respe
tively. The operator U
G V returns the set of non-terminals that derive�� (i.e. the
on
atenation of � and �). The CKY parsing algorithm repeats theevaluation of
G for O(n3) times. The details of
G will be explained in Se
tion 2.In order to
ompute all possible derivations of the input string x, the CKY algo-rithm uses a two-dimensional array,
alled the CKY Table. In this work we
onsidertwo di�erent hardware approa
hes to speed-up the
omputation of the CKY algo-3

rithm. In the �rst approa
h, both the
omponent for
omputing
G and the CKYtable are implemented in FPGAs. In the se
ond approa
h, the
omponent for
om-puting
G is implemented in FPGA while the CKY table is stored in the Host-PC'smain memory. When evaluating
G, the ne
essary information is transferred fromthe Host-PC to the FPGA via the PCI-bus. Note that today's PCs
an be embed-ded with Gbyte-memory size while even the most advan
ed FPGAs are embeddedwith only Mbyte-memory size. Thus, the se
ond approa
h enables us to handlelarger input strings and larger grammars. We have veri�ed our implementationsfor rules ranging from 5,000 to 25,000 using either 256 or 512 non-terminal symbolswith the length of the input string ranging from 90 to 512. Clearly, our results aregood enough to parse a
orpus like the one presented in [14℄.Figure 1 illustrates our CKY hardware parsing system. The CKY hardwareparsing system takes the
ontext-free grammar G as input and generates a VerilogHDL sour
e �le of the CKY parser. The Verilog HDL sour
e is
ompiled usingthe ISE Logi
 Design Tool [20℄ and the obje
t �le obtained is downloaded into theXilinx Virtex-II family FPGAs [19℄. The programmed FPGA
ompute fG(x), i.e.determines if G derives x for a given string x. Given strings x1; x2; x3; : : : by thehost PC, the FPGA
omputes and returns fG(x1); fG(x2); fG(x3); : : : to the host.Traditional sequential software approa
hes
ompute
G by
he
king all p pro-du
tion rules in O(p) time. Hen
e, a sequential software implementation of the CKYparsing algorithm runs in O(n3p) time. The proposed instan
e-spe
i�
 hardwaresolution evaluates
G in O(log b) time. Thus, the CKY parsing
an be
omputedin O(n3 log b) time. Sin
e b � p always hold, our hardware solution is mu
h faster,from the theoreti
al point of view, than the traditional software approa
hes.We have implemented and evaluated the performan
e of our instan
e-spe
i�
hardware solution on the Xilinx Virtex-II family FPGA. To evaluate the perfor-man
e of our hardware solution we provided a traditional software implementationas
ounterpart. The performan
e evaluation has been
arried out on an IBM PC-
ompatible (Xeon 2.8GHz pro
essor). The results show that our instan
e-spe
i�
hardware solution attains an astonishing speed-up fa
tor of nearly 3,700 over tra-ditional software solutions.This paper is organized as follows: Se
tion 2 brie
y des
ribes the CKY parsings
heme and a traditional software implementation. Se
tion 3 presents the detailsof our instan
e-spe
i�
 hardware solutions for the CKY parsing. Se
tion 4 evalu-ates the performan
e of our instan
e-spe
i�
 hardware solutions and
ompare theobtained results to the software solutions. Finally, Se
tion 5 is a brief
on
lusion.2. The CKY Parsing and a Software SolutionThis se
tion brie
y des
ribe the CKY parsing and a traditional software solution.Let G = (N;�; P; S) denote a
ontext-free grammar su
h that N is a set of non-terminal symbols, � is a set of terminal symbols, P is a set of produ
tion rules,and S (2 N) is the start symbol. A
ontext-free grammar is said to be in ChomskyNormal Form (CNF), if every produ
tion rule in P is in either form A ! BC orA! a, where A, B, and C are non-terminal symbols and a is a terminal symbol.4

We are interested in the parsing problem for a
ontext-free grammar in CNF.More spe
i�
ally, for a given CNF
ontext-free grammar G and a string x over �,the parsing problem is a problem to determine if the start symbol S derives x. Forexample, let Gexample = (N;�; P; S) be a grammar su
h that N = fS;A;Bg, � =fa; bg, and P = fS ! AB;S ! BA;S ! SS;A ! AB;B ! BA;A ! a;B ! bg.The
ontext-free grammar G derives abaab, be
ause S derives it as follows:S) AB) ABA) ABAA) ABAAB) � � �) abaab:We are going to explain the CKY parsing s
heme that determines whether Gderives x for a CNF
ontext-free grammar G and a string x. Let x = x1x2 � � �xn bea string of length n, where ea
h xi (1 � i � n) is in �. Let T [i; j℄ (1 � i � j � n)denote a subset of N su
h that every A in T [i; j℄ derives a substring xixi+1 � � �xj .The idea of the CKY parsing is to
ompute every T [i; j℄ using the following relations:T [i; i℄ = fA j (A! xi) 2 PgT [i; j℄ = j�1[k=ifA j (A! BC) 2 P;B 2 T [i; k℄; andC 2 T [k + 1; j℄gA two-dimensional array T is
alled the CKY table. A grammar G generates astring x i� S is in T [1; n℄. Let
G denote a binary operator 2N � 2N ! 2N su
hthat U
G V = fA j (A ! BC) 2 P;B 2 U; and C 2 V g. The details of the CKYparsing are spelled out as follows:CKY parsing1. T [i; i℄ fA j (A! xi) 2 Pg for every i (1 � i � n)2. T [i; j℄ ; for every i and j (1 � i < j � n)3. for j 2 to n do4. for i j � 1 downto 1 do5. for k i to j � 1 do6. T [i; j℄ T [i; j℄S(T [i; k℄
G T [k + 1; j℄)The �rst two lines initialize the CKY table, and the next four lines
ompute theCKY table. Figure 2 illustrates the CKY table for Gexample and the string abaab.Sin
e S 2 T [1; 5℄, one
an see that Gexample derives abaab.Clearly, the last four lines are dominant in the CKY parsing. Let t be the
omputing time ne
essary to perform an iteration of the line 6. Then, line 6 isexe
uted for T (n) = nXj=2 j�1Xi=1 j�1Xk=i t = t nXj=2 j�1Xi=1(j � i) = 16t(n3 � n)times.Let us evaluate the
omputing time t ne
essary to perform line 6, i.e., ne
essaryto evaluate the binary operator
G. A traditional software approa
h (i.e, sequential5

a b a a bj
i1 2 3 4 5

12
453 AB

S;AS;B AA
S;B B;S;AS;AS;A
S;BS;A ;

Figure 2: The CKY table for Gexample and abaab.algorithm),
he
ks whether B 2 U and C 2 V for every produ
tion rule A! BC inP . Clearly, using a reasonable data stru
ture, this
an be done in O(1) time. Hen
e,U
GV
an be evaluated in O(p) time, where p is the number of produ
tion rules inP that has the form A ! BC. Thus, using the above approa
h, the CKY parsing
an be
omputed in O(n3p) time. The performan
e evaluation of our hardwareimplementation will use the aforementioned software solution as
ounterpart in theperforman
e evaluation (Se
tion 4).3. CKY Parsing Instan
e-Spe
i�
 HardwareThis se
tion is devoted to show our instan
e-spe
i�
 hardware for the CKYparsing. We �rst a

elerate the evaluation of
G by building a
ir
uit for
omputing
G in an FPGA. We then go on to show the hardware details to build this
ir
uit.Next, we present the details of a se
ond hardware implementation in whi
h theCKY table is stored in the Host-PC.Let N = fN1; N2; : : : ; Nbg be a set of non-terminal symbols, where b is thenumber of non-terminal symbols. Let U and V (2 2N) be represented by b-bitbinary ve
tors u1u2 � � �ub and v1v2 � � � vb, respe
tively, su
h that ui = 1 i� Ni 2 Uand vi = 1 i� Ni 2 V . Our goal is to
ompute the ve
tor w1w2 � � �wb, whi
hrepresents W = U
G V . For a parti
ular wk, we are going to show how wk is
omputed. Let Nk ! Ni1Nj1 , Nk ! Ni2Nj2 , : : :, and, Nk ! NisNjs be theprodu
tion rules in P whose non-terminal symbol in the left-hand side is Nk. Then,wk is
omputed by the following formula:wk = (ui1 ^ vj1) _ (ui2 ^ vj2) _ � � � _ (uis ^ vjs):The task of our hardware generator is to read the produ
tion rules in P , whi
h6

are stored in a text �le, and to generate a module to
ompute the ve
tor w1w2 � � �wb.Based on the produ
tion rules, our hardware generator
reates a module written in aVerilog-HDL sour
e
ode, whi
h
omputes ea
h entry wk. A module in Verilog-HDLis analogue to a pro
edure in a high-level language, su
h as C/Pas
al languages, and
an be \
alled" from the main module. The main module
omprehend a number offun
tions, whose tasks are, among others, to
ontrol memory a

ess and the FPGA-PC interfa
e. An example of the sour
e
ode
reated by our hardware generator isshown below.1 module
omp(u,v,w);2 input [3:1℄ u,v;3 output [3:1℄ w;4 assign w[1℄ = (u[2℄ & v[3℄)5 | (u[3℄ & v[2℄)6 | (u[1℄ & v[1℄);7 assign w[2℄ = (u[2℄ & v[3℄);8 assign w[3℄ = (u[3℄ & v[2℄);9 endmoduleThe �rst line de�nes the module name and the parameters re
eived and returnedby the module. The parameters are expli
it de�ned as shown in lines 2 and 3. Ea
hentry of the output ve
tor is
omputed in lines 4 through 8, whi
h are
omputeda

ording to the produ
tion rules in P . The
ir
uit of the above module is shown inFigure 3. As shown above, wk
an be
omputed by a
ombinatorial
ir
uit using sAND-gates and s� 1 OR-gates with fan-in 2. Furthermore, the depth of the
ir
uit(or the maximum number of gates over all paths in the
ir
uit) is dlog(s� 1)e+ 1.Sin
e we have p produ
tion rules of the type A! BC in P , then w1w2 � � �wb
an be
omputed by a
ir
uit with p AND-gates and p�b OR-gates. Be
ause s � b2 alwayshold, the depth of the
ir
uit is no more than dlog(b2�1)e+1 � 2 log b+1. Thus, theCKY parsing
an be done in O(n3 log b) time using this
ir
uit. Figure 3 illustratesa
ir
uit for
Gexample. Sin
e Gexample has 5 produ
tion rules and 3 non-terminalsymbols, the
ir
uit has 5 AND gates and 5� 3 = 2 OR gates.The sequential algorithm we have dis
ussed in Se
tion 2 takes O(p) time toevaluate
G. On the other hand, our
ir
uit for
G has a delay time proportionalto O(log b). Sin
e b � p always holds, the
ir
uit for
G is faster than the sequentialalgorithm from the theoreti
al point of view. In what follows, we are going to showthe implementation details of our instan
e-spe
i�
 hardware. Our �rst hardwareimplementation of the CKY parsing uses the following basi

omponents:{ a b-bit n2-word (dual-port) memory;{ a b-bit n-word (dual-port) memory;{ a CKY
ir
uit for
omputing
G;{ an array of b OR gates; and{ a b-bit register. 7

u1 u2 u3
w1 w2 w3

v1 v2 v3S A B S A B

S A BFigure 3: The
ir
uit for
omputing
Gexample.b-bit n2-word memory b-bit n-word memoryCKY
ir
uitb-bit registerarray of b OR gatesInput CKY tableFigure 4: A hardware implementation for the CKY parsing.Figure 4 illustrates our �rst implementation for the CKY parsing. The b-bitn2-word memory stores the CKY table. The input, T [1; 1℄; T [2; 2℄; : : : ; T [n; n℄ issupplied to the b-bit n2-word memory. The b-bit n-word memory stores a rowof the CKY table that is being pro
essed. In other words, it stores the j-th rowT [1; j℄; T [2; j℄; : : : of the CKY table, where j is the variable appearing in line 3 of theCKY parsing. The b-bit register stores the
urrent value of T [i; j℄, whi
h is
omputedin line 6 of the CKY parsing. The array of b OR gates is used to
ompute \S"in line 6. The b-bit n2-word memory supplies the b-bit ve
tor representing T [i; k℄to the CKY
ir
uit. Similarly, the b-bit n-word memory outputs the b-bit ve
torfor T [k + 1; j℄. The CKY
ir
uit re
eives them and
omputes the b-bit ve
tor forT [i; k℄
GT [k+1; j℄. Using this hardware implementation, line 6 of the CKY parsingis
omputed in a
lo
k
y
le. Thus, the CKY parsing
an be done in approximately16n3
lo
k
y
les. Furthermore, the delay of the
ir
uit is proportional to O(log b).Thus, the
omputing time is O(n3 log b).8

In the above approa
h, a large portion of the FPGA memory blo
ks is usedto store the CKY table. Hen
e, for large input strings, it might not be feasibleto store the CKY table in the FPGA due to limited amount of hardware. A wayto over
ome this limitation is to store the CKY table in the Host-PC. Our se
ondimplementation of the CKY parsing explores this alternative. This implementationuses the same basi

omponents of the �rst implementation, ex
ept for the b-bitn2-word memory whi
h is now stored in the Host-PC. The details of the se
ondhardware implementation are shown in Figure 5.b-bit n2-word memory b-bit n-word memoryCKY
ir
uitb-bit registerarray of b OR gatesInput CKY table
PC�FPGA interfa
ePCI BusPC FPGA

Figure 5: Hardware implementation of the CKY parsing with the CKY table storedin the Host-PC.When the j-th row of the CKY table is
omputed, all the ne
essary informationis transferred from the Host-PC to the FPGA through the PCI-bus by DMA. TheCKY
ir
uit retrieves the information needed to
ompute ea
h entry T [i; j℄ in line6. To be more pre
ise, let us
onsider the
omputation of a parti
ular row, say them-th row. The �rst element (i.e., the �rst entry) of the m-th row is provided bythe CKY table, sin
e it is a terminal symbol. Su
h symbol is then stored in theb-bit n-word memory. To
ompute the next entry T [i;m℄, the information regardingthe already
omputed entries of the i-th
olumn and m-th row are ne
essary. Theelements of the i-th
olumn are provided by the Host-PC via the PCI-bus, whilethe previously
omputed elements of the m-th row are provided by the b-bit n-wordmemory (whi
h is stored in the FPGA). On
e the entry T [i;m℄ is
omputed, itsresult is stored in the b-bit n-word memory for later use. Upon
ompleting the
omputation of the m-row, all the
omputed elements are transferred to the Host-PC through PCI bus, where they are stored. Although the
omputing time for ourse
ond implementation is also O(n3 log b) some overhead is introdu
ed due to theuse of the PCI-bus. To redu
e the overhead, we have used the DMA transfer thoughthe PCI-bus, whi
h supports up to 32-bit�33MHz� 1Gbit/se
.The subsequent se
tion shows the performan
e evaluation of our hardware im-plementations and
ompare them with traditional software solutions.9

4. Performan
e EvaluationWe have implemented and evaluated the performan
e of our instan
e-spe
i�
solution on a Xilinx Virtex-II family FPGA (XC2V3000, speed grade 4, typi
al 3Million gates with 1.7 Mbits embedded memory). In order to
ompare the perfor-man
e of our instan
e-spe
i�
 solution, we have implemented two software solutionsand measured the performan
e on an IBM PC-
ompatible (Xeon 2.8GHz pro
essorwith 2GB Memory) using Linux OS (Kernel 2.2.18-14smp). The software solutionhas been implemented in C++ and
ompiled with the Intel C++
ompiler for Linux7.0.Table 1 shows the performan
e of our �rst hardware approa
h and its
orre-sponding software solution for the CKY algorithm for b = 256 and n = 90, where nrepresents the length of the input string and b represents the number of non-terminalsymbols. A

ording to the timing analyzer of the ISE Logi
 Design Tool[20℄, ourimplementation expe
ted to run in approximately 35MHz for every value of n, b,and p in 1, although the delay is proportional to O(log b) in theory. A
tually, ourimplementation works
orre
tly in 40MHz on XC2V3000. Thus, it is expe
ted torun in T (90) = 16 � 140MHz (903 � 90) = 3:037mse
, while the a
tual
omputing timeis 3:109mse
. Hen
e, the mis
ellaneous overhead in
luding the time for
ommuni-
ation through the PCI-bus is only (3:109� 3:037)=3:037 = 2:4%.As shown in the table, a speed-up fa
tor of more than 900 is experien
ed forp = 5,000. Re
all that the sequential algorithm
he
ks whether or not B 2 U andC 2 V for every produ
tion rule A ! BC in P . Hen
e, the
omputing time ofthe sequential algorithm is proportional to the number of produ
tion rules. Thatis, the
omputing time of the software solution in
reases along with the number ofprodu
tion rules. On the other hand, as we have mentioned, the
omputing time ofthe hardware implementation is independent of the number of produ
tion rules. Forp = 10,000, the FPGA solution attains a speed-up fa
tor of more than 1,900, andfor p = 15,000 we observed a speed-up fa
tor of nearly 3,000. In [14℄, the authorsproposed a parallel implementation to parse grammars of Japanese language with18; 891 rules and 206 non-terminal symbols. Hen
e, we implemented our CKYparsing hardware for p = 19,000 and b = 206, and observed a speed up fa
tor ofnearly 3,700. The above instan
e-spe
i�
 hardware solution with the CKY tableimplemented in the FPGA utilizes up to 85% of the available memory blo
ks. Thisfa
t prevented us for implementing hardware solutions for larger values of n. Toover
ome this limitation, we proposed a hardware solution where the CKY table isstored in the main memory of the Host-PC.In what follows, we present the results of our se
ond hardware implementation.Table 2 shows the
omputing time of our se
ond hardware approa
h along withthe
omputing time of the software solution. The performan
e evaluation has been
arried out for di�erent values of n and p with the number of non-terminal symbols�xed to 512 (i.e., b = 512).The
omputing time for the CKY implementation in software follows the samepattern observed in the previous table. As expe
ted, the implementation of the CKYtable in the Host-PC adds a
onsiderable overhead whi
h has a profound impa
t10

n b p FPGA [ms℄ Software [ms℄ Speed-up5,000 2,850 917256 10,000 6,050 1,94690 15,000 3.109 9,100 2,927206 19,000 11,490 3,696Table 1: Performan
e of the CKY algorithm with the CKY Table implemented inFPGA. n b p FPGA [s℄ Software [s℄ Speed-up15,000 23.54 49128 20,000 0.476 33.49 7025,000 42.84 9015,000 119.05 31256 512 20,000 3.819 276.47 7225,000 356.23 9315,000 1,653.95 54512 20,000 30.456 2,246.00 7425,000 2,823.00 93Table 2: Performan
e of the CKY parsing with the CKY Table implemented in theHost-PCin the performan
e of the hardware solution. We have been able to implement ourse
ond approa
h using up to 25,000 rules. We also attempted using 30,000 ruleswhi
h surpassed the amount of available resour
es of our FPGA, thus resulting in\routing error". Although the FPGA
lo
k frequen
y is 40MHz, we spe
ulate thatthe time to a

ess the PCI to send/re
eive data is responsible for a large part ofthe introdu
ed overhead. Notwithstanding, the hardware implementation with theCKY table stored in the Host-PC attains an speed-up fa
tor of up to 93 over thesoftware approa
h.5. Con
luding RemarksThe main
ontribution of this work was to present an FPGA-based implementa-tion of an instan
e-spe
i�
 hardware that a

elerates the CKY parsing for
ontext-free grammars.We have implemented our instan
e-spe
i�
 hardware solution on the XilinxVirtex-II family FPGA. To evaluate the performan
e of our hardware solutionwe provided a traditional software implementation as
ounterpart. The perfor-man
e evaluation has been
arried out on an IBM PC-
ompatible (Pentium 4,Xeon 2.8GHz). The results have shown that our instan
e-spe
i�
 hardware solu-tion attain an astonishing speed-up fa
tor of nearly 3,700 over traditional softwaresolutions.A
knowledgment 11

This work has been partially supported by Grant in Aid for S
ienti�
 Resear
hof JSPS and NSF Grants IIS-0101134 and CCR02-08595.Referen
es1. A. V. Aho and J. D. Ullman. The Theory of Parsing Translation and Compiling.Prenti
e Hall, 1972.2. Altera Corporation, APEX 20K Devi
es: System-on-a-Programmable-Chip Solu-tions, http://www.altera.
om/produ
ts/devi
es/apex/apx-index.html.3. J. L. Bordim, Y. Ito, and K. Nakano, A

elerating the CKY Parsing Using FPGAs,IEICE Transa
tions on Information and Systems, Vol. E86-D, No.5, pp.803{810,2003.4. J. Chang, O. Ibarra, and M. Palis, Parallel parsing on a one-way array of �nite-statema
hines, IEEE Transa
tions on Computers, C-36(1):64{75, 1987.5. E. Charniak, Statisti
al Language Learning, MIT Press, Cambridge, Massa
husetts,1993.6. C. Ciressan, E. San
hez, M. Rajman, and J.-C. Chappelier, An FPGA-based
opro-
essor for the parsing of
ontext-free grammars, In Pro
. of IEEE Symposium onField-Programmable Custom Computing Ma
hines, 2000.7. C. Ciressan, E. San
hez, M. Rajman, and J.-C. Chappelier, An FPGA-based syn-ta
ti
 parser for real-life almost unrestri
ted
ontext-free grammars, In Pro
. ofInternational Conferen
e on Field Programmable Logi
 and Appli
ations (FPL),pages 590{594, 2001.8. Y. Futamura, K. Nogi, and A. Takano, Essen
e of generalized partial
omputation,Theoreti
al Computer S
ien
e, 90:61{79, 1991.9. A. Gibbons and W. Rytter, EÆ
ient Parallel Algorithms, Cambridge UniversityPress, 1988.10. O. Ibarra, T. Jiang, and H. Wang Parallel Parsing on a One-way Linear Array ofFinite-state Ma
hines, Theoreti
al Computer S
ien
e, vol. 85, pp. 53{74, 1991.11. S. I
hikawa and S. Yamamoto, Data Dependent Cir
uit for Subgraph Isomorphism,IEICE Transa
tions on Information and Systems", Vol. E86-D, No.5, pp.796{802,2003.12. N. D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and Automati
 Pro-gram Generation, Prenti
e Hall, 1993.13. K. Nakano and E. Takami
hi, An Image Retrieval System Using FPGAs, IEICETransa
tions on Information and Systems, Vol. E86-D, No.5, pp.811{818, 2003.14. T. Ninomiya, K. Toriswa, K. Taura, and Jun-i
hi Tsujii, A Parallel CKY Parsing Al-gorithm on Large-S
ale Distributed-Memory Parallel Ma
hines, in Pro
eedings of thePa
i�
 Asso
iation for Computational Linguisti
s '97, pp. 223{231, Tokyo, Japan,September, 1997. The Japanese version appeared in Pro
eedings of JSSST Work-shop on Obje
t-Oriented Computing (WOOC), Kanagawa, Japan, Mar
h, 1997.15. S. R. Kosaraju, Speed of re
ognition of
ontext-free languages by array automata,SIAM J. on Computers, 4:331{340, 1975.16. J. C. Martin, Introdu
tion to languages and the theory of
omputation (2nd Edition),Ma
-Graw Hill, 1996.17. Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sj�olander, R. C. Underwood,and D. Haussler, Sto
hasti

ontext-free grammars for tRNA modeling, Nu
lei
 A
idsResear
h, 22:5112{5120, 1994. 12

18. M. P. van Lohuizen, Survey on parallel
ontext-free parsing te
hniques Te
hni
alReport IMPACT-NLI-1997-1, Delft University of Te
hnology, 1997.19. Xilinx In
., Virtex II FPGAs http://www.xilinx.
om20. Xilinx In
., ISE Logi
 Design Tools,http://www.xilinx.
om/ise/design tools/index.html

13

