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Abstract—Finding a vast array of applications, the problem  [7], [8]. Being central to so many application areas, the
of computing the convex hull of a set of sorted points in the  convex hull problem has been extensively studied in the

plane is one of the fundamental tasks in pattern recognition, literature, both sequentially and in parallel [1], [6], [2], [3]
morphology and image processing. The main contribution of (71, [5] [é] [10], [11] PR D

this paper is to show a simple parallel algorithm for computing
the convex hull of a set ofn sorted points in the plane and eval- It is well known that the convex hull of points in the
uate the performance on the dual quad-core processors. The plane can be computed i@ (nlogn) time [12]. Also, if n
experimental results show that, our implementation achieves a points are sorted by their-coordinates in the plane, the

speed-up factor of approximately 7 using 8 processors. Since . :
the speed-up factor of more than 8 is not possible, our parallel convex hull can be computed i@(n) time [13]. Further,

implementation for computing the convex hull is close to theoretically optimal allgorithms for computing the convex
optimal. Also, for 2 or 4 processors, we achieved a super linear hull of sorted set of. points have been presented [14]. More

speed up. specifically, it was shown in [14] that the convex hull can be
KeywordsParallel algorithm; Convex hull; Multicore proces- computed in PRAM (Parallel Random Access Machine) [15]

sor « O(logn) time using ;2. processors on the EREW

[. INTRODUCTION PRAM, and

The convex hulfor a setP of points in anzy plain is the * glgocgvboigg&me USING foiozm Processors on the
minimum convex set containing all points i (Figure 1). '
Computing the convex hull is one of the most fundamentalA parallel algorithm isasymptotically cost optimaif the
problems in the area of computational geometry [1]. Weproduct of computing time and the numbe¥k of proces-
assume that the problem of computing the convex hull i$S0rs is asymptotically equal to the computing time of the
a problem to list all convex hull points that constitute thebest sequential algorithm. More specifically, if a parallel
border of the convex hull. The convex hull is partitioned, @lgorithm runs in timet using & processors, and the best
using the leftmost and the rightmost points, inbhe upper sequential algorithm runs if time, then it is asymptotically
hull andthe lower hullas illustrated in Figure 1. Clearly, by cost optimal iftk = O(T). Thus, both parallel algorithms
computing the upper hull and the lower hull and combiningabove are asymptotically optimal. We also say that a parallel
them, we can obtain the convex hull. Also, any algorithm toalgorithm is cost optimal if the product of the computing
compute the upper hull can compute the lower hull. Thus, ifime ¢ and the number: of processors is equal to the
this paper, we will show a parallel algorithm for computing computing time of the best sequential algorithm. In other
the upper hull. words, it is cost optimal iftk = T. Sincet = % the

One of the fundamental heuristics in pattern recognitionparallel algorithm achieves a speedup factorkofising k
morphology, image processing, and robot navigation, infrocessors, it also attairgptimal speedupHowever it is
volves approximating real-world objects by convex sets. Fonot easy to achieve optimal speedup due to miscellaneous
obvious reasons, one is typically interested in the conveverhead. So, we say that it attainearly optimal speedup
hull of a setP of points, defined as the smallest convex setif & speedup factor is close to the number of processors.
that containsP [2], [3]. In robotics, for example, the convex  The first contribution of this paper is to show a simple
hull is central to path planning and collision avoidance taskgarallel algorithm for computing the upper hull afsorted
[4], [5]. In pattern recognition and image processing thepoints. Our parallel algorithm runs (3 + k(log %)2)
convex hull appears in clustering, and computing similaritiesusing & processors. Thus, our algorithm is asymptotically
between sets [6], [2], [7], [8]- In computational geometry, optimal whenevek < % From theoretical point of view,
the convex hull is often a valuable tool in devising efficient our algorithm is asymptotically optimal for smaller ranges
algorithms for a number of seemingly unrelated problemsf & than the previously published results [14]. However, the
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Figure 1. The convex hull, the upper hull, and the lower hull of a set of points

previously published parallel algorithms are too complicatedLet us define the following operations for the stagkwith
and the implementation is not easy. From practical point oeach element taking an index of a point in the array, that is,
view, we believe our algorithm is fast. an integer value:
Further, we analyze the details of the performance. Let push(%ush the index of point p; in stacks.
T..(n) be the computing time necessary to compute the upper pop(SPop (or remove) the point index in the top of stack
hull of n points using a single processor. Also, Ef(n) S.
be the computing time necessary to capyntegers in an top(S)Returns the point index of the stack top.
array. Clearly,T.(n) = O(n). Also, from [13], T,(n) = secondReturns the index of the second point of the stack.
O(n). We show that our parallel algorithm runsT) (%) +  Note that the stack can be implemented by an array and
Te(%) + O(k(log %)?) time usingk processors. From the a pointer storing the index of the stack top. Thus, these
implementation result that we are going to shdiy(n) ~  operations can be implemented to be completedin)
7-T.(%). Thus, our parallel algorithm runs iBT,,(%) +  time.
O(k(log %)?) time. Since at leasT’, (%) time is necessary  Using these stack operations, we can find the upper hull
to compute the upper hull af points usingk processors, of P. The following algorithm computes the upper hull of
our parallel algorithm is close to optimal. P. The resulting upper hull points are stored in statk
Our second contribution is to implement our convex hull .
. : . ush(S, 0);
algorithm in multicore processors (or processor cores). Th& !
. push(S, 1);
experimental results show that, our convex hull parallel al-

gorithm achieves near optimal speed-up, that is, our parallef rt:e:giﬁ ton do

algorithm achieves a speed-up factor of approximately 7 while (point is below line )
using 8 processors. Also, for 2 and 4 processors, we achieves POIN Prop(s) Psecond(s)Pi
a super linear speed up. We believe that the reason why our pOp(S)_'
. . ; push(S,);

parallel algorithm achieves super linear speed up for 2 and end
4 processors is the size of L2 cache. The algorithm for a
single processor uses 4MB L2 cache. On the other handyote that each element of the stack is an integer, which
our parallel algorithm for multi-processors uses 8MB L2 stores the index of a point. A naive implementation uses a
cache. Thus, we have achieved a super linear speed up. stack withz andy coordinates of points. If each coordinate

Further, we have presented that sorting can be donis a 128-bit long double float number, we need to perform
in efficiently [16]. More specifically, we have shown a stack operations of 256-bit data. To reduce the data move-
parallel sorting with speed-up factor of 6 using 8 processorsment, we use the stack with integers. From practical point
Thus, we can obtain a nearly cost optimal convex hullof view, a stack with 32-bit unsigned integers are sufficient
parallel algorithm for non-sorted set of points in multicore if the number of input points is less thai? = 4 billion.

processors. Figure 2 illustrates how the upper hull is computed by
this algorithm. Suppose four poinf3C B A constituting the
Il. A SEQUENTIAL ALGORITHM FOR COMPUTING THE interim upper hull, and we are now in position to add point
UPPER HULL p; to it. Note that, these points are stored in the stack. Since
Let P = {po,p1,---,Pn—1}+ be the set of points in point A, which is stored in the top of the stack, is below line

the plane. We assume that poinsis sorted for theirz- Bp;, point A cannot be an upper hull point and it is removed
coordinates, that isy(p;) < z(p;+1) for all i, wherez(p;)  from the stack by the pop operation. Similarly, poistis
denotes ther coordinate ofp;. below line Cp;, point C' is removed from the stack. Since
Let us review a sequential algorithm for finding the upperpoint C' is above lineDp;, point C' is the interim upper
hull points [13]. We use a stack to find all upper hull points. hull point, andp; is pushed into the stack. In this way, new



interim upper hullDCp; is computed. Clearly, when the

algorithm terminates, the upper hull is stored in the stack

correctly.
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Figure 2. lllustrating the algorithm to compute the upper hull

For each poinp;, the push operation is executed exactly

Figure 3. The tangent aP from q.

gj+1 is above, then the contact point ¢f of the common
tangent is in the right-hand size of. Similarly, if ¢;_; is
abovep;q; andg;; is below, then the contact point ¢f of
the common tangent is in the left-hand size;pfHence, the
common tangent oP and@ can be computed by the binary
search. Since”? and @ haven andm points respectively,
The common tangent can be computedCiflogm logn)
time. Thus we have

Lemma 3.1:Suppose that we have two upper huflsand
@ with n andm sorted points. Their common tangent can be
computed inO(logmlogn) time using a single processor.

IV. A PARALLEL ALGORITHM FOR COMPUTING THE
UPPER HULL

once. Also, by the pop operation, each point is removed The main purpose of this section is to show a parallel
at most once. Thus, it is easy to see that the upper huBligorithm for computing the upper hull.

algorithm above runs i®(n) time.

IIl. SEQUENTIAL ALGORITHMS FOR COMPUTING THE
TANGENTS

The main purpose of this section is to review a sequentia
algorithm for computing the tangent from a point to the
upper hull [14]. We then go on to show a sequential
algorithm for computing the common tangent of two upper

hulls.

Let an upper hullP = {po, p1,...,pn—1} With n points
and a pointy. We assume that points iR are sorted bye-
coordinates. Let us pick an arbitrary pojtin P and draw
a line p;q. Clearly, p;q is the tangent if both points;_; and
pi+1 are belowp;q. Figure 3 shows the tangent &f from
q. Clearly, if p;_1 is below linep;q but p;1 is above, then
the contact point is in the right-hand side gf Similarly,
if p;—; is above linep;q andp;, is below, then the contact
point is in the left-hand side gf;. Therefore, the tangent of

Again, let P = {po,p1,...,pn—1} be the sorted set of
points in the plane. Suppose that we haveprocessors
PE(0),PE(1),...,PE(k — 1). The outline of the parallel
:f\lgorithm is as follows:

Step 1Partition the sorted points intb equal sized sub-
setsP,, Py,..., and P,_1, and compute the upper
hull of eachP; usingPE(:). The upper hull points
are stored ink stacks.

Step 2Remove all points that are not the upper hull points
of P.

Step 3Copy all the upper hull points in an array.

In Step 1,P is partitioned intok subsets such that each
P = {pi.%,pi.%ﬂ, . ,p(i+1),%_1}. We use the sequential
algorithm in Section Il to compute the upper hull of each
P; (0 <i<k—1)usingPE(:).

Suppose that eacR; (0 < < k— 1) hasu(i) upper hull
points. Further, lep; o, pi1,- -, Piui@)—1 denote the upper

P from ¢ can be computed by the binary search technique irhull points of P;. The goal of Step 2 is to find an indexis)

an obvious way. Sinc# hasn points, the common tangent
can be computed i (logn) time.

Suppose two upper hullB = {pg,p1,...,pn—1} With n
points and® = {qo, g1, - - - , gm—1} With m points are given.
Our goal is to compute the common tangenfoénd(). Let
us pick a pointg; and draw the tangent from; to P. We
can draw the tangent dP from ¢; in O(logn) time using
the binary search. Lep;q; be the tangent thus obtained.
Clearly, if bothg;_; andg;;; are belowp;q;, thenp;q; is
the common tangent af and Q. If ¢;_; is belowp;q; but

andr(i) such thatp; iy, piii)+1, - - - > Pir(i) are the upper
hull points of P. Note thatP; may not have the upper hull
points of P. If this is the case, we assume tHat) and
r(i) takes any values such th&t) > r(i). In Step 2, we
compute the value of eadlfi) andr(i) (0 < i < k —1)
using k& processors.

Figure 4 illustrates the parallel algorithm for merging four
convex hulls into one. Clearly, the upper hull points Bf
arepo,0, Po,1,P1,1,P1,2, P1,3, P32, P3,3, P34, andps 5. Hence,
1(0) =0,70) =1,11) =1, 1) = 3, 1(3) = 2, and



P0,0 P0,5 P1,0 p1,6P2,0 P2,5 p3 0 P35
Figure 4. lllustrating the merging of the upper hulls

r(3) = 5 hold andi(4) andr(4) can be any value satisfying upper hull points in parallel, we compute the prefix sums of
1(4) > r(4). n(0),n(1),...,n(k—1). This can be done i®(k) time us-

Next, we will show how the values dfi) andr(i) are ing a single processor. After th&E(:) copiesn(i) indexes
computed. For two upper hullg; and P;, let p; c(; jyPj,c(j.) in its stack to array with positions(0)+n(1)+---+n(i—1)
denote the common tangent of these upper hulls. Figure ® n(0) + n(1) + --- + n(i) — 1. This can be done in
illustrates the common tangemt.(; jyp;.«(i,;) Of two convex — O(n(i)) < O(%) time.

hulls P; and P;. Clearly, points ofp; .(i j)+1, Pi,c(i,j)+21 Finally, we have

oo Dic(ig)—1 and P00 Pjy -1 Pic(5i)—1 are below the ) .
common tangent, and they cannot be the upper hull points Theorem 4.1:The upper hull ofn sorted points can be
of P. computed inO(% + k(log %)?) usingk processors.

Since the upper hull can be computed(in) time using
Pije(3,9) a single processor. Thus, our parallel upper hull algorithm
is asymptotically optimal ifO(% + k(log %)?) = O(n)
holds. It follows that our algorithm is asymptotically optimal
wheneverk < .

logn-*

Let us discuss the details of the computing time of our
parallel upper hull algorithm. We assume that, every proces-
sor core can access data in the shared memory independently
without overhead of simultaneous access. Tgtn) be the
Figure 5. The common tangeps ,..; ;yp;.i(;,i) Of two convex hullsP; Computing Fime necessary to compute the upper hull of
and P; n points using a single processor. Also, [Bt(n) be the

computing time necessary to copy integers in an array.

From this observation, we can compute the valuegdf  Clearly, T, (n) = Te(n) = O(n).

andr(i) as follows: In Step 1, the upper hull off points are computed
(i) = max{c(i,j)|j < i} independently. Thus, Step 1 takEg(7) time. Step 2 runs in
, T O(k(log %)?) is time, which is much smaller thafi, (7).
r(@) = min{e(i,j) [ <j} Finally, Step 3 runs irl.(2) time. However, Step 3 can

It should be clear that, if(i) < r(i) thenp; iy, Pii(i)+1s be much smaller. LetV be the maximum number of local
..., Pirgiy are the upper hull points of, and the other upper hull points over all subsets. Clearly, < 3 and in
points in P; are not the upper hull points. i) > (i) most practical cased/ < 7 holds. Then, Step 3 takes
then no point inP; is the upper hull point ofP. Therefore, 7.(U) < T'(%) time. Consequently, the computing time of
once we have the values ofi, ) for all pairs ofi andj,  our parallel algorithm runs i, (%) +O(k(log %)*)+T.(U)
we can compute the values &fi) and (i) and obtain all time. As we are going to show later in SectionT¥,(n) ~
the upper hull points. 7 - Te(n) holds. Also, sinceU < % holds for practical

For a pair of convex hullsP; and P; the values of input, 7, (%) is dominant in the computing time. Further,
cci,j) can be computed irO(logu(i)logu(j)) using a Ty(%) ~ % holds, we can archive a optimal speed up
single processor. Since(i) < %, the computing time is factor of k using k¥ processors. Note that, this discussion
O((log #)?). Since we have: processors, all the pairs, ; is correct under the assumption that each processor core
can be computed i (k(log %)?) time. can access arrays in a shared memory without overhead. If

Finally, in Step 3, we move the indexes of all upper hullwe have too many processor cores connected to the shared
points ink stacks into an array. Let(:) = r(:) —I(i) +1  memory, the overhead may be dominant and the optimal
be the number of upper hull points in thieh stack. We  speed up may not be possible. As we are going to show the
assume thaw(i) = 0 if r(i) > (). To copy all the next section, near optima speed up is possiblekfer 8.

Pi c(i) -




is approximately 7 times slower than that for simple copy
operation.

The tables show that Step 1 is dominant in terms of
the computing time. Also, in Step 1, whénis large, the
execution time is short because each processor computes the
upper hull ofn/k points which are simply divided using
Disk Girde k processor cores. According to the tables, the number of
upper hull points in the set of Square and Disk, is quite
small compared wittm. Therefore, in Steps 2 and 3, each
computing time is quite short compared with Step 1. In
contrast, the number of upper hull points in the set of Circle
is approximatelyn /2 because every point is either the upper
hull or lower hull point. Thus, Steps 2 and 3 for Circle

We have implemented and evaluated the performance dfike & lot of time compared with that for Square and Disk.
our parallel algorithm in a Linux server (CentOS 5.1) with However, Circle is a special case since every point in Circle
two quad-core processors (Intel Xeon X5355 2.66GHz [17])Will be convex hull point. The computing time for a set of
that is, we have used eight processor cores. The softwaRQints which are used in general may be close to that for
has been implemented in C language with OpenMP 2.0 angduare and Disk. Thus, we can say that the circle is the
compiled by gcc 4.1.2 with -O2 option. The OpenMP (OpenWorst case for computing the convex hull. Although Circle
Multi-Processing) is an application programming interfaceiS the worst, Step 1, which computes the local upper hulls
that supports shared memory environment [18]. It consist§dependently, is still dominant. For the speed up factor,
of a set of compiler directives and library routines. By using®ach value is close té. For example, for the square and
OpenMP, it is relatively easy to create parallel applicationsdisk input, & speed up factor of more than 6 is achieved for

Figure 6. Randomly generated sets of points

V. EXPERIMENTAL RESULTS

in FORTRAN, C, and C++. 8 processor cores. Since the speed up factor cannot be more
To show the experimental results, we use three randomi§@n if we usek cores, our algorithm is close to optimal.
generated sets of points Further, quite surprisingly, a super linear speed up is

S Th di f h boi OEchieved for 2 and 4 processor cores. For example, a speed

* f quare the (_:foor Ilnates Od each point are generate p factor of 4.27 is achieved for 100M points. The reason
rom [0,1) uni ormly at random. : why a super linear speed up is the architecture of two

- Disk Thg coordinates of each point are ggnerateq fronbuad-core processors [17]. Each processor has 4MB L2
[0.’ :]) u(rjlfforrgly at (;andom. If they are r&pt n ghedcwc(;e cache. Thus, the algorithm for a single processor runs on
with ra us ,'5 and centgp.5,0.5), it IS discarded and — g\ig |2 cache. On the other hand, the parallel algorithm
anew pointis ge_ngrate_d. The generatlon of coordlnateﬁ)r two or more processors runs on 8MB L2 cache. This
zér_e Irep_Jrehated ulrggl_lt IS in the gl;cle. forml may be the reason why the parallel algorithm for 2 and 4

» Circle The anglef is generated froni0, 27r) uniformly processors achieves a super linear speed up. However, due

atrandom. The coordinates of the pointdss,sinf). 4 e jimitation of memory bandwidth, a speedup factor for
Every point is either the upper hull or lower hull points. 8 processors is saturated

Figure 6 shows the outline of these three randomly generated
sets of points. VI. CONCLUDING REMARKS

Tables | and 1l show the performance of our implementa- The main contribution of this work was to present a
tion when the upper hulls are computed for the above thregarallel algorithm for computing the convex hull of a set
randomly generated sets of points, for 10M points and 100Mf n sorted points in the plane and implement it on the dual
points, respectively. Recall that they are sorted by their quad-core processors.
coordinates in the plane. The performance evaluation has We have evaluated our algorithm in a Linux server
been carried out for various numberf processor cores. with two Intel quad-core processors (Intel Xeon X5355
In the tables, Step 1, Step 2 and Step 3 correspond to th266GHz). The results have shown that our parallel imple-
steps of the algorithm shown in Section 4. Note that, ifmentation is 7 times faster than sequential implementation.
k = 1, then the implementation performs only Step 1 for Since the speed up factor cannot be more than 8 if we use
the whole input data. However, for reference, the tableg cores, our algorithm is close to optimal. Also, for 2 or 4
include the computing time of Step 3 fdr = 1. For  processors, we have achieved a super linear speed up.
computing the 100M points using a single processor, Step 1
and 3 runs in 3.129690s and 0.224130s. It follows that, REFERENCES
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