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SUMMARY The main contribution of this paper is to
present an image retrieval system using FPGAs. Given a tem-
plate image T and a database of a number of images I1, I2, . . .,
our system lists all images that contain a subimage similar to
T . More specifically, a hardware generator in our system creates
the Verilog HDL source of a hardware that determines whether
Ii has a similar subimage to T for any image Ii and a partic-
ular template T . The created Verilog HDL source is compiled
and embedded in an FPGA using the design tool provided by
the FPGA vendor. Since the hardware embedded in the FPGA
is designed for a particular template T , it is an instance-specific
hardware that allows us to achieve extreme acceleration. We
evaluate the performance of our image matching hardware using
a PCI-connected Xilinx FPGA and a timing analyzer. Since the
generated hardware attains up to 3000 speed-up factor over the
software solution, our approach is promising.
key words: FPGA-based computation, image matching, in-
stance-specific hardware

1. Introduction

An FPGA (Field Programmable Gate Array) is a pro-
grammable VLSI in which a hardware designed by users
can be embedded instantly. Typical FPGAs consist of
an array of programmable logic blocks, memory blocks,
and programmable interconnect between them. The
logic block usually contains a four-input logic function
and/or several flip-flops. The memory block is usually
a dual-port RAM which can be read/written a word of
data for distinct addresses in the same time. Using de-
sign tools provided by FPGA vendors, a hardware logic
designed by users can be embedded in the FPGA.

Our basic idea for accelerating computations us-
ing the FPGAs is inspired by the notion of the partial
computation [2], [4]. Let f(x, y) be a function that we
have to evaluate to solve a problem. Sometimes, a func-
tion f(x, y) is repeatedly evaluated only for a fixed x.
If this is the case, the computation of f(x, y) can be
simplified by evaluating an instance-specific function
fx such that fx(y) = f(x, y). For instance, imagine
a problem such that an algorithm to solve it evaluates
f(x, y) = x3+x2y+y repeatedly. If f(x, y) is evaluated
only for x = 2, then we can simplify the formula such
that f2(y) = 8 + 5y. Actually, it is known [10] that the
multiplication of two integers can be done efficiently if
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one of the integers is fixed. The optimization of func-
tion fx for a given particular x is called the partial
computation.

Usually, the partial computation has been used for
optimizing a function fx in the context of software, i.e.,
sequential programs [2], [4]. Our novel idea is to built
a hardware that is optimized to compute fx(y) for a
fixed x and various y’s. More specifically, our goal is
to present an FPGA-based instant-specific solution for
a type of problems that involves a function evaluation
for f(x, y) satisfying the following properties:

• the value of a fixed instance x depends on the in-
stance of the problem, and
• the value of f(x, y) is evaluated repeatedly for var-
ious y to solve the problem.

The FPGA-based instance-specific solution that we
propose evaluates fx(y) (= f(x, y)) using a hardware
for function fx. If a problem we need to solve satisfies
these properties, it is worth attempting the instance-
specific solution. For example, for a fixed context free
grammar G, let fG(w) (= f(G,w)) be a function that
determines if G derives a string w. It is known that
an FPGA-based instance-specific solution for fG(w) is
much faster than the software solution [1].

Suppose that an image database I containing a
number of gray-scale images {I1, I2, . . .} and a tem-
plate image T are given. We assume that T is small,
say, 32 × 32 or 64 × 64 while each Ii is large, say,
1024 × 1024 or larger. We are interested in the task
of listing all images in I that contains a similar subim-
age to T . This task has many applications in the areas
such as object recognition, and vehicle tracking [3]. The
main contribution of this paper is to present an FPGA-
based instance-specific hardware solution for this task.
More precisely, let D(T, Ii) denote a function that re-
turns a value indicating the difference between T and
Ii such that the value of D(T, Ii) is small if Ii has
similar subimage to T . Our idea is to embed a hard-
ware that computes DT (Ii) (= D(T, Ii)) in a PCI-
connected FPGA. We have developed a system illus-
trated in Fig. 1 that computes DT (I1),DT (I2), . . . us-
ing the FPGA. Given a template image T , our hard-
ware generator automatically creates a Verilog HDL
source program which is designed for computingDT (I).
More precisely, the generator is written in a C-language,
which generates a Verilog HDL source program for a
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Fig. 1 Our FPGA-based image retrieval system.

matrix of binary image T in a few seconds. The source
program is complied using a design tool provided by
an FPGA vendor. The created hardware is embedded
in the PCI-connected FPGA. The host PC sends im-
ages I1, I2, . . . stored in an image database I to the
PCI-connected FPGA. The FPGA computes the val-
ues DT (Ii) in turn, and returns each of them to the
host PC. The host PC lists the images whose DT (Ii) is
no larger than the threshold value. Although the time
necessary to compile the Verilog HDL source and em-
bedded into the FPGA is very long, say several hours,
the total computing time can be decreased if database
I has a large number of images.

Let T be a template image with m×m pixels and
I be an image with n×n pixels. We assume that T has
e effective pixels (e <= m2) that are taken into account
for image matching. As we are going to show later,
the evaluation of D(T, I) for L-level gray-scale images
takes O(n2e) time by a software solution. Our instance-
specific FPGA solution runs in n2

m local clock cycles
using O(me) gates, O(m2) flip-flops, and an (m− 1)n-
bit block RAM for binary images, and in n2 log L

m local
clock cycles using O(me) gates, O(m2 logL) flip-flops,
and logL block RAMs with mn bits each for L-level
gray-scale images. Thus, from the theoretical point
of view, our FPGA-based instance specific solution is
much faster than the conventional software solution.

We have evaluated the performance of our hard-
ware using a timing analyzer for the Xilinx VirtexII
series FPGA XC2V8000 (Speed Grade 4). Further,
since XC2V8000 is not available, we have tested our
hardware using a smaller FPGA, Spartan2 (XC2S150,
Speed Grade 6) PCI card Strathnuey [6]. Since the gen-
erated hardware attains up to 3000 speed-up factor over
the sequential algorithm, our approach is a promising
solution. An image matching hardware using an FPGA
has been proposed [5]. Their hardware is not instance-
specific, does not support gray-scale images, and runs
in O(n2) clock cycles. Thus, our hardware is a signifi-
cant improvement on the FPGA-based image matching
hardware.

This paper is organized as follows. Section 2 de-
fines the function DT (I) for a template image T and
an image I formally, and evaluate the computing time

by a software solution. In Sect. 3, we show a hardware
that computes DT (I) for binary images and evaluate
the performance. This hardware runs in less than n2

local clock cycles. In Sect. 4, we parallelize the hard-
ware presented in Sect. 3. The parallelized version of
our hardware runs in n2

m local clock cycles. Section 5
presents an image matching hardware for L-level gray-
scale images. This hardware runs in n2 log L

m local clock
cycles. Section 6 evaluates the performance of our hard-
ware and compare with the software solution. Section 7
offers concluding remarks.

2. The Image Difference Function

The main purpose of this section is to define the differ-
ence function D(T, I) for a template image T and an
image I to clarify our work presented in this paper.

An L-level gray-scale image I of size m×m is an
m × m two dimensional array with each element (or
pixel) taking an integer in the range [0, L−1]. The value
of an (i, j) pixel Ii,j (1 <= i, j <= m) of I corresponds
to its intensity. In other words, pixel (i, j) is black if
Ii,j = 0 and white if Ii,j = L − 1. We assume that
pixel (1, 1) is the top of the leftmost column of I. An
L-level gray-scale image I is a binary image if L = 2.
An m ×m template image T is an image with “don’t
care”, that is, an m × m two dimensional array with
each element taking either an integer in [0, L − 1] or a
special value d. An (i, j) pixel (1 <= i, j <= m) of T is
“don’t care” if Ti,j = d. Let e denote the number of
effective pixels, which are non-“don’t care” pixels in T .
The value of e, which depends on the applications, can
be much smaller than m2.

Let D be the function that returns an integer for
a template image T and an image I such that

D(T, I) =
∑

Ti,j |=d

|Ti,j − Ii,j |. (1)

Intuitively, D(T, I) is the sum of the difference of the
brightness over all effective pixels. Clearly, D(T, I)
takes a larger value if they are less similar. Note that,
for a binary template T and a binary image I, their
difference is

D(T, I) =
∑

Ti,j |=d

Ti,j ⊕ Ii,j , (2)

where ⊕ denotes the exclusive OR operator.
Suppose that an image I is larger than a template

image T . Let n × n (n > m) be the size of image
I. Further, let I[x, y] (1 <= x, y <= n − m + 1) denote
an m × m subimage of I that includes all pixels Ii′,j′

(x <= i′ <= x + m − 1 and y <= j′ <= y + m − 1). The
image difference function D(T, I) between a template
T and an image I is

D(T, I) = min
1<=x,y<=n−m+1

D(T, I[x, y]). (3)
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Clearly, D(T, I) is small if I has a similar subimage to
T . Also, let DT denote a function such that DT (I) =
D(T, I).

By evaluating D(T, I1),D(T, I2), . . . in turn, we
can retrieve all images in a database of images I1, I2, . . .,
which have a similar subimage to T . Our goal is
to accelerate the computation of evaluating D(T, I).
For later reference, let us evaluate the computing time
necessary to compute D(T, I) by a software (or a se-
quential algorithm). For an m × m template image
T with e effective pixels and a subimage I[x, y], the
value of D(T, I[x, y]) can be computed in O(e) time.
Hence, the evaluation of D(T, I[x, y]) for all I[x, y]
(1 <= x, y <= n−m+1) takes (n−m+1)2×O(e) = O(n2e)
time. Therefore, the task of computing the image dif-
ference D(T, I) takes O(n2e) time. In the following
sections, we will show that our FPGA-based instance-
specific solution can perform this task for L-level gray-
scale images in n2 log L

m clock cycles.

3. An Image Matching Hardware for Binary
Image Retrieval

In this section, we are going to show our FPGA-
based instance-specific hardware that computes DT (I)
(= D(T, I)) for a fixed template T and various images
I. We start with a binary template T and a binary
image I. We then go on to extend our hardware to
support gray-scale images later.

Figure 2 illustrates our hardware for m = 4 that
evaluates D(T, I) using formulas (2) and (3). For sim-
plicity, we assume that, for a template T of size m×m,
m pixels of image I can be supplied via PCI-bus in

Fig. 2 A hardware implementation of our circuit computing
DT (I).

every local clock cycle. The frequency of local clock
depends on the hardware design as we are going to
show in Sect. 6. If the size of a template image T is
larger than the PCI bit-width, the necessary bits can
be sent in several clock cycles. Actually, 32-bit or 64-
bit PCI buses with frequency 33MHz or 66MHz are
widely used [9].

Next, we are going to show how our hardware
works. Let Im[i, j] denote the set of vertical adjacentm
pixels Ii,j , Ii+1,j , . . ., Ii+m−1,j . Note that the m pixels
in any Im[i, j] can be transferred to the register in a
local clock cycle. Every pixel in image I of size n×n is
transferred to the m m-bit registers in n · (n −m+ 1)
clock cycles as follows:

for i← 1 to n−m+ 1 do
for j ← 1 to n do
Perform the following two operations in parallel:
1. Im[i, j] is transfered to the rightmost register;
2. the m registers are shifted to the left by one.

It should be clear that, subimage I[1, 1] is stored in the
registers when (i, j) = (1, m). Further, every subimage
I[x, y] (1 <= x, y <= n−m+ 1) is stored in the registers
when i = x and j = y +m− 1.

We use a combinatorial circuit that computes
DT (I[x, y]) for subimage I[x, y] currently stored in the
m m-bit registers. It consists of parallel inversions and
the Muller-Preparata’s circuit [7], [8] that computes the
number 1’s in the input bits. For every pixel of tem-
plate image T , the corresponding register bit or its in-
version is connected to the Muller-Preparata’s circuit if
it is 1 or 0, respectively. Since T has e effective pixels,
the Muller-Preparata’s circuit computes the sum of e
bits, which is equal to the value of DT (I[x, y]). For the
readers benefit, Fig. 3 illustrates the Muller-Preparata’s
circuit that computes the number of 1’s in eight bits,
where FA and HA denote the full adder and the half
adder, respectively. It outputs the binary representa-
tion of the number of 1’s. The reader should have no
difficulty to confirm that it computes the number of 1’s.

To compute the minimum of DT (I[x, y]) over all
x and y, a comparator and a log e-bit register is used.
The comparator computes the minimum of two log e-
bit integers. The register is storing the temporary min-

Fig. 3 The Muller-Preparata’s circuit for computing the num-
ber of 1’s in eight bits.
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imum value of DT (I[x, y]) so far. If the current value
of DT (I[x, y]) is smaller, then it is stored in the regis-
ter. It should be clear that, after every pixel in image
I is supplied to this circuit, the log e-bit register stores
DT (I).

Next, let us evaluate the performance and the
hardware resources used by our hardware. As we dis-
cussed, our hardware computes DT (I) in less than n2

clock cycles. The Muller-Preparata’s circuit [7] that
counts the number of 1’s in e bits has O(e) gates.
Further, the log e-bit comparator has no more than
O(log e) gates. The m m-bit registers uses m2 flips-
flops and the log e-bit register uses log e (< 2 logm) flip-
flops. Thus, our hardware uses O(e) gates and O(m2)
flip-flops.

4. Parallel Image Matching for Binary Images

This section is devoted to show our parallel image
matching architecture for further acceleration.

Figure 4 illustrates a part of our parallel image
matching hardware. In order to reduce the num-
ber of clock cycles, we use m circuits computing
DT (I[x, y]),DT (I[x + 1, y]), . . . , DT (I[x + m − 1, y])
in parallel. Note that, DT (I[x, y]),DT (I[x + 1, y]),
. . . , DT (I[x + m − 1, y]) combined correspond to a
subimage with (2m − 1) × m pixels. Thus, we use m
registers with (2m−1) bits each to store a subimage of
(2m − 1) ×m pixels. Again, we assume that m pixels
in an image I are supplied in every local clock cycle.
Hence, vertical (2m−1) pixels cannot be transferred to
the rightmost (2m− 1)-bit register in every local clock
cycle. To supply the (2m− 1) pixels to the register in
every local clock cycle, we use an (m−1)×n-bit cache,
that is, a cache with (m− 1)-bit data and logn-bit ad-

Fig. 4 Implementation of parallel m circuits computing DT (I).

dress.
In what follows, we will describe how our parallel

image matching hardware illustrated in Fig. 4 works.
An image I is transferred to the registers as follows.

for i← 1 to n
m do

for j ← 1 to n do
Perform the following four operations in parallel:
1. Im[(i− 1) ·m+ 1, j] is transfered to the
rightmost register;

2. Im−1[(i− 1) ·m+ 2, j] is transfered to the
address j of the cache;

3. the m− 1 pixels stored in the address j of the
cache is transferred to the rightmost register;

4. the m registers are shifted by one to the left.

In the first n clock cycles, Im[1, 1], Im[1, 2], . . . , Im[1, n]
are transferred in turn to the registers. Thus, in clock
cycle j (m <= j <= n), the register is storing I[1, j −
m+ 1]. Also, in these n clock cycles, the cache is stor-
ing Im−1[2, 1], Im−1[2, 2], . . . , Im−1[2, n]. In the follow-
ing n clock cycles, Im−1[2, 1], Im−1[2, 2], . . . , Im−1[2, n]
are transferred from the cache to the registers. In
the same time, Im[m + 1, 1], Im[m + 1, 2], . . . , Im[m +
1, n] are transfered to the registers through the PCI
bus. Hence, in these n clock cycles, I2m−1[2, 1],
I2m−1[2, 2], . . . , I2m−1[2, n] are transferred to the reg-
isters in turn. Thus, in clock cycle j + n (m <= j <= n),
the registers are storing I[2, j], I[3, j], . . . , I[m+1, j] in
turn. Again, in these n clock cycles, the cache stores
Im−1[m+2, 1], Im−1[m+2, 2], . . . , Im−1[m+2, n]. Con-
tinuing similarly, every subimage I[x, y] (1 <= x, y <=
n−m+1) is stored in the register in some clock cycle.

As illustrated in Fig. 4, m circuits for evaluating
DT are connected to them (2m−1)-bit registers. When
the registers are storing I[x, y], I[x + 1, y], . . . , I[x +
m−1, y], the m circuits compute DT (I[x, y]),DT (I[x+
1, y]), . . . , DT (I[x + m − 1, y]) in parallel. Their min-
imum is computed by a tree of comparators in obvi-
ous way. Consequently, our parallel hardware computes
DT (I) in n · n

m = n2

m clock cycles. Further it has O(m2)
flip-flops for registers, O(me) gates, and an (m−1)n-bit
block RAM.

5. Parallel Image Matching for Gray-Scale Im-
ages

This section is devoted to extend our image match-
ing hardware for binary images to support gray-scale
images. We start with a non-parallel image matching
hardware using a single circuit computing DT (I[x, y]).
We then go on to show a parallel image matching hard-
ware.

Each pixel of an L-level gray-scale image can be
represented by logL bits. Thus, we use m m-digit reg-
isters with each digit storing logL bits. Figure 5 il-
lustrates a part of the hardware implementation that
computes DT (I) stored in the registers for m = 4. Let
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Fig. 5 Implementation of the image matcher for gray-scale im-
ages.

I[x, y] denote an m × m pixel image currently stored
in the registers. To compute DT (I[x, y]), the difference
for each non-“don’t care” pixel values are computed.
In other words, |Ti,j − Ii,j | is computed for all effective
pixel (i, j) such that Ti,j |= d. In the figure, S denotes
the circuit for computing this value. Note that each
Ti,j is a fixed value. Each S is a simple circuit that
computes the absolute value of the sum of an logL-
bit integer and a constant integer. Thus, the circuit
to compute the sum is simpler than the usual addition
circuit. We use the Muller-Preparata’s circuit to com-
pute the sum of them,

∑
Ti,j |=d |Ti,j − Ii,j |. Note that

the Muller-Preparata’s circuit computes the number of
1’s in binary numbers. We can modify the circuit to
compute the sum of integers. The Muller-Preparata’s
circuit has a recursive structure. It partitions the input
into two groups, computes the sum within each group
recursively, and the sum of the sums is computed by
a ripple-carry adder. The readers should have no diffi-
culty to confirm that the same technique can be applied
to compute the sum of integers.

Next, we are going to show a parallel gray-scale
image matching hardware using the image matcher il-
lustrated in Fig. 5. Again, we assume that m bit of
data can be supplied in every local clock cycle. Since
each pixel is represented by logL bits, m

log L pixels in
image I can be transferred in a local clock cycle. Let
k = m

log L . Our hardware uses k circuits that com-
putesDT (I[x, y]),DT (I[x+1, y]), . . . , DT (I[x+k−1, y])
in parallel. Figure 6 illustrates the registers and the
caches for m = 16 and logL = 4. We use m registers
of (m + k − 1) digits with each digit being logL bits,
logL−1 caches of k×n digits, and a cache of (k−1)×n
digits. We are going to show how the registers and the
caches in Fig. 4 work. It transfers an image I trough
the m-bit PCI bus as follows.

for i← 1 to n
k do

for j ← 1 to n do
the following three operations are done in parallel:
1. Ik[(i− 1) · k + 1, j] is transfered to the rightmost
register and to the address j of the bottom cache;

2. the k pixels stored in the address j of the cache
is transferred to the rightmost register and to the

Fig. 6 Implementation of parallel image matcher for gray-scale
images.

cache above (if exists);
3. the m registers are shifted by one to the left.

In the first n clock cycles, the bottom cache is storing
pixels in the first k rows of I. They are transferred
to the cache above in the next n clock cycles. Since
this process is repeated, the (logL−1) caches from the
bottom are storing the first m− k rows of I in the first
n(logL− 1) clock cycles. Hence, in the following n cy-
cles, Im[1, 1], Im[1, 2], . . . Im[1, n] are transferred to the
register from the cache and from the PCI bus. Thus,
the registers store I[1, 1], I[1, 2], . . . I[1, n − m + 1] in
turn in these n cycles. Next, in the following n cycles,
Im−1[2, 1], Im−1[2, 2], . . . Im−1[2, n] are transferred from
the caches to the registers in turn. In the same time,
Ik[m+1, 1], Ik[m+1, 2], . . . Ik[m+1, n] are transferred
to the register though the PCI bus. Thus, the registers
store I[x, y] (2 <= x <= k+1; 1 <= y <= n−m+1) in these
n clock cycles. By the same process, every subimage
I[x, y] (1 <= x, y <= n − m + 1) is stored in the regis-
ter in some clock cycle. Therefore, DT (I) is computed
in n2

k = n2 log L
m clock cycles. Each Muller-Preparata’s

circuit uses O(e logL) gates. Thus, our hardware for
gray-scale images uses k · O(e logL) = O(me) gates.
Since logL flip-flops are used for a digit in registers,
our hardware uses O(m2 logL) flip-flops for registers.
It also uses logL block RAMs with no more than
kn logL = mn bits for the caches.

6. The Performance Evaluation

The main purpose of this section is to evaluate the per-



816
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

formance of our image matching hardware to compute
DT (I) for templates T with 32× 32 pixels and images
I with 1024× 1024 pixels.

Before we evaluate the performance of our hard-
ware, we will show the computing time by the software
approach as counterparts. Table 1 shows the comput-
ing time of D(T, I) on a 2.4GHz Pentium4-based Win-
dows 2000 PC. The software is written in C-language
and complied using Visual C++ (Ver. 6.0). For L = 4
and 16, the value of D(T, I) is computed by evaluat-
ing formulas (1) and (3) in Sect. 2 combined. Since
D(T, I[x, y]) is evaluated using formula (1), the com-
puting time is proportional to e. For L = 2, we use
the bitwise XOR operation of a word of 32-bit data to
evaluate formula (2). Also, we accelerate the computa-
tion of the sum in formula (2) using the look-up table
storing the number of 1’s in a 16-bit data. More pre-
cisely, let N be a table of size 5× 216 = 320Kbits such
that N [x] is storing the number of 1’s in a 16-bit word
x. The number of 1’s in a word of 32-bit data can be
computed by looking up table N twice. Note that the
computing time in Table 1 does not include the time
necessary to build the table N .

We have tested our image matching hardware us-
ing Spartan2 (XC2S150) PCI card Strathnuey [6]. This
PCI card is connected to the host PC through the
33-MHz 32-bit PCI bus. We complied the generated
Verilog HDL source using Xilinx ISE Foundation (Ver.
4.2). Table 2 illustrates the performance of our im-
age matching hardware which includes the clock fre-
quency given by the timing analyzer, the actual time
to evaluate DT (I), the speed-up over the software, the
number of used slices over 1728 available slices, and
the number of used slice flip-flops over 3456 available
flip-flops. Unfortunately, due to the small capacity of
XC2S150, we could test our non-parallel hardware for
binary images with e = 128, 256, 512, 768 effective pix-
els and 4-level gray-scale images with e = 128, 256. For
our parallel image matching hardware, we could test

Table 1 The computing time of D(T, I) by software (msec).

e = 128 256 512 768
L = 2 1256 1345 1652 1797
L = 4 1495 2958 5812 8667
L = 16 1530 3042 5970 8918

Table 2 The performance of our image matching hardware
implemented on Spartan2.

L e Freq. Time Speed Slices Slice
(MHz) (msec) -up FFs

2 128 39.6 75.2 16.7 714 902
2 256 35.8 75.2 17.9 926 1018
2 512 32.7 75.0 22.0 1316 1107
2 768 30.1 75.1 23.9 1681 1122
4 128 33.0 76.5 19.5 1334 1747
4 256 34.3 76.2 38.7 1726 1978

2 16 24.1 4.9 - 1682 1741

for binary images with only e = 16 pixels. Conse-
quently, even if we use non-parallel image matching
hardware embedded in the small FPGA, DT (I) can
be computed more than 16 times faster than the soft-
ware. The computing time for binary images is approx-
imately 75msec, which is bounded by the bandwidth
of the 33MHz 32-bit PCI bus. More precisely, since
1024× (1024 − 32 + 1) = 1.016M words of 32-bit data
are transfered in 75msec, the PCI bus sends images
in 434Mbit/s, which is close to the actual maximum
ability of the 33MHz 32-bit PCI bus. If the 66MHz
64-bit PCI bus is available, we can expect that DT (I)
is computed faster.

We have also estimated the performance of our im-
age matching hardware using the VirtexII series FPGA
XC2V8000. Again, we assume that a template image T
has 32×32 pixels and an image I has 1024×1024 pixels.
We have estimated our hardware for randomly gener-
ated templates T of size 32×32 with effective pixels e =
128, 256, 512 and 768. Table 3 shows the performance of
our non-parallel image matching hardware which uses a
single circuit for computing DT (I). The table includes
the clock frequency (MHz), the estimated computing
time of DT (I) (msec), the speedup factor over the soft-
ware solution in Table 1, the number of used slices out
of 46592 available slices, and the number of used slice
flip-flops out of 93184 available slice flip-flops. We as-
sume that the PCI bus has enough bandwidth. More
precisely, we assume that, if a hardware runs in local
clock with frequency 56.4MHz, the PCI bus can send
pixels in at least 32 bit × 56.4MHz = 1804.8Mbit/s.
Since 64-bit 66-MHz PCI bus is currently available [9],
this assumption is reasonable. For L = 4 and 16, our
hardware uses 2, and 6 18K-bit blocks out of 168 block
RAMs, respectively. These block RAMs are used for
the image cache. For binary image (i.e. L = 2), it uses
no block RAM. Even if we use only a single circuit
computing DT (I), the speedup factors over the soft-
ware solution are in the range 67-333.

Table 4 shows the performance of parallel image
matching hardware. For L = 2, 4, and 16, we use

Table 3 The performance of our image matching hardware
implemented on VirtexII.

L e Freq. Time Speed Slices Slice
(MHz) (msec) -up FFs

2 128 56.4 18.0 69.8 708 882
2 256 51.0 19.9 67.6 927 1029
2 512 46.5 21.9 75.4 1265 1100
2 768 42.7 23.8 75.5 1594 1127
4 128 51.5 20.1 74.4 1295 1755
4 256 46.8 22.1 134 1713 2027
4 512 43.0 24.0 242 2368 2145
4 768 39.7 26.0 333 2992 2193

16 128 45.5 22.9 66.8 2661 3412
16 256 41.9 24.9 122 3680 3953
16 512 38.7 26.9 222 5341 4188
16 768 36.0 28.9 309 7282 4284
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Table 4 The performance of our parallel image matching hard-
ware implemented on VirtexII.

L e Freq. Time Speed Slices Slice
(MHz) (msec) -up FFs

2 128 28.0 1.17 1074 6188 2277
2 256 26.2 1.25 1076 11307 2899
2 512 24.6 1.33 1242 21765 4557
2 768 23.1 1.42 1265 32310 6243
4 128 29.3 2.24 667 6457 3197
4 256 27.3 2.40 1233 11403 3663
4 512 25.6 2.57 2261 21659 5276
4 768 24.2 2.71 3198 32056 7046
16 128 29.9 4.39 349 8860 5071
16 256 27.8 4.72 644 15021 5184
16 512 26.1 5.03 1187 27146 5264
16 768 24.6 5.31 1679 42251 5433

Table 5 The performance of non-instance-specific image
matching hardware implemented on VirtexII.

L Freq. Time Slices Slice
(MHz) (msec) FFs

2 34.9 29.14 3545 3154
4 32.5 31.79 6395 5256
16 27.0 38.57 13865 9418

m
log L = 32, 16, and 8 circuits that compute DT (I) in
parallel, respectively. For L = 16 and e = 768, the
hardware uses 42251

46592 ≈ 90.7% of available slices. For
L = 2, 4 and 16, the hardware also uses 2, 4, and 8
block RAMs out of 168 block RAMs. They are used
for the image cache illustrated in Figs. 4 and 6. The
speedup factors over the software solution are in the
range 349-3198.

As counterparts, we have also evaluated the per-
formance of non-instance-specific solution for the image
matching hardware. More specifically, the value of each
pixel in template T is stored in a flip-flop in the FPGA.
In this case, template T can be changed without gener-
ating and compiling the Verilog HDL source. The non-
instance-specific hardware for an m × m L-level gray
scale template image T uses additional m2 logL flip-
flops for the value of pixels in the range [0, L− 1]. Ta-
ble 5 shows the performance of the hardware using the
non-instance-specific approach. The computing time is
more than 20% longer than that of our instance-specific
solution shown in Table 3. Also, the non-instance-
specific hardware uses approximately twice as many as
slices than the instance-specific hardware for e = 768.

We have also tried to embed the parallel version
of the non-instance-specific hardware in the FPGA.
However, the compilation of the Verilog HDL source
could not be completed due to insufficient slices
in XC2V8000. Thus, the instance-specific solution
shown in this paper is much more efficient than the
conventional non-instance-specific solution if the pre-
computation time for generating and compiling the Ver-
ilog HDL source is allowed.

7. Conclusions

We have presented an FPGA-based instance-specific so-
lution for an image retrieve problem, that asks to lists
all images in a database having similar subimage to
a particular template image T . Our hardware for L-
level gray-scale images runs in n2 log L

m local clock cycles.
Further, the timing analyzer shows that this hardware
attains up to 3000 speed-up factor over the software
solution.
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