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SUMMARY The main contribution of this work is to present several
hardware implementations of an “n choose k” counter (C(n, k) counter for
short), which lists all n-bit numbers with (n − k) 0’s and k 1’s, and to show
their applications. We first present concepts of C(n, k) counters and their
efficient implementations on an FPGA. We then go on to evaluate their per-
formance in terms of the number of used slices and the clock frequency for
the Xilinx VirtexII family FPGA XC2V3000-4. As one of the real life ap-
plications, we use a C(n, k) counter to accelerate a digital halftoning method
that generates a binary image reproducing an original gray-scale image.
This method repeatedly replaces an image pattern in small square regions
of a binary image by the best one. By the partial exhaustive search using a
C(n, k) counter we succeeded in accelerating the task of finding the best im-
age pattern and achieved a speedup factor of more than 2.5 over the simple
exhaustive search.
key words: FPGA-based computing, instance-specific solutions, digital
halftoning

1. Introduction

An FPGA (Field Programmable Gate Array) is a pro-
grammable VLSI in which a hardware design can be em-
bedded quickly. Typical FPGAs consist of an array of pro-
grammable logic elements, distributed memory blocks, and
programmable interconnections between them. The logic
block usually contains either a four-input logic function or
a multiplexer and several flip-flops. The distributed mem-
ory block is usually a dual-port RAM on which a word of
data for possibly distinct addresses can be read/written at the
same time. Design tools are available to the users to embed
their hardware logic designs into the FPGAs. Our goal is
to use FPGAs to accelerate useful computations. In particu-
lar, it is very challenging to develop FPGA-based solutions
that are faster and more efficient than traditional software
solutions.

Let C(n, k) denote a set of all n-bit binary numbers that
has (n − k) 0’s and k 1’s. For example, C(6, 3) is

C(6, 3) = {000111, 001011, 001101, 001110, 010011,

010101, 010110, 011001, 011010, 011100, 100011,

100101, 100110, 101001, 101010, 101100, 110001,

110010, 110100, 111000}. (1)

An “n choose k” counter (C(n, k) counter for short) is a
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counter that lists all numbers in C(n, k). The main contribu-
tion of this paper is to present several hardware implemen-
tations of C(n, k) counter. We first present the concept of
C(n, k) counters and discuss several straightforward imple-
mentations on an FPGA. We then go on to present several
efficient implementations of C(n, k) counters on an FPGA.

The second contribution of this paper is to use a C(n, k)
counter to accelerate a digital halftoning method [6], which
repeats the partial exhaustive search. digital halftoning is
a key operation to obtain binary images for printing [7],
[8]. We use the partial exhaustive search to reduce the
search space of the exhaustive search performed by a digital
halftoning method presented in [6]. We have developed a
halftoning system using a PCI-connected FPGA board with
a Xilinx VirtexII family FPGA, XC2V3000-4 [15]. By the
partial exhaustive search using a C(n, k) counter, we have
achieved a speedup factor of 2.5 to 4.0 for digital halfton-
ing.

This paper is organized as follows. In Sect. 2, we show
a concept of C(n, k) counters and motivation of our research.
We then discuss several straightforward implementations of
C(n, k) counters in Sect. 3. In Sect. 4, we show basic ideas
for efficient implementation of C(n, k) counters. Sections 5
and 6 present the details of our implementations of a C(n, k)
counter. In Sect. 7, we evaluate the performance of these
implementations using Xilinx VirtexII FPGA, XC2V3000-
4. Section 8 shows how we apply the C(n, k) counters to the
digital halftoning. Section 9 offers concluding remarks.

2. Concept and Motivation for C(n, k) Counters

It is well known that an n-bit binary counter can be simply
implemented using n DFFs (D-type Flip Flops) and n HAs
(Half Adders). A binary counter is mainly used to enumer-
ate the number of events, which are represented as edge trig-
gers of a signal. On the other hand, an n-bit binary counter
can also be used to list all 2n binary numbers. For example,
suppose that we have a function f : {0, 1}n → {0, 1, . . . ,m}
for some positive integer m, and we need to find an n-bit bi-
nary number r such that f (r) takes the minimum value over
all possible 2n n-bit binary numbers x. In other words, our
task is to compute

r = arg min
x∈{0,1}n

f (x). (2)

This task is a kind of combinatorial optimization, which has
many practical applications. A fast and efficient solution for
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Fig. 1 Illustrating the hardware for computing arg minx∈{0,1}n f (x).

this task is to design an instance-specific solution using an
FPGA as follows. We design a circuit that computes f (x)
for any given n-bit binary numbers x. The output x of the
n-bit counter is given to this circuit computing f (x). A com-
parator is used to compare the current value of f (x) and the
minimum value obtained so far. If the current value f (x)
is smaller, then the current minimum f (x) and x are up-
dated. We refer the reader to Fig. 1 for an illustration of the
hardware computing formula (2). This hardware approach
is promising whenever there exists an efficient (i.e. compact
and of small depth) circuit computing f . An example of
function f for which this approach works efficiently is the
MAX-SAT problem. An input instance of the MAX-SAT
problem is a set of m Boolean formulas f1, f2, . . . , fm of n
Boolean variables. MAX-SAT problem is a combinatorial
optimization problem to find an assignment of Boolean vari-
able values that maximizes the number of satisfied formulas
(or minimizes the number of unsatisfied formulas). To solve
the MAX-SAT problem using the above approach, we define
function f : {0, 1}n → {0, 1, . . . ,m} such that

f (x) = |{ fi| fi(x) is not satisfied}|. (3)

It should be clear that, r in formula (2) for function f in
(3) is an optimal solution of the MAX-SAT problem. Also,
Boolean formulas can be implemented in the FPGA by a
combinational circuit in an obvious way. For example, an
AND binary operator in a Boolean formula can be imple-
mented using AND gates with fan-in 2. Thus, the circuit
computing f (x) above can be implemented in the FPGA
very efficiently and the above approach works for the MAX-
SAT problem. This approach is an instance-specific so-
lution [1], [13], [19], because the circuit embedded in the
FPGA depends on the input instance (i.e. m Boolean for-
mulas) of the problem.

The above approach is also called (simple) exhaustive
search, which has a quite large search space of all 2n values.
This approach is not practical even if n is not large, say, n =
40. So, many researchers have devoted to develop practi-
cal methods to solve this type of combinatorial optimization
problem. For example, heuristic approaches such as local
search, genetic algorithms, approximation algorithm, and
randomized algorithm are used to find either nearly optimal

solution or the best solution with high probability [4], [11].
Also, several FPGA-based instance-specific approaches for
solving SAT problem have been presented [17]–[19]. This
paper presents a different approach that we call partial ex-
haustive search, This approach reduces the size of the search
space.

Sometimes, function f has some properties which en-
able us to reduce the size of the search space. Let us see
some examples. The first example is a property of biased
input. Suppose that an input instance of the MAX-SAT is
given as a CNF(Conjunctive Normal Form) and most of the
literals in the input formula are negative. If this is the case,
it is expected that the optimal solution has few 1 (or true) as-
signments. Hence, we can omit the evaluation of the value
of f (x) for input x that has many 1’s.

Another example of the properties for function f that
enables us to reduce the size of the search space is a property
of concavity. Let rk be the optimal solution of f (x) over all
numbers in C(n, k), that is,

rk = arg min
x∈C(n,k)

f (x). (4)

It should be clear that

r = arg min{ f (rk) | 0 ≤ k ≤ n}. (5)

A function f is concave if there exists i (1 ≤ i ≤ n) such
that

f (r0) ≥ f (r1) ≥ · · · ≥ f (ri−1) ≥
f (ri) ≤ f (ri+1) ≤ · · · ≤ f (rn). (6)

Clearly, if f is concave and satisfies the above relation, then
f (r) = f (ri) and ri is an optimal solution. If f is concave, we
can find ri by the binary search or linear search techniques
on f (r0), f (r1), . . . , f (rn). Hence, we do not have to evaluate
f over all 2n n-bit numbers. Since the exhaustive search is
performed to compute f (rk) for each k, we call this approach
the partial exhaustive search.

If function f satisfies these properties, it is sufficient
to compute rk in (4) for several k’s. To compute rk by
the instance-specific FPGA-based approach we can use the
hardware illustrated in Fig. 1, where an n-bit binary counter
is replaced by a C(n, k) counter. Thus, it is significant work
to design efficient implementation of C(n, k) counters.
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3. Straightforward Implementations of C(n, k) Coun-
ters

As we have mentioned, it is well known that an n-bit binary
counter can be implemented using n DFFs and n HAs. How-
ever, the implementation of a C(n, k) counter is not trivial.

We classify implementations of a C(n, k) counter using
the following terminology:

lexicographical : an implementation of a C(n, k) counter
is lexicographical if it outputs all numbers in lexico-
graphical order. More precisely, in lexicographical or-
der, for any two C(n, k) numbers x and y, x must appear
before y if x < y.

redundant : an implementation of a C(n, k) counter is re-
dundant if it outputs more than

(
n
k

)
numbers including

all numbers in C(n, k). A redundant implementation
must provide a redundant bit indicating that the cur-
rent output is redundant. In other words, the redundant
bit is low (or 0) in exactly

(
n
k

)
clock cycles and every

number in C(n, k) is provided in these clock cycles.

If an implementation of a C(6, 3) counter outputs all num-
bers in (1) in this order it is lexicographical. It is also non-
redundant if all the 20 6-bit numbers in (1) are provided one
by one in every clock cycle. Sometimes, lexicographical
implementation of C(n, k) is necessary, because the lexico-
graphically first best solution is required in some combinato-
rial optimization problems [10]. All of the implementations
presented in this paper are lexicographical.

Let us observe a simple example of a redundant imple-
mentation of a C(n, k) counter that we call the naive imple-
mentation. This implementation uses an n-bit binary counter
and a tree of adders. The output sequence of the naive im-
plementation for C(4, 2) counter is as follows:

0000[1], 0001[1], 0010[1], 0011[0],0100[1], 0101[0],

0110[0], 0111[1], 1000[1], 1001[0],1010[0], 1011[1],

1100[0], 1101[1], 1110[1], 1111[1],

where [0] and [1] represent the redundant bit. The redun-
dant bit is 1 iff the number of 1’s in a 4-bit number is not
2. The n-bit output is exactly the output of an n-bit bi-
nary counter. The Muller-Preparata’s circuit [9], [12]–[14],
which enumerates the number of 1’s in an n-bit binary num-
ber, is used to compute the number of 1’s in the current
output. The basic structure of the Muller-Preparata’s cir-
cuit is a tree of adders, which has O(n) gates with depth
O(log n) [14]. We can determine if the current output has
exactly k 1’s using an log n-bit comparator, and so the re-
dundant bit can be provided in an obvious way. However,
this naive implementation has too many redundant numbers.
If we use it for the partial exhaustive search, the search op-
eration for all possible 2n instances has to be performed.

Another simple implementation of C(n, k) is the ROM
implementation, which uses a memory block of an FPGA as

a ROM. In the ROM implementation, we use an n-bit 2n-
word ROM, which stores all numbers in C(n, 0), C(n, 1), . . .,
C(n, n). More specifically, the j-th (0 ≤ j ≤

(
n
k

)
− 1) number

of C(n, k) is stored in a word with address C(n, 0)+C(n, 1)+
· · ·+C(n, k−1)+ j. It should be clear that, by reading words
with addresses

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n

k−1

)
to

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
k

)
−1,

we can obtain all numbers in C(n, k). Note that 2n =
(

n
0

)
+(

n
1

)
+ · · · +

(
n
n

)
. The ROM implementation is possible only

if a ROM which can store all necessary 2n n-bit numbers is
available. Since current FPGAs have memory blocks of up
to several Mega bits, C(n, k) implementation is possible if n
is small, say n = 16. If n = 16, we need 16 · 216 = 1M bits.

In this paper, we focus on implementations of a C(n, k)
counter which does not use memory blocks of FPGA. We
first present two non-redundant implementations of a C(n, k)
counter that we call the simple shift and the binary shift.
The simple shift implementation runs in high frequency for
small n although it uses so many gates that it does not fit in
the FPGA for large n. The binary shift implementation uses
much smaller number of gates, but it runs in low frequency.
We then go on to present two redundant implementations of
a C(n, k) counter that we call the left shift and the right shift.
The key idea of these implementations is to use the shift reg-
ister to find the next number. These implementations work
in higher frequency than non-redundant implementations for
large n. The right shift implementation has fewer redundant
states than the left shift implementation if k > n

2 and has
more if k < n

2 . If k = n
2 , they have the same number of

redundant states.
Table 1 summarizes the theoretical analysis of the used

ROM bits, the number of used gates, the maximum delay
between DFFs, and the clock cycles necessary to lists all(

n
k

)
numbers in C(n, k). Note that an implementation is re-

dundant if it runs in more than
(

n
k

)
clock cycles. Every

implementation uses n DFFs to store a current n-bit num-
ber and O(log n) DFFs for storing the value of k and for
the state control. The naive and the ROM implementations
use a binary counter involving an n-bit adder, which can be
implemented in O(n) gates with O(log n) depth using the
carry lookahead technique [2], [16]. The ROM implemen-
tation uses a ROM with n2n bits. The details of the theo-
retical analysis of our implementations will be given later.
Although theoretical analysis is important for large n, it of-
ten does not reflect real performance for practically small n.
Hence, we evaluate the clock frequency and the size of used
hardware resource of an FPGA.

4. Basic Ideas for Implementing C(n, k) Counters

The main purpose of this section is to show basic ideas for
implementing non-trivial C(n, k) counters.

We can list all numbers in C(n, k) in lexicographical
order by the following five rules:

Rule 0: (initialization) Let the current number be 0n−k1k.
Rule 1: If the current number is (0+1)∗010i for some i ≥ 0,
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Table 1 Theoretical analysis of the performance of implementations of C(n, k) counters.

implementations DFFs ROM bits gates delay clock cycles
naive n + O(log n) 0 O(n) O(log n) 2n

ROM n + O(log n) n2n O(n) O(log n)
(
n
k

)
simple shift n + O(log n) 0 O(n2) O(log n)

(
n
k

)
binary shift n + O(log n) 0 O(n) O(log n)

(
n
k

)
right shift 2n + O(log n) 0 O(n) O(log n)

(
n
k

)
+

(
n−1

k

)
− (n − k)

left shift 2n + O(log n) 0 O(n) O(log n)
(
n
k

)
+

(
n−1
k−1

)
− k

Table 2 Examples of x, y, z, u, s, and t.

i 10 9 8 7 6 5 4 3 2 1
x(current) 0 1 1 0 1 1 1 0 0 0

y − 1 0 0 1 0 0 0 0 0
z − 1 1 1 1 0 0 0 0 0
u − 0 0 0 1 0 0 0 0 0
s − − 0 0 0 1 1 0 0 0
t − − 0 0 0 0 0 0 1 1

x(next) 0 1 1 1 0 0 0 0 1 1

then the next number is (0 + 1)∗100i.
Rule 2: If the current number is (0+1)∗011i for some i ≥ 1,

then the next number is (0 + 1)∗101i.
Rule 3: If the current number is (0 + 1)∗011 j0i for some

i ≥ 1 and j ≥ 1, then the next number is (0+ 1)∗100i1 j.
Rule 4: (termination) If the current number is 1k0n−k, then

the listing is terminated.

Note that, as used in regular expressions, (0+ 1)∗ represents
any sequence over {0, 1} of length zero or longer, and 1k

represents a sequence of consecutive k 1’s.
The key rules are Rules 1, 2, and 3. Let us see how the

next number is determined. Let xnxn−1 · · · x1 be the current
number. Further, let p (1 ≤ p ≤ n − 1) be the smallest index
of x such that xp+1 = 0 and xp = 1. The next number can be
obtained using the following two operations:

swap operation swap the values of xp+1 and xp.
shift operation shift xp−1 xp−2 · · · x1 to the right until x1=1.

In Rules 1 and 2, the swap operation is performed to find
the next number. Both the swap and the shift operations are
performed when Rule 3 is applied.

First, we show how we implement the swap operation
which is performed in Rules 1, 2, and 3. For this purpose,
we determine index p above. Let yi = xi+1 ∧ xi for every i
(1 ≤ i ≤ n − 1). Further, let zi = yi ∨ yi−1 ∨ · · · ∨ y1, for
every i (2 ≤ i ≤ n). Since z is the prefix OR of y, z can be
obtained using the parallel prefix circuit [2], [3], which has
O(n) gates of depth O(log n). Let u1 = z1, and ui = zi ∧ zi−1

for each (2 ≤ i ≤ n − 1). It should be clear that, ui = 1 iff
p = i. We refer the reader to Table 2 for examples of x, y, z,
and u. The swap operation can be simply done by

xi ← xi ⊕ (ui ∨ ui−1) (1 ≤ i ≤ n), (7)

where un = u0 = 0 and ⊕ denotes the XOR operator.
Next, we will show how the shift operation is imple-

mented. Recall that the shift operation is performed for Rule
3. Let si = zi ∧ xi for each i (1 ≤ i ≤ n − 2). Clearly, s is a

sequence of bits to be shifted to the right. Let tn−2tn−3 · · · t1
be a sequence of bits that can be obtained by repeating the
shift of sn−2sn−3 · · · s1 until the rightmost bit is 1. We refer
the reader to Table 2 for examples of s and t. Once t is ob-
tained, we can perform the shift operation by the following
formula:

xi ← (xi ∧ zi) ∨ ti (1 ≤ i ≤ n), (8)

where sn = sn−1 = tn = tn−1 = 0 for simplicity. We assume
that every bit of ti is 0 when all bits of si are 0. Then, when
Rules 1 or 2 are applied, si = ti = 0 for all i. Thus, from for-
mulas (7) and (8) combined, regardless of the applied rules,
the next number x can be obtained by a single formula as
follows:

xi ← ((xi ⊕ (ui−1 ∨ ui)) ∧ zi) ∨ ti. (9)

Note that if zn−1 = 0 then yn−1 = yn−2 = · · · = y1 = 0.
If this is the case, there exists no p such that xp+1 = 0 and
xp = 1. In other words, xnxn−1 · · · x1 = 1k0n−k and Rule 4
(termination) should be applied.

As we have seen, y can be obtained by n−1 NOT gates
and n − 1 AND gates. The prefix OR circuit, which can be
implemented using O(n) gates of depth O(log n) [2], is used
to compute z. Once z is obtained, u and s can be computed
using n−2 NOT gates and n−2 AND gates, each. After that,
if t is obtained, each xi can be computed using two OR gates,
one AND gate, and one XOR gate. Thus, a C(n, k) counter
can be implemented using O(n) gates of depth O(log n) ex-
cluding the circuit for computing t from s. However, it is not
easy to obtain t. In what follows, we will show how we ob-
tain t from s. For later reference, let s = 0N−l−m1l0m, where
N = n − 2. Clearly, we need to compute t = 0N−l1l.

5. Non-redundant Implementations of C(n, k) Coun-
ters

The main purpose of this section is to show two implemen-
tations the simple shift and the binary shift that compute t
from s in a clock cycle. Thus, these implementations for a
C(n, k) counter are non-redundant.

5.1 The Simple Shift Implementation

The simple shift implementation uses all the shifted se-
quences of s. For each i and j (1 ≤ i ≤ N; 0 ≤ j ≤ N − 1),
let

s[ j]
i = si+ j if i + j ≤ N
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= 0 if i + j > N. (10)

In other words, s[ j] is a sequence obtained by shifting s by
j bits to the right. Then, t can be obtained by

ti = (s[0]
1 ∧ s[0]

i ) ∨ (s[1]
1 ∧ s[1]

i ) ∨
· · · ∨ (s[N−1]

1 ∧ s[N−1]
i ). (11)

Let us confirm that t is correctly computed by formulas (10)
and (11). Recall that s = 0N−l−m1l0m. Thus, s[ j]

i = 1 iff
m + 1 ≤ i + j ≤ m + l. Since s[0]

1 = s[1]
1 = · · · = s[m−1]

1 = 0,
s[m]

1 = s[m+1]
1 = · · · = s[m+l−1]

1 = 1, and s[m+l]
1 = s[m+l+1]

1 =

· · · = s[N−1]
1 = 0, we have ti = s[m]

i ∨ s[m+1]
i ∨ · · · ∨ s[m+l−1]

i .
Hence, ti = 1 iff [m + i,m + l − 1 + i] ∩ [m + 1,m + l] is not
empty, that is 1 ≤ i ≤ l. Therefore, t1 = t2 = · · · = tl = 1 and
tl+1 = tl+2 = · · · = tN = 0, and thus t is computed correctly.
Let us evaluate the number of gates used to compute t. Since
s[N−i+1]

i = s[N−i+2]
i = · · · = s[N−1]

i = 0 (i ≥ 2) always holds,
ti can be computed using N − i + 1 AND gates and N − i
OR gates. Thus, t can be computed using at most N + (N −
1) + · · ·+ 1 < N(N+1)

2 < n2

2 AND gates and at most (N − 1)+

(N − 2) + · · · + 1 < N2

2 <
n2

2 OR gates. Since each ti can
be computed by a tree of N − 1 OR gates with fan-in 2, the
depth of the circuit is O(log N) = O(log n).

5.2 The Binary Shift Implementation

The binary shift implementation computes the binary repre-
sentation of the number of 1’s in s and generates the same
number of 1’s by exponential shifting. For simplicity, we
assume that N = 2u−1 for some integer u. Let l be the num-
ber of 1’s in s and lulu−1 · · · l1 be the binary representation of
l, that is l = lu · 2u−1 + lu−1 · 2u−2 + · · · + l1 · 20. The binary
representation lulu−1 · · · l1 can be computed by the Muller-
Preparata’s adder tree circuit [12]. Let s〈 j〉 (0 ≤ j ≤ u) be a
sequence of length 2 j − 1 determined by the following pro-
cedure†.

for j← 1 to u do
if l j = 0 then s〈 j〉 ← 02 j−1

s〈 j−1〉

else s〈 j〉 ← s〈 j−1〉12 j−1

If l j = 1 then 2 j−1 1’s are added to the sequence. Thus, it
is not difficult to see that t = s〈u〉 holds. Further, each s〈 j〉
can be computed from s〈 j−1〉 using 2 j−1 multiplexers whose
output is determined by l j. Thus, t can be computed using at
most 21 − 1 + 22 − 1 + · · · + 2u − 1 < 2N < 2n multiplexers.
Also, it is easy to confirm that the depth of the circuit is
O(log n).

6. Redundant Implementations of C(n, k) Counters

In this section, we present two implementations called right
shift and left shift that compute t from s in several clock
cycles. Since we do not have to compute t in a single clock
cycle, we can obtain high clock frequency. The key idea is
to (cyclically) shift s by one position either to the right or to

the left until we obtain t. Both implementations use an N-bit
shift register.

6.1 The Right Shift Implementation

The right shift implementation uses an N-bit shift register to
store s and shift it by one to the right in every clock cycle.
Again, recall that s = 0N−l−m1l0m. Thus, it takes m clock
cycles to obtain s. Using the right shift implementation of a
C(6, 3) counter, we have the following output sequences:

000111[0], 001011[0], 001101[0], 001110[0],

0101̂1̂0[1], 010011[0], 010101[0], 010110[0],

01101̂0[1], 011001[0], 011010[0], 011100[0],

101̂1̂00[1], 1001̂1̂0[1], 100011[0], 100101[0],

100110[0], 10101̂0[1], 101001[0], 101010[0],

101100[0], 1101̂00[1], 11001̂0[1], 110001[0],

110010[0], 110100[0], 111000[0],

where [1] and [0] denote the value of the redundant bit, 01
are two bits where the swap operation will be performed,
and 1̂ is a bit 1 where the shift operation is performed. Note
that, when Rule 3 is applied, the swap operation is per-
formed before the shift operation starts. This example has 7
redundant states, in which the redundant bit is high ([1]).

Let us evaluate the number of redundant states of a
C(n, k) counter using the right shift implementation. For
this purpose, let us observe the numbers that appear in the
redundant state. Such numbers for the C(6, 3) counter are as
follows:

010110,011010, 101100, 100110,101010, 110100,

110010.

The numbers in the redundant state satisfy the following
properties:

(1) the rightmost bit is 0,
(2) three (i.e k) 1’s are not consecutive, and
(3) every number satisfying (1) and (2) appears exactly

once.

If the rightmost bit of a number is 1, then the shift oper-
ation is completed and it is not a redundant state. Hence
(1) must be satisfied. Also, a number that has consecutive
k 1’s cannot be a number in the redundant state, because
the swap operation is performed before the shift operation
starts. Thus, (2) must be satisfied. If a number satisfying (1)
and (2) appears twice, then the same number appear after
the shift operation is completed. Since this is not possible,
no number satisfying (1) and (2) appears twice. Further, ev-
ery number satisfying (1) and (2) must appear, and thus (3)
must be satisfied.

It is not difficult to confirm that,
(

n−1
k

)
numbers satisfy

(1), and n − k numbers have consecutive k 1’s among them.
Thus, we have,

†Note that s〈0〉 is the null string of length zero.
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Theorem 1: The right shift implementation of a C(n, k)
counter has

(
n−1

k

)
− (n − k) redundant states.

Since we have
(
n
k

)
non-redundant states, the ratio of the re-

dundant and the non-redundant states is approximately
(

n−1
k

)
− (n − k)(

n
k

) ≈ n − k
n
.

Therefore, the right shift implementation is efficient for
larger k.

6.2 The Left Shift Implementation

In the left shift implementation, we shift the register storing
s cyclically by one position to the left in every clock cy-
cle. For example, if s = 0011100, then the cyclic shift is
performed as follows:

0011001, 0010011, 0000111.

The left shift implementation compute t = 0N−l1l from
s = 0N−l−m1l0m in l clock cycles. Using the left shift imple-
mentation of a C(6, 3) counter, we have the following output
sequences:

000111[0], 001011[0], 001101[0], 0011̂1̂0[0],

0011̂01̂[1], 001011[1], 010011[0], 010101[0],

01011̂0[0], 010101[1], 011001[0], 011010[0],

011̂1̂00[0], 011̂001̂[1], 010011[1], 100011[0],

100101[0], 10011̂0[0], 100101[1], 101001[0],

101010[0], 1011̂00[0], 101001[1], 110001[0],

110010[0], 110100[0], 111000[0].

This example also has 7 redundant states. To simplify the
evaluation of the number of redundant states, we assume
that the swap operation is performed after the shift operation
is completed.

Let us evaluate the number of the redundant states.
Again, let us observe the numbers that appear in the redun-
dant states using those for C(6, 3) as follows:

001101, 001011, 010101, 011001, 010011, 100101,

101001.

Similarly, these numbers in the redundant state satisfy the
following properties:

(1) the rightmost bit is 1,
(2) three (i.e n − k) 0’s are not consecutive, and
(3) every number satisfying (1) and (2) appears exactly

once.

Since we can verify these properties similarly to those for
the right shift implementation, we omit the proof. It is easy
to see that

(
n−1

k

)
numbers satisfy (1), and k numbers have

consecutive n − k 0’s among them. Thus we have,

Theorem 2: The left shift implementation of a C(n, k)
counter has

(
n−1
k−1

)
− k redundant states.

The ratio of the redundant and the non-redundant states for
the left shift implementation is approximately

(
n−1
k−1

)
− k(

n
k

) ≈ k
n
.

Therefore, for small k, the left shift implementation has
fewer redundant states than the right shift implementation.

We should note that by inverting the output of a C(n, n−
k) counter using n NOT gates, we can obtain a C(n, k)
counter. Thus, we can obtain a C(n, k) counter with fewer re-
dundant states using the right shift implementation for small
k. However, the resulting output sequence is not lexico-
graphical.

7. Performance Evaluation

This section is devoted to show the performance evaluation
for the Xilinx VirtexII family FPGA XC2V3000-4, which
has 14336 slices. A slice is a unit block of the VirtexII
FPGA, which has two four-input function generators, carry
logic, multiplexers, and two storage elements [5]. We have
used Xilinx ISE logic design tool (Ver 6.3i) to analyze the
timing and the number of slices used. We have wrote the
HDL source codes for C(n, k) counter implementations in
RTL (Register Transfer Level) of Verilog HDL. We have
used default parameter values, for example “Optimization
goal= Speed” and “Optimization effort =Normal”, for logic
synthesis using Xilinx ISE logic design tool. Also, we gave
no user constraints to synthesize our Verilog HDL source
codes.

Figure 2 shows the clock frequency and the number of
used slices for n = 8, 16, 32, 64, 128, 256, 512, and 1024 es-
timated based on the net list obtained by XST logic synthesis
tool, which is a part of Xilinx ISE logic design tool. Note
that, the performance are obtained from the net list. After
the implementation (i.e. mapping and routing), the actual
clock frequency can be 10%-30% smaller.

For n ≥ 512, the simple shift implementation does not
fit in the XC2V3000-4. The simple shift implementation
runs in highest frequency for small n, because the circuit is
simple and compact for small n. The binary shift implemen-
tation uses fewer slices than the simple shift one, but it runs
in lower frequency. The binary shift, the left shift, and the
right shift implementations are comparable in the number
of used slices. The clock frequency of the binary shift is
the worst of the four implementations. Recall that the bi-
nary shift implementation has two circuits: (1) the Muller-
Preparata’s adder tree circuit to compute the number of 1’s
and (2) the multiplexer tree to generate consecutive 1’s. Al-
though both circuits has O(log n) depth, the adder-tree is
complicated and has large depth. To confirm this fact from
the practical point of view, we have performed the logic syn-
thesis for the Verilog HDL source codes of these circuits
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Fig. 2 The performance evaluation for the four implementations and the fake implementation.

independently. The XST logic synthesis tool reported that
the adder tree and the multiplexer tree run in 67 MHz and
in 244 MHz for n = 128. It follows that the adder tree
is the bottle neck for the performance of the binary shift
implementation. Further, the simple shift implementation
runs in 71 MHz for n = 128. Hence, as long as the Muller-
Preparata’s adder tree is used, the clock frequency of the bi-
nary shift implementation cannot be better than the simple
shift.

The fake implementation in Fig. 2 is an implementation
of C(n, k) in which a circuit for computing t is removed. In
other words, the fake implementation consists of common
circuits of the four implementations. Although the fake im-
plementation does not compute C(n, k) numbers correctly, it
is useful to analyze the complexity of the four implementa-
tions; It gives the lower bound of the performance of C(n, k)
counter implementations in the sense that the performance
of any C(n, k) counter implementation cannot be better than
that of the fake implementation. For n = 128, the fake,
the simple shift, and the binary shift implementations runs
in 112 MHz, 70 MHz, and 45 MHz, respectively. It follows
that, the delay for computing t in the binary shift implemen-
tation are dominant when n = 128 while that in the simple
shift is small. On the other hand, for n = 128, the number of
used slices are 324, 4034, and 788 respectively. Hence, most
of the slices in the simple shift implementation are used to
compute t.

Suppose that, for each k (0 ≤ k ≤ n), a C(n, k) counter
is used h(k) times to solve some problem. Recall that the bi-
nary shift implementation runs in

(
n
k

)
clock cycles to list all

numbers in C(n, k), since it is non-redundant. Thus, it runs
in T =

∑
0≤k≤n h(k)

(
n
k

)
clock cycles if we use the binary shift

implementation. On the other hand, the right shift imple-
mentation runs approximately in (1 + n−k

n )
(
n
k

)
cycles. Since

n−k
n ≤ 1, it runs in no more than

∑
0≤k≤n

h(k)

(
1 +

n − k
n

) (
n
k

)
≤ 2T

clock cycles to solve the problem. Hence, we can guarantee
that the right shift implementation (and the left shift imple-
mentation) never runs in more than 2T cycles. Further, if
a C(n, k) counter is used almost symmetrically, that is, if

h(k) ≈ h(n − k) for all k, it runs in
∑

0≤k≤n

h(k)

(
1 +

n − k
n

) (
n
k

)

≈ 1
2

∑
0≤k≤n

h(k)

{(
1 +

n − k
n

)
+

(
1 +

k
n

)} (
n
k

)}

=
3
2

T

clock cycles. If this is the case, the right shift and the left
shift implementations list all numbers faster than the binary
shift implementation when their clock frequency is 3

2 times
larger than that of the binary shift. Actually, the right shift
and the left shift implementations are faster for n ≥ 256 and
the binary shift implementation is faster for n ≤ 32 to list all
C(n, k) numbers.

8. Applications to the Partial Exhaustive Search

The main purpose of this section is to present how we use a
C(n, k) counter for a digital halftoning method presented in
[6], which finds a high quality binary image reproducing an
original gray-scale image.

Suppose that an original gray-scale image A = (ai, j)
of size n × n is given, where ai, j denotes the intensity level
at position (i, j) (1 ≤ i, j ≤ n) taking a real number in the
range [0, 1]. The goal of halftoning is to find a binary image
B = (bi, j) of the same size that reproduces original image A,
where each bi, j is either 0(black) or 1(white). The halfton-
ing is one of the necessary tasks to print gray-scale images
using laser and ink jet printers. We measure the goodness
of output binary image B using the Gaussian filter that ap-
proximates the characteristic of the human visual system.
Let V = (vs,t) denote a Gaussian filter, i.e. a 2-dimensional
symmetric matrix of size (2w + 1) × (2w + 1) satisfying∑
−w≤s,t≤w vs,t = 1, where each vs,t (−w ≤ s, t ≤ w) is de-

termined by a 2-dimensional Gaussian distribution. The im-
age C = (ci, j) restored from a binary image B = (bi, j) by
applying the Gaussian filter is a gray-scale image:

ci, j =
∑

−w≤s,t≤w

vs,tbi+s, j+t (1 ≤ i, j ≤ n) (12)

From
∑
−w≤s,t≤w vs,t = 1, each ci, j takes a real number in the
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Fig. 3 Illustrating examples of B, x, and B/x.

Table 3 The values of
(
16
k

)
, h(k), and h(k) ×

(
16
k

)
.

images Lena Plane

k
(
16
k

)
h(k) h(k) ×

(
16
k

)
h(k) h(k) ×

(
16
k

)
0 1 955 955 3627 3627
1 16 28111 449776 14290 228640
2 120 129134 15496080 25974 3116880
3 560 253941 142206960 49031 27457360
4 1820 331054 602518280 86867 158097940
5 4368 361361 1578424848 145540 635718720
6 8008 387653 3104325224 197659 1582853272
7 11440 511108 5847075520 224777 2571448880
8 12870 592118 7620558660 214663 2762712810
9 11440 641379 7337375760 204483 2339285520

10 8008 547496 4384347968 242472 1941715776
11 4368 430466 1880275488 492890 2152943520
12 1820 294923 536759860 840587 1529868340
13 560 191399 107183440 941849 527435440
14 120 98839 11860680 655712 78685440
15 16 30038 480608 236462 3783392
16 1 1867 1867 18867 18867

Total 65536 4831842 33169341974 4595750 16315374424

range [0, 1]. Thus, the restored image C is an L-level gray-
scale image. We can say that a binary image B is a good
approximation of original image A if the difference between
A and C is very small. According to this consideration, we
are going to define the error by the difference between C (or
B) and A as follows. The error ei, j at each pixel location (i, j)
is defined by

ei, j = ai, j − ci, j, (13)

and the total error is defined by

Error(A, B) =
∑

1≤i, j≤n

|ei, j|. (14)

Since the Gaussian filter approximates the characteristics of
the human visual system, we can think that image B repro-
duces original gray-scale image A if Error(A, B) is small
enough.

It is known that a good binary image B with small total
error can be obtained by the partial exhaustive search for
windows of the binary image [6]. We briefly explain the idea
of the partial exhaustive search. Suppose that an original
image A and a temporary binary image B are given. Let
W(i, j) be a window of size m×m in B whose top-left corner
is at position (i, j), x be a binary pattern in W(i, j), and B/x
be the binary image such that W(i, j) of B is replaced by x.
We refer the reader to Fig. 3 for illustrations of B, x, and
B/x. Let f be a function such that

f (x) = Error(A, B/x). (15)

By computing f (x) for all possible 2m2
bit patterns x, we can

obtain an optimal pattern r in formula (2). Clearly, the to-
tal error of B/r is not larger than that of B. The idea of the
partial exhaustive search is to repeat this operation for a win-
dow moving in the raster scan order. A halftoning algorithm
presented in [6] first initializes a binary image by random
thresholding, and then repeats the partial exhaustive search
in raster scan order until no more improvement is possible.
The resulting binary images are sharp and high quality, and
reproduce the continuous tone of original images very well.

Now, we have the following conjecture in term of for-
mula (15).

Conjecture 3: Function f of formula (15) is concave.

We have no proof for this conjecture, but we believe this
conjecture is correct because we cannot find its counter ex-
ample. Since f satisfies formula (6), we can find the best
binary pattern r in formula (2) by the binary search or linear
search techniques.

We have performed the linear search technique to find
r as follows: Let β be the total intensity in window W(i, j)
of a current binary image B, that is,

β =
∑

0≤s,t≤m−1

bi+s, j+t. (16)

Since B is an intermediate solution, it is not “bad” binary
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Fig. 4 The resulting image of “Lena” and “Plane.”

image. So, the number of 1’s in the best binary pattern
in W(i, j) must be close to β. Thus, we start the linear
search for f (rp) with p = β. By increasing and decreas-
ing p in an obvious way, we can find the bottom of the
concave sequence f (r0), f (r1), . . . , f (rm2 ). If we can start
with p (1 ≤ p ≤ m2 − 1) such that f (rp) is the bottom (i.e.
f (rp−1) > f (rp) < f (rp+1)), then the linear search just com-
putes f (rp−1), f (rp), and f (rp+1). If we start with p = 0 then
the linear search may just compute f (r0) and f (r1), if f (r0)
is the bottom. These facts allow us to reduce the computing
time.

We have developed a digital halftoning system that per-
forms the partial exhaustive search for a window of size
4×4. We have used a PCI-connected board FPGA board [15]
with XC2V3000-4. The basic architecture of our hardware
implemented in the FPGA is as follows: The host PC stores
the original and the current binary image and the FPGA is
used as a co-processor. To compute the best binary image r
for a window, the host PC sends necessary image data, and
the value of k to the FPGA though PCI-bus. The FPGA per-
forms the partial exhaustive search for C(16, k) and returns
rk and f (rk) to the host PC. By repeating this operation, we
obtain a binary image. Since n is small, we use the simple
shift implementation of a C(16, k) counter.

Finally, we show experimental results for the 8-bit
gray-scale version of well-known standard image “Lena” of
size 512 × 512. Let h(k) (0 ≤ k ≤ 16) denote the number
of times f (rk) is computed until the resulting binary image
is obtained. Clearly, the size of the search space to com-
pute f (rk) is

(
16
k

)
and so the total size of the search space is

h(0)×
(

16
0

)
+h(1)×

(
16
1

)
+· · ·+h(16)×

(
16
16

)
. The reader should re-

fer to Table 3 for the values of
(

16
k

)
, h(k), and h(k)×

(
16
k

)
. The

partial exhaustive search is performed for 1598403 times.
Hence, to compute f (r) for a window, f (rk) is computed
for expected 4831842/1598403 ≈ 3.02 k’s. Thus, in most
cases, f (rk) is evaluated only for three k’s. Also, f (x) is
computed for expected 33169341974/1598403 ≈ 20751

x’s. Since the simple exhaustive search performs this com-
putation for all 216 = 65536 x’s, we can expect a speedup
factor of 65536/20751 ≈ 3.15. Actually, the partial exhaus-
tive search runs in 546 seconds, while the simple exhaustive
search runs in 1391 seconds. Thus, the actual speedup fac-
tor is 1391/546 ≈ 2.55. Due to the overhead of the PCI bus
and local computation, the speedup factor is a bit smaller.
Since the circuit has run in 80 MHz, without miscellaneous
overhead, it would run in 33169341974/80 MHz ≈ 415 sec-
onds. Thus, we have approximately (546−415)/415 ≈ 32%
overhead.

We also performed the same experiment for image
“Plane”. The value of f (r) for a window is computed using
the partial exhaustive search for 1520546 times to obtain the
resulting image. Also, to compute f (r), f (rk) is computed
for expected 4595750/1520546 ≈ 3.02 k’s and f (x) is com-
puted for expected 16315374424/1520546 ≈ 10730 x’s.
Hence we can expect a speedup factor 65536/10730 ≈ 6.11.
The simple exhaustive search runs in 1353 seconds and our
partial exhaustive search runs in 335 seconds, and so the ac-
tual speedup is 1353/335 ≈ 4.04. Since “Plane” is a whity
image, the computation of f (rk) is performed frequently for
large k. We can confirm this fact in Table 3. Thus, we
can obtain a higher speedup factor for “Plane”. The readers
should refer to Fig. 4 for the resulting images. We also note
that the simple exhaustive search for “Lena” takes 60,500
seconds [6] on a Pentium 4 based PC (Xeon 2.8 GHz) with-
out using an FPGA.

9. Conclusions

The main contribution of this work is to introduce a C(n, k)
counter which lists all n-bit numbers with (n − k) 0’s and
k 1’s, and to present its application to the partial exhaus-
tive search. We have presented several implementations of
C(n, k) counters and have evaluated its performance in terms
of the number of used slices and the clock frequency for the
Xilinx VirtexII FPGA XC2V3000-4. As a real life applica-
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tion we have used a C(n, k) counter to accelerate a digital
halftoning method that generates a binary image reproduc-
ing an original gray-scale image. By the partial exhaustive
search using a C(n, k) counter, we accelerated this task and
achieved a speedup factor of more than 2.5 over the sim-
ple exhaustive search. For a whity gray-scale image, the
speedup factor is more than 4.

The partial exhaustive search is helpful for reducing the
size of the search space. In particular, if a combinatorial
problem is represented by a function f , which is either bi-
ased or convex, this approach may work very well. It would
be of interest to apply this approach for real life combinato-
rial optimization problems.
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