
A Simple Parallel Convex Hulls Algorithm for Sorted Points and the Performance
Evaluation on the Multicore Processors

Masaya Nakagawa, Duhu Man, Yasuaki Ito, Koji Nakano
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, JAPAN

{nakagawa, manduhu, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Abstract—Finding a vast array of applications, the problem
of computing the convex hull of a set of sorted points in the
plane is one of the fundamental tasks in pattern recognition,
morphology and image processing. The main contribution of
this paper is to show a simple parallel algorithm for computing
the convex hull of a set ofn sorted points in the plane and eval-
uate the performance on the dual quad-core processors. The
experimental results show that, our implementation achieves a
speed-up factor of approximately 7 using 8 processors. Since
the speed-up factor of more than 8 is not possible, our parallel
implementation for computing the convex hull is close to
optimal. Also, for 2 or 4 processors, we achieved a super linear
speed up.

Keywords-Parallel algorithm; Convex hull; Multicore proces-
sor

I. I NTRODUCTION

The convex hullfor a setP of points in anxy plain is the
minimum convex set containing all points inP (Figure 1).
Computing the convex hull is one of the most fundamental
problems in the area of computational geometry [1]. We
assume that the problem of computing the convex hull is
a problem to list all convex hull points that constitute the
border of the convex hull. The convex hull is partitioned,
using the leftmost and the rightmost points, intothe upper
hull andthe lower hullas illustrated in Figure 1. Clearly, by
computing the upper hull and the lower hull and combining
them, we can obtain the convex hull. Also, any algorithm to
compute the upper hull can compute the lower hull. Thus, in
this paper, we will show a parallel algorithm for computing
the upper hull.

One of the fundamental heuristics in pattern recognition,
morphology, image processing, and robot navigation, in-
volves approximating real-world objects by convex sets. For
obvious reasons, one is typically interested in the convex
hull of a setP of points, defined as the smallest convex set
that containsP [2], [3]. In robotics, for example, the convex
hull is central to path planning and collision avoidance tasks
[4], [5]. In pattern recognition and image processing the
convex hull appears in clustering, and computing similarities
between sets [6], [2], [7], [8]. In computational geometry,
the convex hull is often a valuable tool in devising efficient
algorithms for a number of seemingly unrelated problems

[7], [8]. Being central to so many application areas, the
convex hull problem has been extensively studied in the
literature, both sequentially and in parallel [1], [6], [2], [3],
[7], [5], [9], [10], [11].

It is well known that the convex hull ofn points in the
plane can be computed inO(n log n) time [12]. Also, if n
points are sorted by theirx-coordinates in the plane, the
convex hull can be computed inO(n) time [13]. Further,
theoretically optimal algorithms for computing the convex
hull of sorted set ofn points have been presented [14]. More
specifically, it was shown in [14] that the convex hull can be
computed in PRAM (Parallel Random Access Machine) [15]

• O(log n) time using n
log n processors on the EREW

PRAM, and
• O(log log n) time using n

log log n processors on the
CRCW PRAM.

A parallel algorithm isasymptotically cost optimalif the
product of computing timet and the numberk of proces-
sors is asymptotically equal to the computing time of the
best sequential algorithm. More specifically, if a parallel
algorithm runs in timet using k processors, and the best
sequential algorithm runs inT time, then it is asymptotically
cost optimal if tk = O(T ). Thus, both parallel algorithms
above are asymptotically optimal. We also say that a parallel
algorithm is cost optimal if the product of the computing
time t and the numberk of processors is equal to the
computing time of the best sequential algorithm. In other
words, it is cost optimal iftk = T . Since t = T

k , the
parallel algorithm achieves a speedup factor ofk using k
processors, it also attainsoptimal speedup. However it is
not easy to achieve optimal speedup due to miscellaneous
overhead. So, we say that it attainsnearly optimal speedup
if a speedup factor is close to the number of processors.

The first contribution of this paper is to show a simple
parallel algorithm for computing the upper hull ofn sorted
points. Our parallel algorithm runs inO(n

k + k(log n
k )2)

using k processors. Thus, our algorithm is asymptotically
optimal wheneverk ≤

√
n

log n . From theoretical point of view,
our algorithm is asymptotically optimal for smaller ranges
of k than the previously published results [14]. However, the



input points convex hull

upper hull

lower hull

Figure 1. The convex hull, the upper hull, and the lower hull of a set of points

previously published parallel algorithms are too complicated,
and the implementation is not easy. From practical point of
view, we believe our algorithm is fast.

Further, we analyze the details of the performance. Let
Tu(n) be the computing time necessary to compute the upper
hull of n points using a single processor. Also, letTc(n)
be the computing time necessary to copyn integers in an
array. Clearly,Tc(n) = O(n). Also, from [13], Tu(n) =
O(n). We show that our parallel algorithm runs inTu(n

k )+
Tc(n

k ) + O(k(log n
k )2) time usingk processors. From the

implementation result that we are going to show,Tu(n) ≈
7 · Tc(n

k ). Thus, our parallel algorithm runs in87Tu(n
k ) +

O(k(log n
k )2) time. Since at leastTu(n

k ) time is necessary
to compute the upper hull ofn points usingk processors,
our parallel algorithm is close to optimal.

Our second contribution is to implement our convex hull
algorithm in multicore processors (or processor cores). The
experimental results show that, our convex hull parallel al-
gorithm achieves near optimal speed-up, that is, our parallel
algorithm achieves a speed-up factor of approximately 7
using 8 processors. Also, for 2 and 4 processors, we achieves
a super linear speed up. We believe that the reason why our
parallel algorithm achieves super linear speed up for 2 and
4 processors is the size of L2 cache. The algorithm for a
single processor uses 4MB L2 cache. On the other hand,
our parallel algorithm for multi-processors uses 8MB L2
cache. Thus, we have achieved a super linear speed up.

Further, we have presented that sorting can be done
in efficiently [16]. More specifically, we have shown a
parallel sorting with speed-up factor of 6 using 8 processors.
Thus, we can obtain a nearly cost optimal convex hull
parallel algorithm for non-sorted set of points in multicore
processors.

II. A SEQUENTIAL ALGORITHM FOR COMPUTING THE

UPPER HULL

Let P = {p0, p1, . . . , pn−1} be the set of points in
the plane. We assume that pointsP is sorted for theirx-
coordinates, that is,x(pi) < x(pi+1) for all i, wherex(pi)
denotes thex coordinate ofpi.

Let us review a sequential algorithm for finding the upper
hull points [13]. We use a stack to find all upper hull points.

Let us define the following operations for the stackS with
each element taking an index of a point in the array, that is,
an integer value:

push(S, i)Push the indexi of point pi in stackS.
pop(S)Pop (or remove) the point index in the top of stack

S.
top(S)Returns the point index of the stack top.
second(S)Returns the index of the second point of the stack.

Note that the stack can be implemented by an array and
a pointer storing the index of the stack top. Thus, these
operations can be implemented to be completed inO(1)
time.

Using these stack operations, we can find the upper hull
of P . The following algorithm computes the upper hull of
P . The resulting upper hull points are stored in stackA.

push(S, 0);
push(S, 1);
for i = 2 to n do

begin
while (point ptop(S) is below linepsecond(S)pi)

pop(S);
push(S, i);

end

Note that each element of the stack is an integer, which
stores the index of a point. A naive implementation uses a
stack withx andy coordinates of points. If each coordinate
is a 128-bit long double float number, we need to perform
stack operations of 256-bit data. To reduce the data move-
ment, we use the stack with integers. From practical point
of view, a stack with 32-bit unsigned integers are sufficient
if the number of input points is less than232 = 4 billion.

Figure 2 illustrates how the upper hull is computed by
this algorithm. Suppose four pointsDCBA constituting the
interim upper hull, and we are now in position to add point
pi to it. Note that, these points are stored in the stack. Since
point A, which is stored in the top of the stack, is below line
Bpi, pointA cannot be an upper hull point and it is removed
from the stack by the pop operation. Similarly, pointB is
below line Cpi, point C is removed from the stack. Since
point C is above lineDpi, point C is the interim upper
hull point, andpi is pushed into the stack. In this way, new



interim upper hullDCpi is computed. Clearly, when the
algorithm terminates, the upper hull is stored in the stack
correctly.

pi

pi

pi

pi

AB
C

D

AB
C

D

B
C

D

C

D

Figure 2. Illustrating the algorithm to compute the upper hull

For each pointpi, the push operation is executed exactly
once. Also, by the pop operation, each point is removed
at most once. Thus, it is easy to see that the upper hull
algorithm above runs inO(n) time.

III. SEQUENTIAL ALGORITHMS FOR COMPUTING THE

TANGENTS

The main purpose of this section is to review a sequential
algorithm for computing the tangent from a point to the
upper hull [14]. We then go on to show a sequential
algorithm for computing the common tangent of two upper
hulls.

Let an upper hullP = {p0, p1, . . . , pn−1} with n points
and a pointq. We assume that points inP are sorted byx-
coordinates. Let us pick an arbitrary pointpi in P and draw
a linepiq. Clearly,piq is the tangent if both pointspi−1 and
pi+1 are belowpiq. Figure 3 shows the tangent ofP from
q. Clearly, if pi−1 is below linepiq but pi+1 is above, then
the contact point is in the right-hand side ofpi. Similarly,
if pi−1 is above linepiq andpi+1 is below, then the contact
point is in the left-hand side ofpi. Therefore, the tangent of
P from q can be computed by the binary search technique in
an obvious way. SinceP hasn points, the common tangent
can be computed inO(log n) time.

Suppose two upper hullsP = {p0, p1, . . . , pn−1} with n
points andQ = {q0, q1, . . . , qm−1} with m points are given.
Our goal is to compute the common tangent ofP andQ. Let
us pick a pointqj and draw the tangent fromqj to P . We
can draw the tangent ofP from qj in O(log n) time using
the binary search. Letpiqj be the tangent thus obtained.
Clearly, if bothqj−1 and qj+1 are belowpiqj , thenpiqj is
the common tangent ofP andQ. If qj−1 is belowpiqj but

P
q

pi

pi+1

pi−1

Figure 3. The tangent ofP from q.

qj+1 is above, then the contact point ofQ of the common
tangent is in the right-hand size ofqj . Similarly, if qj−1 is
abovepiqj andqj+1 is below, then the contact point ofQ of
the common tangent is in the left-hand size ofqj . Hence, the
common tangent ofP andQ can be computed by the binary
search. SinceP and Q haven and m points respectively,
The common tangent can be computed inO(log m log n)
time. Thus we have

Lemma 3.1:Suppose that we have two upper hullsP and
Q with n andm sorted points. Their common tangent can be
computed inO(log m log n) time using a single processor.

IV. A PARALLEL ALGORITHM FOR COMPUTING THE

UPPER HULL

The main purpose of this section is to show a parallel
algorithm for computing the upper hull.

Again, let P = {p0, p1, . . . , pn−1} be the sorted set of
points in the plane. Suppose that we havek processors
PE(0), PE(1), . . . , PE(k − 1). The outline of the parallel
algorithm is as follows:

Step 1Partition the sorted points intok equal sized sub-
setsP0, P1, . . . , andPk−1, and compute the upper
hull of eachPi usingPE(i). The upper hull points
are stored ink stacks.

Step 2Remove all points that are not the upper hull points
of P .

Step 3Copy all the upper hull points in an array.

In Step 1,P is partitioned intok subsets such that each
Pi = {pi·n

p
, pi·n

p +1, . . . , p(i+1)·n
p −1}. We use the sequential

algorithm in Section II to compute the upper hull of each
Pi (0 ≤ i ≤ k − 1) usingPE(i).

Suppose that eachPi (0 ≤ i ≤ k− 1) hasu(i) upper hull
points. Further, letpi,0, pi,1, . . . , pi,u(i)−1 denote the upper
hull points ofPi. The goal of Step 2 is to find an indexesl(i)
and r(i) such thatpi,l(i), pi,l(i)+1, . . . , pi,r(i) are the upper
hull points ofP . Note thatPi may not have the upper hull
points of P . If this is the case, we assume thatl(i) and
r(i) takes any values such thatl(i) > r(i). In Step 2, we
compute the value of eachl(i) and r(i) (0 ≤ i ≤ k − 1)
usingk processors.

Figure 4 illustrates the parallel algorithm for merging four
convex hulls into one. Clearly, the upper hull points ofP
arep0,0, p0,1, p1,1, p1,2, p1,3, p3,2, p3,3, p3,4, andp3,5. Hence,
l(0) = 0, r(0) = 1, l(1) = 1, r(1) = 3, l(3) = 2, and



p0,0 p0,5 p1,0 p1,6p2,0 p2,5 p3,0 p3,5

Figure 4. Illustrating the merging of the upper hulls

r(3) = 5 hold andl(4) andr(4) can be any value satisfying
l(4) > r(4).

Next, we will show how the values ofl(i) and r(i) are
computed. For two upper hullsPi andPj , let pi,c(i,j)pj,c(j,i)

denote the common tangent of these upper hulls. Figure 5
illustrates the common tangentpi,c(i,j)pj,c(i,j) of two convex
hulls Pi and Pj . Clearly, points ofpi,c(i,j)+1, pi,c(i,j)+2,
. . ., pi,c(i,j)−1 and pj,0, pj,1, . . ., pi,c(j,i)−1 are below the
common tangent, and they cannot be the upper hull points
of P .

Pi

Pj

Pi,c(i,j)

Pj,c(j,i)

Figure 5. The common tangentpi,r(i,j)pj,l(j,i) of two convex hullsPi

andPj

From this observation, we can compute the values ofl(i)
andr(i) as follows:

l(i) = max{c(i, j) | j < i}
r(i) = min{c(i, j) | i < j}

It should be clear that, ifl(i) ≤ r(i) then pi,l(i), pi,l(i)+1,
. . ., pi,r(i) are the upper hull points ofP , and the other
points in Pi are not the upper hull points. Ifl(i) > r(i)
then no point inPi is the upper hull point ofP . Therefore,
once we have the values ofc(i, j) for all pairs of i and j,
we can compute the values ofl(i) and r(i) and obtain all
the upper hull points.

For a pair of convex hullsPi and Pj the values of
c(i, j) can be computed inO(log u(i) log u(j)) using a
single processor. Sinceu(i) ≤ n

k , the computing time is
O((log n

k )2). Since we havek processors, all the pairsci,j

can be computed inO(k(log n
k )2) time.

Finally, in Step 3, we move the indexes of all upper hull
points ink stacks into an array. Letn(i) = r(i) − l(i) + 1
be the number of upper hull points in thei-th stack. We
assume thatn(i) = 0 if r(i) > l(i). To copy all the

upper hull points in parallel, we compute the prefix sums of
n(0), n(1), . . . , n(k−1). This can be done inO(k) time us-
ing a single processor. After that,PE(i) copiesn(i) indexes
in its stack to array with positionsn(0)+n(1)+· · ·+n(i−1)
to n(0) + n(1) + · · · + n(i) − 1. This can be done in
O(n(i)) ≤ O(n

k ) time.

Finally, we have

Theorem 4.1:The upper hull ofn sorted points can be
computed inO(n

k + k(log n
k )2) usingk processors.

Since the upper hull can be computed inO(n) time using
a single processor. Thus, our parallel upper hull algorithm
is asymptotically optimal ifO(n

k + k(log n
k )2) = O(n)

holds. It follows that our algorithm is asymptotically optimal
wheneverk ≤

√
n

log n .

Let us discuss the details of the computing time of our
parallel upper hull algorithm. We assume that, every proces-
sor core can access data in the shared memory independently
without overhead of simultaneous access. LetTu(n) be the
computing time necessary to compute the upper hull of
n points using a single processor. Also, letTc(n) be the
computing time necessary to copyn integers in an array.
Clearly, Tu(n) = Tc(n) = O(n).

In Step 1, the upper hull ofnk points are computed
independently. Thus, Step 1 takesTu(n

k ) time. Step 2 runs in
O(k(log n

k )2) is time, which is much smaller thanTu(n
k ).

Finally, Step 3 runs inTc(n
k ) time. However, Step 3 can

be much smaller. LetU be the maximum number of local
upper hull points over all subsets. Clearly,U ≤ n

k and in
most practical cases,U ≪ n

k holds. Then, Step 3 takes
Tc(U) ≪ T (n

k ) time. Consequently, the computing time of
our parallel algorithm runs inTu(n

k )+O(k(log n
k )2)+Tc(U)

time. As we are going to show later in Section VTu(n) ≈
7 · Tc(n) holds. Also, sinceU ≪ n

k holds for practical
input, Tu(n

k ) is dominant in the computing time. Further,
Tu(n

k ) ≈ T (n)
k holds, we can archive a optimal speed up

factor of k using k processors. Note that, this discussion
is correct under the assumption that each processor core
can access arrays in a shared memory without overhead. If
we have too many processor cores connected to the shared
memory, the overhead may be dominant and the optimal
speed up may not be possible. As we are going to show the
next section, near optima speed up is possible fork ≤ 8.



Square Disk Circle

Figure 6. Randomly generated sets of points

V. EXPERIMENTAL RESULTS

We have implemented and evaluated the performance of
our parallel algorithm in a Linux server (CentOS 5.1) with
two quad-core processors (Intel Xeon X5355 2.66GHz [17]),
that is, we have used eight processor cores. The software
has been implemented in C language with OpenMP 2.0 and
compiled by gcc 4.1.2 with -O2 option. The OpenMP (Open
Multi-Processing) is an application programming interface
that supports shared memory environment [18]. It consists
of a set of compiler directives and library routines. By using
OpenMP, it is relatively easy to create parallel applications
in FORTRAN, C, and C++.

To show the experimental results, we use three randomly
generated sets of points

• Square The coordinates of each point are generated
from [0, 1) uniformly at random.

• Disk The coordinates of each point are generated from
[0, 1) uniformly at random. If they are not in the circle
with radius 0.5 and center(0.5, 0.5), it is discarded and
a new point is generated. The generation of coordinates
are repeated until it is in the circle.

• Circle The angleθ is generated from[0, 2π) uniformly
at random. The coordinates of the point is(cos θ, sin θ).
Every point is either the upper hull or lower hull points.

Figure 6 shows the outline of these three randomly generated
sets of points.

Tables I and II show the performance of our implementa-
tion when the upper hulls are computed for the above three
randomly generated sets of points, for 10M points and 100M
points, respectively. Recall that they are sorted by theirx-
coordinates in the plane. The performance evaluation has
been carried out for various numbersp of processor cores.
In the tables, Step 1, Step 2 and Step 3 correspond to the
steps of the algorithm shown in Section 4. Note that, if
k = 1, then the implementation performs only Step 1 for
the whole input data. However, for reference, the tables
include the computing time of Step 3 fork = 1. For
computing the 100M points using a single processor, Step 1
and 3 runs in 3.129690s and 0.224130s. It follows that,
Tu(100M) = 3.129690 and Tc(50M) = 0.224130. Thus,
Tu(n) ≈ 7 · Tc(n) holds and the computing the upper hull

is approximately 7 times slower than that for simple copy
operation.

The tables show that Step 1 is dominant in terms of
the computing time. Also, in Step 1, whenk is large, the
execution time is short because each processor computes the
upper hull of n/k points which are simply divided using
k processor cores. According to the tables, the number of
upper hull points in the set of Square and Disk, is quite
small compared withn. Therefore, in Steps 2 and 3, each
computing time is quite short compared with Step 1. In
contrast, the number of upper hull points in the set of Circle
is approximatelyn/2 because every point is either the upper
hull or lower hull point. Thus, Steps 2 and 3 for Circle
take a lot of time compared with that for Square and Disk.
However, Circle is a special case since every point in Circle
will be convex hull point. The computing time for a set of
points which are used in general may be close to that for
Square and Disk. Thus, we can say that the circle is the
worst case for computing the convex hull. Although Circle
is the worst, Step 1, which computes the local upper hulls
independently, is still dominant. For the speed up factor,
each value is close tok. For example, for the square and
disk input, a speed up factor of more than 6 is achieved for
8 processor cores. Since the speed up factor cannot be more
thank if we usek cores, our algorithm is close to optimal.

Further, quite surprisingly, a super linear speed up is
achieved for 2 and 4 processor cores. For example, a speed
up factor of 4.27 is achieved for 100M points. The reason
why a super linear speed up is the architecture of two
quad-core processors [17]. Each processor has 4MB L2
cache. Thus, the algorithm for a single processor runs on
4MB L2 cache. On the other hand, the parallel algorithm
for two or more processors runs on 8MB L2 cache. This
may be the reason why the parallel algorithm for 2 and 4
processors achieves a super linear speed up. However, due
to the limitation of memory bandwidth, a speedup factor for
8 processors is saturated.

VI. CONCLUDING REMARKS

The main contribution of this work was to present a
parallel algorithm for computing the convex hull of a set
of n sorted points in the plane and implement it on the dual
quad-core processors.

We have evaluated our algorithm in a Linux server
with two Intel quad-core processors (Intel Xeon X5355
2.66GHz). The results have shown that our parallel imple-
mentation is 7 times faster than sequential implementation.
Since the speed up factor cannot be more than 8 if we use
8 cores, our algorithm is close to optimal. Also, for 2 or 4
processors, we have achieved a super linear speed up.

REFERENCES

[1] S. G. Akl and K. A. Lyons,Parallel Computational Geometry.
Prentice-Hall, 1993.



Table I
PERFORMANCE OF OUR PARALLEL ALGORITHM FOR10M POINTS

The number of Computing time Speed The number of
processors Step 1[s] Step 2[s] Step 3[s] Total[s] up upper hull points

1 0.378099 – (0.000002) 0.378099 –
Square 2 0.185269 0.000015 0.000005 0.185289 2.04 22

4 0.088754 0.000026 0.000005 0.088785 4.26
8 0.055187 0.000035 0.000006 0.055228 6.85
1 0.387516 – (0.000002) 0.380516 –

Disk 2 0.189332 0.000024 0.000007 0.189363 2.01 362
4 0.088574 0.000039 0.000006 0.088619 4.29
8 0.055322 0.000055 0.000007 0.055384 6.87
1 0.314209 – (0.021787) 0.314209 –

Circle 2 0.143707 0.000027 0.013560 0.157294 2.00 4999600
4 0.070297 0.000059 0.009024 0.079380 3.96
8 0.059471 0.000117 0.008248 0.067836 4.63

Table II
PERFORMANCE OF OUR PARALLEL ALGORITHM FOR100M POINTS

The number of Computing time Speed The number of
processors Step 1[s] Step 2[s] Step 3[s] Total[s] up upper hull points

1 3.791957 – (0.000002) 3.791957 –
Square 2 1.850652 0.000015 0.000005 1.850672 2.05 26

4 0.888049 0.000027 0.000007 0.888083 4.27
8 0.544188 0.000042 0.000005 0.544235 6.97
1 3.790487 – (0.000002) 3.790487 –

Disk 2 1.852445 0.000029 0.000006 1.852480 2.05 791
4 0.883241 0.000048 0.000006 0.883295 4.29
8 0.543315 0.000072 0.000007 0.543394 6.97
1 3.129690 – (0.224130) 3.129690 –

Circle 2 1.449058 0.000033 0.136745 1.585836 1.97 50000480
4 0.698485 0.000072 0.094026 0.792583 3.95
8 0.590330 0.000137 0.088430 0.678897 4.61

[2] R. O. Duda and P. E. Hart,Pattern classification and scene
analysis. Wiley and Sons, 1973.

[3] G. T. T. Ed., Computational Geometry. Elsevier Science
Publishers, 1985.

[4] J.-P. Laumond, “Obstacle growing in a non-polygonal world,”
Information Processing Letters, pp. 41–50, 1987.

[5] T. Lozano-Perez, “Spatial planning: a configurational space
approach,”IEEE Transactions on Computers, pp. 108–119,
1983.

[6] D. H. Ballard and C. M. Brown,Computer Vision. Prentice-
Hall, 1982.

[7] H. Edelsbrunner,Algorithms in Combinatorial Geometry.
Springer-Verlag, 1987.

[8] F. P. Preparata and M. Shamos,Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[9] R. Miller and Q. F. Stout, “Efficient parallel convex hull al-
gorithms,” IEEE Transactions on Computers, vol. 37, no. 12,
pp. 1605–1618, 1988.

[10] T. Hayashi, K. Nakano, and S. Olariu, “Ano((loglogn)2)
time convex hull algorithm on reconfigurable meshes,”IEEE
Transactions on Parallel and Distributed Systems, vol. 9,
no. 12, pp. 1167–1179, 1998.

[11] K. Nakano, “Computing the convex hull of a sorted set of
points on a reconfigurable mesh,”Parallel Algorithms and
Applications, pp. 243–250, 1996.

[12] R. Graham, “An efficient algorithm for determining the con-
vex hull of a finite planar set,”Information Processing Letters,
pp. 132–133, 1972.

[13] O. Berkman, B. Schieber, and U. Vishkin, “Optimal double
logarithmic parallel algorithms based on finding all nearest
smaller values,”Journal of Algorithms, vol. 14, no. 3, 1993.

[14] W. Chen, K. Nakano, T. Masuzawa, and N. Tokura, “Opti-
mal parallel algorithms for computing convex hulls,”IEICE
Transactions, vol. J75-D1, no. 9, pp. 809–820, 1992.

[15] A. Gibbons and W. Rytter,Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[16] K. Nishihata, D. Man, Y. Ito, and K. Nakano, “Parallel
sampling sorting on the multicore procesors,” inProc. of the
International Conference on Applications and Principles of
Informatin Science(APIS), 2009, pp. 233–236.

[17] I. Corporation, “Intel xeon processor
5000 sequence.” [Online]. Available:
http://www.intel.com/products/processor/xeon5000/

[18] D. J. Kuck, B. Chapman, G. Jost, and R. V. der Pas,Using
OpenMP: Portable Shared Memory Parallel Programming.
MIT Press, 2007.


