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ABSTRACT

Screening is an important task to convert a continuous-toneimage into a binary image with pure
black and white pixels. The main contribution of this paper is to show a new algorithm for cluster-dot
screening using a local exhaustive search. Our new algorithm generates 2-cluster, 3-cluster, and 4-
cluster binary images, in which all dots have at least 2, 3, and 4 pixels, respectively. The key idea of our
new screening method is to repeat a local exhaustive search that finds the best binary pattern in a small
window of a binary image. The experimental results show thatthe local exhaustive search produces
high quality and sharp cluster-dot binary images. We also implemented it on an FPGA to accelerate
the computation and achieved a speedup factor of up to 229 over the software implementations.

Keywords:Image Processing; Screening for Printing; Local Search; FPGA-based computing.

1. Introduction

Screening is an important task to convert a continuous-toneimage into a binary im-
age with pure black and white pixels [1, 2, 8]. This task is necessary when printing a
monochrome or color image by a printer with limited number ofink colors. AM (Am-
plitude Modulated) screening, a commonly used screening method, arranges black dots in
a regular grid and reproduces the intensity of an original continuous-tone image by the
number of black pixels in a dot. A black dot involves fewer black pixels to reproduce
highlight color, and has more black pixels to create a shadowimage. FM (Frequency
Modulated) screening, on the other hand, keeps dots of a unitsize when converting an
original continuous-tone image into the binary image for printing. The intensity level of
an original continuous-tone image is reproduced by the density of black unit dots (or pix-

1



AM screening FM screening
cluster-dot

FM screening

Figure 1: AM screening, FM screening, and cluster-dot screening

els). FM screening pays great attention to generate moiré-free binary images reproducing
continuous-tone and fine details of original photographic images. We refer the reader to
Figure 1 for illustrations of a dot of AM screening and dots ofFM screening. The most
well-known FM screening algorithm is Error Diffusion [5] that propagates rounding errors
to unprocessed neighboring pixels according to some fixed ratios. Error Diffusion pre-
serves the average intensity level between the original input image and the binary output
image. It is also quite fast and often produces good results.However, Error Diffusion may
generate worm artifacts, which is a sequence of dots like a worm, especially in the areas
of uniform intensity. Several techniques have been developed to prevent artifacts in out-
put binary images [14]. Besides, in Error Diffusion based techniques, the pixel values are
propagated to neighbors and the resulting images are defocused.

In applications requiring high fidelity of the printed material (such as printing fine art
books, pictorial books, and replicas of paintings), an FM screening method that produces
artifact-free higher quality binary images reproducing original work is expected even if the
computation takes a lot of time. In our previous paper [7], wehave present a new approach
for FM screening that we call Local Exhaustive Search (LES for short). Our idea for FM
screening is to use the local search technique investigatedin the area of combinatorial opti-
mization, which usually takes a lot of computing time. More specifically, the LES produces
a binary image whose projected image onto human eyes is very close to the original image.
The projected image is computed by applying a Gaussian filter, which approximates the
characteristic of the human visual system. We define the total error of the binary image
to be the sum of the difference of the intensity levels over all pixels between the original
image and the projected image. The LES performs the local exhaustive search for a small
square window of size, say,2� 2, 3� 3, and4� 4, in the binary image, and finds the best
binary image pattern in the window, whose total error is the minimum over all possible
binary patterns. After that, a binary subimage in the windowis replaced by the best binary
image pattern obtained. The local exhaustive search is repeated until no more improvement
on the total error is possible. It should be clear that a better binary image can be obtained
using a larger window, because search space is larger. As we will show in the experimental
results later, we can obtain binary images with fewer total error using a larger window.

Although the LES produces a high quality binary images, theymay not produce good
printed matter in many practical applications. The generated binary images using the LES
contain a lot of isolated black and white dots, which do not exactly appear in printed matter.
For example, in laser printers, small isolated black pixelsare not printed because toner is
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Figure 2: Non-cluster-dot and cluster-dot screening

not transfered for minimum-size dot. In ink-jet printers, asmall isolated black dot gains
a lot by the ink blur. Also, isolated white dots disappear by the ink blur. Therefore, it is
desirable that dots in binary images areclustered, that is, all black and white dots have two
or more pixels.

The main contribution of this paper is to present an LES-based screening method that
generates cluster-dot binary images (Figure 1). In particular, we will show screening meth-
ods that generate 2-cluster, 3-cluster, and 4-cluster binary images in which each dot consists
of at least 2, 3, and 4 pixels, respectively. Figure 2 shows the resulting binary images of
non-cluster-dot screening by the LES [7] and by cluster-dotscreening presented in this
paper for a ramp image.

The second contribution of this paper is to implement the cluster-dot LES in an FPGA
to accelerate the computation. An FPGA (Field ProgrammableGate Array) is a pro-
grammable VLSI in which a hardware design can be embedded quickly. We have used
Nallatech Xtreme DSP kit [13], which is a PCI board with Xilinx VirtexII family FPGA
XC2V3000-4 [6], and embedded a circuit to perform the local exhaustive search for a win-
dow of size3�3 and4�4. To reduce the amount of used FPGA resource and the delay, we
use theinstance-specificapproach [3, 4, 11], which embeds a hardware depending on a part
of the input instance. The instance-specific approach is applied as follows. One can think
that the inputs of LES are an original image and a Gaussian filter. Since a Gaussian filter
can be fixed during the computation by LES, we can embed a circuit to perform the local
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exhaustive search for a specific Gaussian filter. A round of the LES for a window of sizek � k a Gaussian filter of size(2w + 1)� (2w + 1) runs inO(2k2) clock cycles using our
FPGA implementation, while it runsO(2k2w2) time using the software implementation.
Thus, from the theoretical point of view, our FPGA implementation attains a speedup of
factorO(w2) over the software implementation. To show that the actual speed up, we have
developed both the FPGA implementation and the software implementation of the LES for
cluster-dot FM screening. We have succeeded in accelerating LES by a speedup factor of
up to 229 over the software implementation.

This paper is organized as follows. Section 2 formalizes theproblem of finding the best
binary image of an original gray-scale image as a combinatorial optimization problem. In
Section 3, we introduce the cluster-dot screening, as an extension of FM screening and
describe it formally. In Section 4, we present the local exhaustive search (LES) method,
which is an approximation algorithm for solving the combinatorial optimization problem.
Using the LES, we can obtain cluster-dot binary images from continuous-tone images.
Section 5 shows an implementation of the LES for cluster-dotscreening on an FPGA.
In Section 6, we present the experimental results for screening images. Section 7 offers
concluding remarks.

2. FM Screening based on the Human Visual System

This section defines the problem of finding the best binary image of an original gray-
scale image as a combinatorial optimization problem. The basic idea is shown in our pre-
vious paper [7].

Suppose that an original gray-scale imageA = (ai;j) of sizen � n is given, whereai;j denotes the intensity level at position(i; j) (1 � i; j � n) taking a real number
intensity in the range[0; 1℄. The goal of screening is to find a binary imageB = (bi;j) of
the same size that reproduces the original imageA, where eachbi;j is either 0(black) or
1(white). We measure the goodness of the output binary imageB using the Gaussian filter
that approximates the characteristic of the human visual system. LetG = (gk;l) denote a
Gaussian filter, i.e. a 2-dimensional symmetric matrix of size(2w + 1)� (2w +1), where
each non-negative real numbergk;l (�w � k; l � w) is determined by a 2-dimensional
Gaussian distribution such that their sum is 1. In other words,gk;l = 
 � e� k2+l22�2 (1)

where� is a parameter of the Gaussian distribution and
 is a fixed real number to satisfyP�w�k;l�w gk;l = 1. LetR = (ri;j) be the projected gray-scale image of a binary imageB = (bi;j) obtained by applying the Gaussian filter as follows:ri;j = X�w�k;l�w gk;lbi+k;j+l (1 � i; j � n) (2)

Clearly, from
P�w�k;l�w gk;l = 1 andgk;l is non-negative, eachri;j takes a real number

in the range[0; 1℄ and thus, the projected imageR is a gray-scale image. We can say that a
binary imageB is a good approximation of original imageA if the difference betweenA
andR is small enough. Hence, we are going to define the Gaussian error of B as follows.
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Figure 3: 2-cluster, 3-cluster, and 4-cluster dots

Gaussian errorei;j at each pixel location(i; j) is defined byei;j = ai;j � ri;j ; (3)

and the total Gaussian error is defined byError (A;B) = X1�i;j�n jei;j j: (4)

Since the Gaussian filter approximates the characteristicsof the human visual system, we
can think that imageB reproduces original gray-scale imageA if Error (A;B) is small
enough. The best binary image that reproducesA is a binary imageB is given by the
following formula:B� = argminfError(A;B) j B is a binary imageg: (5)

The best binary image may have dots with isolated pixels. Forexample, letA be a
binary image of sizen�n with every pixel having intensity12 . Then, the best binary imageB� satisfying (5) is a checkerboard, in which all pixels are isolated.

3. Cluster-dot Screening

This section shows our new idea to generate good cluster-dotbinary images.
The idea for generating cluster-dot binary images is to giveappropriate restriction when

the best binary image is computed. We say that two black pixels form a2-clusterif they
are adjacent in either vertical or horizontal direction(Figure 3). A binary black pixel is
2-cluster if it is one of the pixels in a 2-cluster. In other words, if a black pixel has a
black neighbor pixel, it is 2-cluster. Similarly, a binary white pixel is2-clusterif one of
its neighbor is white. A binary image is2-clusterif its all pixels are 2-clusters. Clearly, a
2-cluster binary image has no isolated dot, and each dot consists of either more than one
white pixels or more than one black pixels.

Similarly, we can define 3-cluster and 4-cluster binary images. We say that 3 black
pixels form a3-clusterif they are in a2 � 2 region(Figure 3). A binary black pixel is
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3-clusterif it is one of the pixels in a 3-cluster. We can define3-clusterfor white pixels in
the same way. A binary image is 3-cluster if all the pixels are3-cluster. We also say that 4
black pixels form a 4-cluster if they are in2 � 2 region(Figure 3). A binary black pixel is
4-clusterif it is one of the pixels in a 4-cluster.4-clusterfor white pixels can be defined in
the same way. A binary image is 4-cluster if all the pixels are4-cluster.

Note that isolated 3 black pixels in a3�1 or 1�3 region do not form 3-cluster although
they are adjacent. The reason is that, a dot with large diameter gains a lot. For example,
3 black pixels in a3 � 1 region has diameter

p32 + 12 = p10, while each 3-cluster in
Figure 3 has diameter of

p22 + 22 = p8. Hence, we exclude 3 black pixels in a3� 1 or1� 3 region from the 3-cluster. By the same reason, we exclude 4 pixels that do not fit in
a2� 2 region from the 4-cluster.

Suppose that a gray scale imageA is given. Let
 be either 2, 3, or 4. It should be clear
that the best
-cluster binary image that reproducesA is a binary imageB
�
luster such
that B
�
luster = argminfError(A;B) jB is a c-cluster binary imageg: (6)

Our goal is to find a
-cluster binary imageB
�
luster for a given gray scale imageA.

4. The Local Exhaustive Search for Cluster-dot Screening

The main purpose of this section is to present our new algorithm to find a good binary
imageB whose total error with respect to original gray-scale imageAmay not be minimum
but small enough. Our approach to obtain c-cluster-dot binary image (
 = 2; 3, or 4)
updates a small square region of a temporal binary image by the best binary pattern, in
which the total number of non-c-cluster dots and the total Gaussian error is the minimum
over all possible binary patterns.

For a binary imageB of sizen � n, let C
�
luster(B) (
 = 2; 3 or 4) denote the
number of non-
-cluster pixels inB. Note that ifB is 
-cluster thenC
�
luster(B) = 0.
Hence, the goal of
-cluster-dot screening is to find a good binary imageB satisfyingC
�
luster(B) = 0. Suppose that an original imageA of sizen � n are given. The error
Error
�
luster of a binary imageB with respect toA is defined as follows:Error
�
luster(A;B) = (C
�
luster(B);Error (A;B)):
In other words, the error is a pair of “the number of non-
-cluster pixels inB” and “the
difference betweenA and the projected image ofB”. We assume that the comparison
of any two values ofError 
�
luster(A;B) are based on the lexicographical order, that is,Error 
�
luster(A;B) < Error 
�
luster(A;B0) if and only if� C
�
luster(B) < C
�
luster(B0) or,� C
�
luster(B) = C
�
luster(B0) and(Error (A;B) < Error (A;B0))
The idea of our new screening algorithm is to find a binary image B with small errorError 
�
luster(A;B).
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Figure 4: Illustrating a window of sizek�k, the expanded window of size(k+2)�(k+2),
a Gaussian filter of size(2w+1)�(2w+1), the affected region of size(2w+k)�(2w+k)

Suppose that an original imageA and a temporary binary imageB is given. Further, letW (i; j) be a window of sizek� k in B whose top-left corner is at position(i; j). Our first
idea is to compute the error for all2k2 binary patterns inW (i; j) and replace the current
binary subimage in the window by the best binary pattern thatminimizes the total error. In
other words, we find a binary imageB0 such thatB0 = argminfError 
�
luster(A;B) j B andB0 differ only inW (i; j)g: (7)

Next, let us see the details on howB0 satisfying formula (7) above is computed. Since
we use a Gaussian filter of size(2w+1)�(2w+1), the change of the binary pattern affects
the errors in a square region of size(2w+k)� (2w+k), which we call theaffected region
(Figure 4). Also, letW+(i; j) be a region of size(k +2)� (k+2) which can be obtained
by expanding the windowW (i; j) by one pixel. We callW+(i; j) the expanded window
of W (i; j). It should be clear that the best binary pattern can be selected by computing� the total Gaussian errors of the affected region of size(2w+ k)� (2w+ k), because

the change of the binary pattern does not affect errors at pixels outside the affected
region, and� the number of non-
-cluster pixels inW+(i; j), because the change of the binary
pattern does not affect the number of non-
-cluster pixels outsideW+(i; j).

Let us evaluate the computing time necessary to find the best binary pattern in the
window. The Gaussian error of a particular pixel in an affected region can be computed
in O(k2) time by evaluating formulas (2) and (3). Hence all the Gaussian errors in the
affected region can be computed inO(k2(2w + k)2) time. After that, their sum can be
computed inO((2w + k)2) time. Also, it can be determined inO(1) time if a particular
pixel is 
-cluster easily. Hence the total number of non-
-cluster pixels in the expanded
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window of size(k + 2) � (k + 2) can be computed inO(k2) time. Thus, the total error
in the affected region, which is a pair of the total number of non-
-cluster pixels in the
expanded window and the total Gaussian error in the affectedregion can be computed inO(k2(2w + k)2) +O(k2) = O(k2(w + k)2) time.

Since we need to check all the possible2k2 binary patterns, the best binary pattern can
be obtained inO(2k2k2(w + k)2) time. We can improve the computing time by flipping a
pixel in the order of the gray code of binary numbers. Recall that the gray code represents
a list of all m-bit binary numbers such that any two adjacent numbers differ only one
position. Thus, by flipping an appropriate bit using the graycode, we can list all the2m
binary numbers withm bits. Using the gray code withk2 bits, we can evaluate the errors
for all binary patterns inO(2k2w2) time as follows. Starting with the current pixel pattern
in the window, we repeat flipping an appropriate pixel according to the gray code. In
each flipping operation, we compute the total Gaussian errorin the affected region for the
current binary pattern in the window. Since the flipping operation for a single bit affects
the Gaussian error of(2w+1)� (2w+1) pixels, the total Gaussian error can be computed
in O(w2) time in an obvious way. Also, we can compute the change of the number of
non-k-cluster pixels by checking the number of non-k-cluster pixels in3� 3 pixels whose
center is the flipped pixel. This computation takesO(1) time. Thus, the best binary pattern
can be computed inO(w2)� 2k2 = O(2k2w2) time by the local exhaustive search.

We are now in position to show our new screening method. LetA = (ai;j) be an
original gray-scale image andB0 = (b0i;j) be an appropriate initial binary image. Although
we can initialize the binary imageB0 using any screening method, we assume thatB0 is
initialized by therandom dither method. In the random dither method, a binary pixel takes
value 1 with probabilityp if the pixel value of the corresponding pixel of an original image
is p (2 [0; 1℄). Thus,b0i;j = 1 with probabilityai;j for everyi andj. We repeat sliding a
window of sizek�k and improving the binary pattern in the window by replacing the pixel
values in it by the best binary pattern. We perform window sliding in the raster scan order
as illustrated in Figure 5, to obtain a better quality binaryimageB1. The same procedure is
repeated, that is, the window sliding operation is applied toBt�1 and obtain a better binary
imageBt (t � 1) until Bt�1 andBt are identical and no more improvement is possible.
When computingBt for t � 2, we do not have to perform the exhaustive search for all
the windows. If the projected image of the affected region for the current window did not
change, then we can omit the exhaustive search.

The details of our new screening algorithm are spelled out asfollows:
Local Exhaustive Search(A)
Set an appropriate initial binary image inB0;B1  B0;
for i 1 to n� w + 1 do

for j  1 to n� w + 1 do
Perform the exhaustive search inW (i; j) for B1
and updateB1 by the best binary pattern.t 1;

doft t+ 1;
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Figure 5: Sliding window in raster scan orderBt  Bt�1;
for i 1 to n� w + 1 do

for j  1 to n� w + 1 do
If the projected image in the affected regions ofW (i; j) for Rt andRt�1 are not identical then
perform the exhaustive search inW (i; j) for Bt
and updateBt by the best binary pattern.g until (Bt andBt�1 are identical)

output (Bt);
5. Hardware Acceleration for the cluster-dot LES using an FPGA

We have developed a hardware accelerator using the PCI-connected FPGA that per-
forms the local exhaustive search in order to find the best binary pattern in a window. This
section is devoted to show the architecture of our FPGA-based hardware accelerator.

Let A = (ai;j) be an original gray-scale image of sizen � n andB = (bi;j) be the
current binary image ofA. Before showing the architecture, we first show how our hard-
ware accelerator is used by the host PC. The hardware accelerator is used to compute the
best binary pattern in a windowW (i; j). For this purpose, the host PC sends necessary in-
formation to the hardware accelerator. LetW++(i; j) be the extended region ofW+(i; j).
Note that, if the original window hask � k pixels, thenW++(i; j) has(k + 4) � (k + 4)
pixels. For the purpose of compute the best binary pattern inW (i; j) the host PC sends, to
the hardware accelerator,� the current values of binary pixels inW++(i; j), and� the current Gaussian errors of all pixels in the affected region ofW (i; j).

The hardware accelerator computes the errors for all possible 2k2 binary patterns inW (i; j) and returns the best binary pattern whose error is the minimum. The host PC
receives the best binary pattern and updates the values of binary pixels by the received
binary pattern.
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in W+(i; j) is non-c-cluster

circuit to compute the Gaussian error
at each pixel in the affected region

circuit to compute the numuber
of non-c-cluster pixels

circuit to compute the total
Gaussian error

the error of the current binary pattern ofW (i; j)
Figure 6: Illustrating a part of the hardware accelerator.

We are going to show the architecture of our hardware accelerator. Figure 6 illustrates
a part of the FPGA-based hardware accelerator, which outputs the error for every binary
pattern. To list all possible2k2 binary patterns inW (i; j), we simply usek2-bit binary
counter. We also use a circuit that checks if each pixel inW+(i; j) is a non-
-cluster
from the current binary pixel values inW+ + (i; j). After that, the number of non-
-
cluster is computed by a binary summing circuit, which can beimplemented efficiently
on the FPGA [9, 10, 12]. Next, we need to compute the total Gaussian errors. For this
purpose, we use a circuit that to compute the Gaussian error at each pixel in the affected
region, which can be implemented using integer addition/subtraction circuits. After that
the sum of the Gaussian errors are computed by an integer summing circuit, which can
also be implemented efficiently on the FPGA [12]. In this way,the error of the current
binary pixel values ofW (i; j) which is a pair of the number of non-
-cluster pixels and the
total Gaussian errors is computed. By using thek2-bit binary counter forW (i; j), we can
compute, in2k2 clock cycles, the best binary pattern whose error takes the minimum all
possible2k2 binary pattern.

6. Experimental Results

This section shows the experimental results. We have developed a software that per-
forms our cluster-dot screening based on the LES for window of size1�1, 2�2, 3�3, and4� 4, which callLES1, LES4, LES9, andLES16, respectively. We have used a Pentium4-
based PC (Xeon 4.0GHz) with Linux operating system (Kernel 2.6) for software imple-
mentation. The source program is compiled by gcc 3.4.6 with -O2 and -m64 options. We
also developed FPGA-based implementation for window of size 3 � 3, and4 � 4, that is,
LES9 and LES16. In the FPGA implementation, we have used a PCIboard with Xilinx
VirtexII family FPGA XC2V3000-4 [6], and embedded a circuitto perform the cluster-dot
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local exhaustive. The source program is developed using Verilog HDL, and Xilinx ISE 8.2i
for logic synthesis, mapping, and implementation. The timing analysis by Xilinx ISE 8.2i
reported all of our implementations run in 101.70 MHz and 102.23 MHz for LES9 and
LES16, respectively. Thus, we set the clock frequency the programmable oscillator on the
FPGA board to 100MHz.

We have used an 8-bit gray-scale images “Lena” of size256� 256 for the experiment.
Also, we use a window of size1 � 1, 2 � 2, 3 � 3, and4 � 4 and a Gaussian filter of
size11 � 11 and parameter� = 1:2. Table 1 shows the computing time for non-cluster,
2-cluster, 3-cluster, and 4-cluster screening concerningLES1, LES4, LES9, and LES16,
respectively. In software implementations for the same LES, non-cluster screening runs
faster because it is not necessary to check if a pixel is
-cluster. On the other hand, in the
FPGA implementation, the computing time of LES9 is almost the same for non-cluster,
2-cluster, 3-cluster, and 4-cluster. This is because the local exhaustive search for a window
takes29 clock cycles in the same clock frequency 100MHz, regardlessthe size of clusters.
By the same reason, the computing time of the FPGA implementation of LES16 is the same
for all cluster sizes. Also, the speed up by the FPGA implementation for LES16 is much
larger than that for LES9, because the LES9 has larger overhead between the communica-
tion the host PC and the PCI-connected FPGA board than LES16.More specifically, the
FPGA implementation for LES9 performs communication between the host PC and the
FPGA board in every29 clock cycles, while that for that for LES16 performs it in every216 clock cycles. Hence, the communication overhead of LES9 is much larger than that of
LES19.

Figure 7 illustrates the error defined by (4). Note that a binary image with smaller total
error reproduces better its original image. Also, the errors of 4-cluster-dot are the largest
because dots are coarse. However, in practical printing environment, 4-cluster-dot images
may reproduce the original image better than the others. From figure 7 LES16 produces
binary images with higher quality, because it repeats finding the best binary image with
larger windows. The readers should refer to Figure 8 for the resulting binary images using
LES16. Clearly, every pixel in the binary images of “Lena” by2-cluster-dot, 3-cluster-dot,
and 4-cluster-dot screening is 2-cluster, 3-cluster, and 4-cluster, respectively. Also, they
reproduces the original gray scale image “Lena” very well.

7. Conclusions

We have presented the local exhaustive search based cluster-dot screening for finding a
high quality binary image that reproduce the original gray-scale image. Since this screen-
ing process requires huge amount of computation, it would beimpractical if we would
implement it naively. Although the processing time is stillmuch larger than that of the
currently used screening algorithms such as Error Diffusion and also much larger hardware
resources are required, our algorithm would be useful in applications requiring high fidelity
binary images.
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Figure 7: The error of the resulting binary image with respect to the original image “Lena”
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3-cluster-dot 4-cluster-dot

Figure 8: The resulting binary images of non-cluster-dot and cluster-dot screening for
“Lena” using LES16
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