International Journal of Foundations of Computer Science
© World Scientific Publishing Company

LINEAR LAYOUT OF GENERALIZED HYPERCUBES*

KOJI NAKANO

School of Information Science, Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa 923-1292, Japan

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

This paper deals with two kinds of generalized hypercubes: a d-dimensional c-ary
clique C¢ and a d-dimensional c-ary array A¢. A d-dimensional c-ary clique C? has
nodes labeled by c? integers from 0 to ¢ — 1 and two nodes are connected by an edge if
and only if the c-ary representations of their labels differ by one and only one digit. A
d-dimensional c-ary array Ag also has nodes labeled by ¢? integers from 0 to ¢? — 1, and
two nodes are connected if and only if the c-ary representations of their labels differ by
one and only one digit and the absolute value of the difference in that digit is 1. Further,
an n-node c-ary clique Cc(n) is the induced subgraph of C¢ (n > c%) with nodes labeled
by integers from 0 to n» — 1. The main contribution of this paper is to clarify several
topological properties of A,d: and Ccd in terms of their linear layouts. For this purpose,
we first prove that C’c(”) is a maximum subgraph of Cc(m), that is, C’c(”) has the largest
number of edges over all n-node subgraphs of C’c(m), whenever n < m. Using this fact,
we show the exact values of the bisection width, cut width, and total edge length of C¢.
We also show the exact value of the bisection width of A? and nearly tight values of the
cut width and the total edge length of A<.

Keywords: Linear Layout; Generalized Hypercubes; Cut width; Bisection width; Total
edge length; Maximum subgraphs

1. Introduction

A d-dimensional hypercube is a graph with 2¢ nodes and d2¢~! edges. The
nodes are labeled by 27 integers from 0 to 2¢ — 1, and they are connected by edges
if and only if the binary representations of their labels differ by one and only one
bit. Processor networks based on the hypercube topology can solve many problems
efficiently [1, 2, 15] and they are robust against faults [5]. Many parallel machines
based on the hypercube topology have been studied. However, the topology of the
hypercube is not flexible in the sense that, for any given number of processors, the
number of links required to connect processors based on the hypercube topology
is fixed. Thus, if insufficient links are available, we must compromise on a small

* Preliminarily version appeared in Proc. of Workshop on Graph-Theoretic Concepts in Com-
puter Science [19]

hypercube network. On the other hand, if more links are available, we cannot take
advantage of improve the communication capability if the topology is based on the
hypercubes. Therefore, generalized hypercubes offers more flexible structure, are
used instead.

This paper focuses on two types of generalized hypercubes defined as follows.
A d-dimensional c-ary clique C? has nodes labeled by ¢? integers from 0 to ¢? — 1.
The nodes are connected by the edges if and only if the c-ary representations of
their labels differ by one and only one digit (Fig. 1). Graph C? is regular of degree
(¢ — 1)d and has ¢? nodes, (¢ — 1)dc?/2 edges, and a diameter of d. Let K. be a
c-node clique and L. be a c-node linear array. It is not difficult to confirm that C'¢
is the Cartesian product of d c-node cliques K.. A d-dimensional c-ary array A¢
also has nodes labeled by ¢ integers from 0 to ¢? — 1. The nodes are connected
if and only if the c-ary representations of their labels differ by one and only one
digit and the absolute value of the difference in that digit is 1. (Fig. 2). Graph
A? has ¢? nodes, (¢ — 1)de?~! edges, and a diameter of d(c — 1). Again, it is
not difficult to see that AZ is the Cartesian product of d c-node linear arrays Le.
Graphs A? and C¢ have similar topologies: each side of A is L., while each side of
C?is K.. Clearly, A? is a subgraph of C¢. Similar generalizations of hypercubes
have been given in [7, 9, 26]. Several algorithms on parallel computers based on
C? and A¢ topologies have been shown [7, 15]. The analysis of their topological
properties is important, because they are very attractive as network topologies of
future parallel computers. Further, C¢ and A? include typical topologies which
are used for parallel machines: C! is equal to a c-node clique. Al, A2 and A3
correspond to a c-node linear array, a c2-node 2-dimensional array, and a c-node
3-dimensional array, respectively. Both CJ and A¢ are equal to a d-dimensional
(binary) hypercube. Therefore, the results presented in this paper can be applied
to these topologies of graphs.

For later reference, we define a class of subgraphs of C¢. An n-node c-ary clique
an) has n nodes labeled by n integers from 0 to n — 1 and the nodes are connected
in the same way as CZ. Note that n is not restricted to a power of c. Clearly, ot
is an induced subgraph of C’gm) whenever n < m. Figure 3 illustrates C£14).

Let G = (V, E) denote a graph such that V' and E are a set of nodes and a
set of edges, respectively. A linear layout of G = (V, E) is a one-to-one mapping
[:V —={0,1,2,...,|V|—1}. A linear layout [of a graph means that each node u € V'
is positioned at coordinate I(u) on the baseline. Figures 4 and 5 illustrate examples
of a linear layout of A7. Note that, in Figure 5, each node u (0 < u < |V|—1) is
positioned at coordinate u. We denote such the layout the natural order layout. Let
N denote the natural order layout, that is, N(u) = u for every u (0 < i < |V|—1).
Note that a linear layout can take any of the |V|! permutations, not just the natural
order layout.

The complexity of G = (V, E) in terms of a linear layout is evaluated by the
following parameters: the (minimum) bisection width, the cut width, and the total
edge length. The definitions of these parameters are as follows. The width of a graph
G under a linear layout | at a gap i denoted by C(G,1,1) is a set of edges connecting

i‘
.!

|

il

|

—
\ v

Figure 1: A 2-dimensional 4-ary clique, C?

a node at a position less than ¢ and one at a position larger than or equal to i. In
other words, C(G,1,i) = {(u,v) € E |0 <l(u) <i <l(v) <|V|—=1}. The bisection
width BW(G) of a graph G is the minimum number of edges in C(G, I, ||V|/2]) over
all linear layouts, that is,

BW(G) = min|C(G,L [[V]/2])]

In other words, BW(G) is the minimum number of edges which must be removed
to separate the graph into two disjoint and equal-sized subgraphs. The cut width
of a graph G under a linear layout | is the maximum of |C(G,1,i)| over all gaps i,
i.e. max; |C(G,1,i)|. The cut width CW(G) of a graph G is the minimum cut width
over all linear layouts, that is,

CwW(G@) = mlin max |C(G,1,1)]

This parameter indicates the number of tracks required by the best linear layout.
Let us define the length of edge (u,v) € E under a linear layout 1 is |l(u) — I(v)].
The total edge length of a graph G under a linear layout lis 3, , cp [1(w) — 1(v)].
Further, the total edge length TL(G) of a graph G is defined as the minimum of this
value over all linear layouts, that is,

TL(G) = min > i(u) = 1(w)]-

It is not difficult to confirm that, the total edge length is equal to the total cut. In

S
®
®
G

O—0O—W0W—0
O—C0O—60—~0

O—0O—06—0©

Figure 2: A 2-dimensional 4-ary array, A2

other words,

Vi-t

> =@l = 310G L)

(u,v)EE

holds for any graph G and linear layout [. It follows that, the total edge length of
G can be computed using the following formula:

IV|-1
TL(G) = min > lC(G, 1)

i=1

The main contribution of this paper is to clarify these parameters of C¢ and
Ad for every c and d. It is quite to compute their exact values, because they de-
termine the lower bound of the layout area in the VLSI model. For example, the
layout area of a processor network is at least Q(B?) if the corresponding graph has
bisection width B [14, 22], and the number of tracks of a processor network in a
horizontal layouts requires C' layers if the corresponding graph has cut width C. The
total edge length has applications in the coding theory [13] and storage manage-
ment [21]: Minimizing the total edge length of generalized hypercubes corresponds
to minimizing the error of a c-ary channel, and to minimizing the efficiency of man-
aging a d-dimensional data structure in a paging environment. However, computing
the exact values of them is a hard problem. For a given graph and an integer k,
determining whether the bisection width of the graph is at most k is also NP-
complete [12]. Similarly, the problem to determine the cut width is NP-complete
even if the degree of the graph is restricted [16].

Figure 4: An example of a linear layout of A%

Several articles have been devoted to the evaluation of the above parameters.
Brebner [8], Manabe et al. [17], and Nakano et al. [18] have proved that the bi-
section width of a d-dimensional binary hypercube is 2¢~! using different methods.
Leighton [15] showed that the bisection width of A% is ¢?~1 if ¢ is even by embedding
a directed complete graph in A?. Wada et al. [24] proved that the bisection width of
C?is ¢! /4if cis even in a similar way to the Leighton’s proof. However, they failed
to obtain the exact value of it when c is odd: the bisection width of C'¢ takes a value
between [c?t1/4 — 1/(4¢?71)] and (¢ + 1)(c? — 1)/4 (inclusive). Nakano et al. [18]
also proved that the cut width of C¢ is [27+1/3]. Wada et al. [25] also proved that
the cut width of C'? is at most ¢?(c? —1)/{4(c—1)}. Niepel et al. [20] showed that
the total edge length of an n x 2-node array is 5n — 4 and conjectured that the total
edge length of an n x m-node array is n(m? + m — 1) — m?. Harper [13] showed
that the total edge length of a d-dimensional hypercube is 2¢71(2¢ — 1). DeMillo

Figure 5: The natural order layout of A}

Table 1: Our results and previously known results

0 | Bisection width | Cut width | Total edge length |
binary Brebner [8] Nakano [18] Harper [13]
hypercube Manabe [17] exact exact

Nakano [18]
exact
d-dimensional Wada [24] Wada [25]
c-ary clique exact when c is even | only upper bound
cd This paper This paper This paper
exact exact exact
d-dimensional Leighton [15] DeMillo [10]
c-ary array exact when c is even lower bound when
Ad d=2
This paper This paper This paper
exact nearly exact nearly exact

et al. [10] showed that the total edge length of a 2-dimensional hypercube is at least
n?/6.

In this paper, we will evaluate the bisection width, cut width, and total edge
length of both C¢ and A?. In Section 2, we consider how many edges a subgraph of
C!™ with n (n < m) nodes may have, and show that C'™ has the largest number of
edges of all subgraphs with n nodes. In other words, cﬁ”) is the maximum subgraph
of Cc(m) if n < m. Section 3 uses this fact to get the exact values of the bisection
width, cut width, and total edge length of C¢. Section 4 presents a method for
converting C¢ into A? and get the exact value of the bisection width of A%, and
nearly exact values of the cut width and the total edge length of AZ. Table 1 shows
the results obtained in this work and the previously known results.

This paper organized as follows: In Section 2, we prove that Cc(n) is a maximum
subgraph of Cc(m) whenever n < m. The proof shown in Section 2 is simpler than
preliminary version of this paper[19]. Using this fact, Section 3 shows the exact val-
ues of BW(C?), CW(C?), and TL(C?). In Section 4, we show the upper bounds and
the lower bounds of BW(A%), CW(A?), and TL(AZ), respectively. Section 5 offers
concluding remarks and mentions several related results that have been obtained
after the preliminary version of this paper[19] was published.

2. A maximum subgraph of C¢

The main purpose of this section is to prove the following theorem:
Theorem 1 Cé”) is a mazximum subgraph of C’,gm) whenever n < m.
Theorem 1 can be proved by the following three lemmas.
Lemma 1 Let f. be the function defined as follows:

n(n—1)/2 ifn<ec,

) = 0 Sl 4 /e + (e—i— D+ i)/el} ifn>e
=0

For allm > 1, '™ has exactly f.(n) edges.
Lemma 2 Let g. be the function defined as follows:

n(n—1)/2 ifn<eg,
c—1
max{» {ge(ni) + (c —i—1)n;}|
gc(n) = =0
c—1
no<ng <--<nNe_q <n:2ni} if n > c.
1=0

For any subgraph G = (V, E) of C’,gm), |E| < g.(|]V]) always holds.
Lemma 3 For every ¢ and n, f.(n) = g.(n) always holds.

Note that the division of an integer n into the same ¢ values as equally as possible
can be represented as

[n/e], L(n+1)/el, [(n+2)/c],..., [(n+ec=1)/c].

In fact, the sequence is ¢ — r ¢’s followed by r (¢ + 1)’s where n = g-c+r
(0 < r < c¢—1). Thus, g.(n) is evaluated by computing the maximum over all
divisions of n, while f.(n) is evaluated for the equal-sized division of n. It follows
that f.(n) < g.(n) for every ¢ and n. However, Lemma 3 claims f.(n) = g.(n).

Lemma 1 shows the number of edges of cé”), and Lemma 2 shows the up-
per bound of the number of edges of the maximum subgraph of C. Hence, from
Lemma 3, the number of edges of Cé”) is equal to the number of edges of the max-
imum subgraph with n nodes. Therefore, these lemmas imply Theorem 1. In order
to complete the proof of Theorem 1, we prove the three lemmas in this section.

For later reference, let Vc(n) and Eé”) denote the sets of nodes and edges of C,S”),
respectively. In other words,

v = {0,1,...,n—1},
E™ = {(u,v)|ue V™ ve V™, and the c-ary representations of
their labels differ by one and only one digit}.

Proof of Lemma 1. The proof is by induction on n. Clearly, Cc(n) is K,, when
n < c. Thus, |Cc(n)| = fc(n) holds for all n < ¢. We assume that for every k < n—1,

|C’(k | = fe(k) holds, and will prove that |C’(n)| = fe(n). Foralli (0 <i<c—1),
let V(n)[] ={u € v | u; = ¢ — i — 1}, where u; is the LSD of the c-ary
representation of u. Clearly, each V()[J has [(n 4+ i)/c| nodes. Let g™ i, 7] gO <
i < j <c—1) denote a set of edges in E;" connecting nodes 1n v [z] and V" 71,
that is, B)[z Jjl = {(u,v) € E" | ue v)[] and v € V" J]]} For each i (0 <
i <i—1), graphs (V(n)[z],E)[i]) and ollntd/el) _ (V([n+i)/c]) E(L(N-H)/CJ))
are isomorphic. Thus, from the inductive assumption, we have

For all i and j (i < j) no two edges in Eé")[7] share a node in V" [z] and every

node in V™ [i] is connected with an edge in E([¢,7]. Thus, we have
B G| = VIV = L+) /e).

Therefore, we have

c—1
EOL = S IE+ Y 1B
i=0 0<i<j<c—1
c—1 . ;
n+i n+e
= Y =D+ > 1]
i=0 0<i<j<c—1

= U it
= fe(n).

O
Proof of Lemma 2. The proof is by induction on the number of nodes in V.
Clearly, no graph with n nodes has more than n(n — 1)/2 edges. Thus, |E| <
gc(]V]) always hold when |V| < ¢. We assume that |E| < g.(|V|) for any subgraph
G = (V,E) with |V| < n —1, and prove that |E| < g.(|V]) holds for any subgraph
G = (V,E) with |[V| = n. Let G = (V, E) be a subgraph with n nodes. We choose
any digit s and partition V into V[0], V[1],..., V][] as follows:

VIii] = {ue€V0us=i},

where ug is the s-th digit of the c-ary representation of u. We can choose s such
that at least two of the s subsets are non-empty. Further, without loss of generality,
we can assume that |V[0]| < |V[1]] < --- < |[V][e —1]| < |V| by renumbering the
indexes of V's. Let E[i,j] (i < j) be the edges in E connecting V[i] and V[j],
that is, E[i,j] = {(u,v) € E|u € V]i] and v € V[j]}. Since |V[0]] < |[V[1]] £ --- <
[Vle — 1]] < n, we have E[i,i] < ¢.(|V[i]]) (0 < i < ¢—1) from the inductive
assumption. Since no two edges in E[i, j] share a node in V¢, EJi,j] has no more
than |V[i]| edges. Therefore, we have

SIEG+ Y I

0<i<j<c—1

Table 2: An example of matrix A.

vt ng |q|ri||0]1]2]3|4|5(6]|7
0121125121223 [3(3|3]|3
1134424444445]|5
21364441414 14]|5]|5[|5]|5
3|87 | 7| LT\ 7| T|\T|T|T|7|8
4160 |7 | 4| 7|7|7T|7|88]8]|8
5160|747 |7|7|7|8]|8|8]8
6161 |7 |5||7|7|7|8|8]|8|88
7165818888888 9
c—1
< D olge(VEDI+ YD IV
i=0 0<i<j<c—1
c—1
< Y Alge(VIDI + (e —i = DIV}
i=0
< ge(IV])-

O
Finally, we will prove Lemma 3.
Let ng,n1,.-.,n.—1 be ¢ integers such that ng < n; < --- < n,_1, and let
n=mng+ny+--+ne._1 be their sum. Further, let A be a ¢ x ¢ matrix such that
each (i,7) element A[i, j] is L”Tﬂj Clearly, the sum of each i-th row of A is

c—1 n~—|—j
ni:ZL’TJ.
j=0

Thus, the sum of all elements in A is equal to A. Table 2 shows an example of A.
Our first task to prove Lemma 3 is to find a ¢ x ¢ matrix B satisfying the following
two conditions:

Condition 1 each i-th row of B is a permutation of the i-th row of A, and

Condition 2 the sum of elements in the j-th column is equal to L"T'”J, that is,

> Bli.jl= 1),

c

Let ¢; and r; be the integers satisfying n; = ¢;c+7; (0 < r; < ¢—1). Also, let ¢
and r be the integers such that n = gc+r (0 < r < ¢—1). Clearly, each i-th row
of A has r} ¢;’s and r; (g; + 1)’s, where 7} = ¢ — r;. Thus, the i-th row of B should
have r} ¢;’s and r; (g; + 1)’s to satisfy Condition 1. For the purpose of satisfying
Condition 2, we determine each i-th row of B as follows:

Table 3: An example of matrix B.

i\mng |q || |p||0] 1] 234|567
o222 ({5130} 2|2|2|3|3[3]|3]3
1134|4263 4 | 5|5 |4]|4|4 4|4
2136|4414 9 5| 41414145515
| o7 |\ 7|1\ T3\ 7| T | 7| T7T|8 |7 |T|T7T
4160 714420 8|8 |8 |8 |7 |7 | 7|7
5160 | 7|4 4|24\ 7| 7| T7T| 7| 88|87
6|61 7|53 (288|888 |7 |7]|7]|38
7165|817 |31| 88|88 |8|8|9]|38
n|394]|49| 2 4914949494949 50| 50
e Bli,p; mod ¢] = B[i,p; + 1lmod ¢] = --- = B[i,p; + r; — 1 mod ¢] = ¢;, and
e Bli,p;+r} mod c] = Bli,p;+r;+1mod ¢] = --- = B[i,p;+7r;+r;—1 mod ¢] =
q +]-v

where p; =] + 7y +---+r,_,. Table 3 shows an example of B. Clearly, each i-th
row of B has r} ¢;’s and r; (¢; + 1)’s, and thus, Condition 1 is satisfied. Further
from the construction of B, we have, for every k (0 < k <c—1)

k k k
e) B[i,0] <> Bi,1]]<---< > Bli,c—1], and

i=0 i=0 i=0
k k
e) Bli,e—1]-Y_ B[i,0]<1.

i=0 i=0

c—1
This can be proved very easily by induction on k. It follows that ZB[i, jl =
=0
n+j

|

Lemma 4 There exists a matriz B satisfying Conditions 1 and 2.
We are now in position to prove Lemma 3 using Lemma 4.

| holds for every j. Thus we have,

Proof of Lemma 3. Since f. < g. from the definition, it suffices for the lemma
to prove f. > g.. We prove f.(n) > g.(n) for every n by induction on n. Clearly,
fe(n) = g.(n) when n < ¢. We assume that for all i(< n), f.(i) > g.(¢) holds, and
will prove f.(n) > g.(n). For any ng,n1,...,n.—1 such that no <n; <...<n.1 <
nandn =n; +ns+---+n._1 > c, we have,

S {oe(m) + (e~ i~ i)

10

c—1
< Z fe(ni) + Z ¢—1i—1)n; (from the inductive assumption)
i=0
c—1c—1 s +] s +] c—1
= YU Y e -+ Y e i -
i=0 j=0 i=0
(from the definition of f)
c—1c—1 c—1c—1 .
n, +] PN
= O R ko0 - S+)
i=0 j=0 i=0 j=0
c—1 .
(from n; = ZLnl:JJ)
j=0

On the other hand, we also have

n+j

n+jJ)

) = YR - - 2y

(from the definition of f)

c—1 n +j c—1 n +j
> Y al™H)+ Y-y
=0 =0
(from the inductive assumption)
c—1c—-1 c—1 TL+j
> > {9e(Bli, 1) + (e =i = DB, I} + Y (e —j - 1) —
i=0 j=0 =0
(from the definition of g. and Lemma 4)
c—1c—1 . c—1 .
nz +] n; +) n+t)
> Y3 a Fle—i= DMy 4 e - "
i=0 j=0 j=0
(from Lemma 4)
c—1c—1 c—1c—1 .
nl +] N
DI +(2¢=2)n — (i +)l——]
i=0 j=0 i=0 j=0 ¢
c—1c—-1 c—1c—-1 .
n, +] N
> O R e 2= Y+
i=0 j=0 i=0 j=0
(from f. < gc)
Thus, we have,
c—1
> Age(ni) + (¢ — i = Dni} < fe(n).
i=0
It follows that g.(n) < f.(n) holds for every n > 1. ad

3. Widths and length of Cg

The main purpose of this section is to compute the exact values of BW(C?),
CW(C4), and TL(C?). More specifically, we will prove the following three theorems:

11

Theorem 2 The bisection width BW(C?) of C¢ is

cltl/4 if ¢ is even
(c+1)(c?—1)/4 if cis odd.

Theorem 3 The cut width CW(C?) of C¢ is

c(c+2)(c? —1)/{4(c+ 1)} if ¢ is even and d is even
e+ 2)c?=t —1}/{4(c+ 1)} if ¢ is even and d is odd
(c+1)(c?—1)/4 if ¢ is odd.

Theorem 4 The total edge length TL(CY) of C? is
(c+1)ct(e? —1)/6.

Recall that C(G,1,7) = {(u,v) € E |0 <l(u) < i <l(v) < |V|— 1} denote the
width of a graph G = (V, E) under a linear layout [at a gap i. Also, N denotes
the natural order layout, i.e., N(u) = u for every u. For later reference, we define
C~(G,1,i) and C*(G,1,1) as follows:

O (G,1i) = {(uw)€E|0<I(u)<I)<i},
CHG,Li) = {(wv)eE|i<l(u) <I(v) <|V]-1}.

In other words, C~(G,1,i) (resp. C*(G,1,i)) is the set of edges connecting nodes
whose positions are less than (resp. larger than or equal to) i. Clearly, a set E
of edges in G is partitioned into three sets C(G,1,4), C~(G,1,i), and C*(G,1,1).
Thus, |E| = |C(G,1,i)| + |C~(G,1,i)| + |CT(G,1,i)| always holds.
To prove the above theorems, we prove the following important lemma:
Lemma 5 For any c, d, linear layout | and gap 1,
|C(CE,1,0)] > |C(CE, N, i)

cr"

holds.

Proof. Clearly, C—(CY, N, i) has exactly the same edges in Céi). Thus, we always
have |C~(CZ, N,i)| = |C{”|. Since the natural order layout of C'¢ is bilateral sym-
metry, we have |C+(C4, N,i)| = |C~(C%, N,n—i)| = |C"?|. Further, C~(C4,1,1)

and C*(C¢,1,i) are i-node and (n — i)-node subgraphs of C?, respectively. Thus,

crY co

from Theorem 1, |C~(C%,1,4)| < |C{V| and |C+(C4,1,4)| < |CL" | hold. Tt follows

cr¥ crY

that |C~(C4,1,4)] < |C~(CZ,N,i)| and |CT(C4,1,4)| < |C+(CZ, N,i)|. Therefore

crm cHr"
|C(C4,1,i)| > |C(CY, N,i)| always holds. |
From this lemma, when computing the parameters of C'¢, we do not have to
compute the minimum over all linear layouts but only those of the natural order

layout. In other words, we have

BW(CY) = [C(CL N, [4/2])],
CW(C%) = max|C(G,N,i)|,
cdz—l
TL(CY) = Y |C(G,N,i),
i=1

12

Figure 6: The natural order layout of C?

for any ¢ and d. Using this fact, we prove Theorems 2, 3, and 4.
For later reference, we define several notations. We partition all edges in C'?
into d subsets C[1],C4[2],...C%[d] as follows:

ClH = {(wv) el lu#u} (1<k<d

In other words, C%[k] is a set of edges along the k-th dimension. Further, let
C(CI[k],1,i) denote the edge set defined as follows:
C(CAK, L) = C(CL 140 NCLEK]

In other words, C'(CY[k],1,i) is the set of edges along the k-th dimension which is
separated at gap ¢ under linear layout /.

For the reader’s benefit, we will review the structure of the natural order layout
of C¢, which is helpful to understand the forthcoming proofs. The C? has ¢ C4~ s
as illustrated in Figure 6. Each C¢~! is also arranged by the natural order layout.
Further, the corresponding nodes in ¢ C%~1’s are connected by K.. More precisely,
any pair of the i-th node in ¢ C9~1’s are connected by an edge. Thus, ¢ C¢~1’s are
connected by ¢4~ K.’s, which correspond to C4[d].
Proof of Theorem 2. The bisection width of K, is BW(K.) = ¢*/4 if ¢ is even,
and BW(K.) = (¢® — 1)/4 if ¢ is odd. Thus, if ¢ is even, |C(C%, N,¢?/2)| can be
computed as follows:

|C(Cc[-iaN7 cd/2)| = cdilBW(KC)
Cd-‘rl

4
If ¢ is odd, then for all £ (1 < k < d),

|C(CIEL N, (¢! =1)/2)] = & 'BW(K,)
. (c? —1)ck1
- 4

13

By summing up, we have

d
|C(Cg)N)Cd/2)| = Z|C(Cg[k]>N) (Cd_l)/2)|
k=1
e+ 1)(c?—1)
= f

O
Proof of Theorem 3. Let igi;_1 ---i; be the binary representation of . From the
definition of C?, we have |C(CZ[d], N,i)| = i(c—ig—1)+ (c? t —ig_1ig_o---i1)ig.
Hence, we have |C'(CY[d],N,i+ 1)| — |C(C2[d],N,i)| = ¢ — 2ig — 1. Similarly, we
can show that |C'(CZ[k], N,i + 1)| — |C(C2[k], N,i)| = ¢ — 2iy — 1 for every k. It
follows that the width at gap i increases by ¢ — 2igy — 1 as i increases.

First, we assume that c is odd. For every k, |C(CZ[k], N,i)| takes the maximum
when ¢ — 2i, — 1 =0, i.e., iy = (c? — 1)/2. If this is the case, i = (¢? — 1)/2 holds,
and from Theorem 2 we have,

CW(CH) = |C(CHH. N, (¢ =)2y = CHEZD,

Next, we will compute CW(C?) when ¢ is even. To maximize |C(C2[d], N, i),
we should select iq = ¢/2 or ¢/2 — 1. Similarly, to maximize |C(C%[d — 1], N, i)|,
we select iq_1 = ¢/2 or ¢/2 — 1. Further, we have |C(C4[d], N,i + 1) U C(C%[d —
1],N,i +1)| — |C(CY[d], N,i) U C(C%[d — 1],N,4)| = 2¢ — 2(ig + iq—1) — 2. Thus,
|C(C4[d], N,i) U C(C4d — 1], N,i)| takes maximal if 2¢ — 2(iy + ig—1) — 2 = 0.
Consequently, we should select i = ¢/2 and i4—; = ¢/2—1. By the same discussion,
we should select ig =442 =ig-a =---=c¢/2and ig_1 =ig3=---=¢/2—1to
maximize |C(C%[d — 1], N,i)|. If this is the case,

(c+2)(c?—1)

~ e+ 1) if d is even,
= 0

XD i s odd.
2(c+1)

For such ¢, we have

(c—1)(c+2)ckt .

|C(CLTk], N, i) U C(CEk — 1], N,)| = .

By summing up, we have

C(cl, N, i) = c(c+2)(c? —1)/{4(c+ 1)} if ¢ is even and d is even,
Cor U= 2{(c+2)c?t —1}/{4(c+ 1)} if cis even and d is odd.

Proof of Theorem 4. The total edge length of K. is

S ICUL N = i)
c(c? —1)

6

14

Since, C%[1] has ¢! K.’s, we have

cel—1 2k—1 (.2
-1
Sl = e 02D
i=1
I (e §)
B 6
In general, for all k&
=1 c2k71(62 ~1)
> IO, N, = ot h e
=1
_ d+k 1(6 1)
N 6
By summing up, we have
1 4 odtk—1(2
d . _ (c*—1)
> ICEEND = S
i=1 k=
= (c+ et —1)/6.

O
Since C'? has (¢ — 1)dc?/2 edges, we can compute the average edge length of C'¢
from Theorem 4.
Corollary 1 The average edge length of C? is

(c+1)(c? = 1)/{3d(c —1)}.

4. Widths and length of Ag

The main purpose of this section is to evaluate BW(A%), CW(AY), and TL(A?).
More specifically, we will prove the following three theorems:
Theorem 5 The bisection width BW(AZ) of AZ js

cd1 if ¢ is even,
(¢t =1)/(c—1) ifcis odd.

Theorem 6 The cut width CW(A?) of AY is at least

{(c+2)c?=t —1}/(c+1) ifc is even and d is odd,

{ (c+2)(c C;— 1)/{c(c+ 1)} if cis even and d is even,
(c?—1)/(c—1) if ¢ is odd,

and at most

(c =1)/(c—1) if ¢ > 3.

15

Theorem 7 The total edge length TL(A?) of A? is at least

{ 2(c+ 1)c?2(c?t = 1)/3 if c is even,
2¢i(c? —1)/{3(c = 1)} if c is odd.

and at most
e —1).
Recall that we have shown that C'™ is a maximum subgraph of C'™ whenever
n < m and have computed the exact values of BW(C4), CW(CY), and TL(CY)
using this fact. The reader may think that A is also a maximum subgraph of
A whenever n < m, and the exact values of BW%A?), CW(AY), and TL(A%)
can be computed using this fact. Unfortunately, A"
subgraph. For example, Agl) is not a maximum subgraph AELB). Graph A514) is a 4-
node 3-edge subgraph of Az(ls), while the maximum 4-node subgraph has four edges.
Hence, we use a different technique to evaluate BW(A%), CW(AY), and TL(AY).
We first compute the lower bounds of BW(A%), CW(AZ), and TL(A%). For this
purpose, we use a method similar to embedding a directed clique in A? [15, pp.223].
As a preliminary, we embed K, in L.. Each node K. is assigned to a node in
L.. Each edge K, is embedded in edges of L. as a path. It is easy to see that no
edge in L, contains more than h(c) paths, where h(c) is a function such that

{ /4 (if ¢ is even),
(2 —=1)/4 (if ¢ is odd).

Next, we embedded C? in A? similarly. Each node u (0 < u < ¢? — 1) of C? is
assigned to node u of AZ. Note that each side of C? is K, while that of A is L..
Thus, we can embedded each edge of C? in edges of A? as a path such that no edge
in A? contains more than h(c) paths. Thus we have the following Lemma:
Lemma 6 For every gapi (1<i<c-—-1),

is not always a maximum

hic) =

. C(C41,1)]
Ad > | co™
catLyl = Soend
Using this lemma, we have,
Corollary 2 For every ¢ and d,
BW(C?)
BW(4?%) > ——<
W(c) — h(C) I
cwW(C?)
Ad > c
CW(AL) > o)
TL(CY)
TL(AY) > —=<
(“4h = 5

hold.
The lower bounds in Theorems 5, 6, and 7 can be computed using this corollary
combined with Theorems 2, 3, and 4 combined.

Next, we will prove the upper bounds in Theorems 5, 6, and 7. Clearly, the
bisection width, the cut width, and the total edge length for the natural order
layout IV give the upper bounds. In other words, we have the following lemma:

16

Lemma 7 For every ¢ and d,

BW(AD) < |C(ALN, [¢?/2]],
CW(AY) < max|C(AY N,i)l,
|[V]—1
TL(AY) < Z |C(AL N, i),

hold.
Using this lemma, we compute the upper bounds.

For later reference, we define a number of notations. The edge set A¢ is parti-
tioned into d sets, A4[1], A4[2],... A4[d] as follows:

AE] = (o) € A Jug £o} 1<k <d).
Further, let C(AZ[k],1,i) denote the edge set defined as follows:

C(AYE], L) = C(A%1,i)N A%k,

cr "

Proof of the upper bound in Theorem 5. If cis even, |C(A% N,c?/2)| can
be computed as follows:

|C(AL, N, c?/2)] |C(ALd], N, /2)|

41,

If ¢ is odd, then for all &,
|C(AZ[R], N, ¢?/2)] = L

Therefore, by summing up, we obtain

|C(A57N7 (cd - 1)/2)|

d
> |C(ALKL N, c*/2)]

k=1
(¢! = 1)/(c—1).

O
Proof of the upper bound in Theorem 6. Let igiq—1---i; be the binary
representation of 4. From the definition of A?, we have, for every k and i,

k—1 ;
d . =cC lfISZkSC—Q,
|C(Ac[k]7sz)| { < ck=1 if ir=0o0rc—1.

We thus select iy = ig_1 = -++ = i; = 1 for the maximum of |C(AZ, N,i)|. For such
iy
|C(AL[K], N, i) =

holds. By summing up, we obtain

|C(AL N,)| = (¢! = 1)/ (e~ D).

17

Proof of the upper bound in Theorem 4. The total edge length of L. is

c—1
Y IC(Le,N,i)| = e—1.
i=1

Using this fact, we have, for all k

ci: |C(Ag[k'],N,Z)| = (C _ 1)Cd+k71

i=1
By summing up, we have

-1

d
YICALNG = Y (e—1)ettH!
i=1

5. Concluding remarks

We have presented the exact or nearly exact values of the bisection width, the
cut width, and the total edge length of generalized hypercubes. Lemma 5 implies
that the natural order layout of a d-dimensional c-ary clique is the optimal layout
in the sense that the width of the natural order layout at each gap is smaller than
or equal to that of any other layout at the same gap. Similarly to the A? case, this
result makes it easy to prove that the upper and lower bounds of the widths and
the total length of A? with wraparound edges (referred to as a d-dimensional c-ary
torus [15]) are twice as large as those of A¢.

After the preliminary version of this paper appeared [19], several related results
have been shown. For a non-decreasing sequence positive integers ki, ko, . . ., kq, let
Chy kg = Ky X Kpy X --- X Ky, denotes a d-dimensional Hamming graph[4].
Since C’g = Cey.,...c, a d-dimensional Hamming graph is a generalization of a
d-dimensional clique. Similarly, Ag, k,,..k, = Lk, X Lg, X --- X Ly, denotes a
generalization of a d-dimensional array. Azizoglu and Egecioglu showed the tight
value of the bisection width of Ag, ,,..k,. More specifically, they proved that
BW(Ak, ks....ky) = Ke + Key1 + ...+ Kg, where e is the largest index for which k.
iseven and K; = k; _1k;_o---ky for 2 <i < d with K; = 1. They also showed the
exact value of the isoperimetric number of A% defined as follows:
|C(AL, 1, 3))|

cr ¥y

IN(A4Y) = min min
1<iced i

They have proved that IN(A?) = 2 if ¢ is even and IN(A?) = 22 if ¢ is odd [3].
Further, they showed that IN(A, k,,...k.) = 1/ %] [4].

18

Bezrukov et al. [23] considered the problem of embedding binary hypercubes
into a rectangular grid. They showed the exact solution of the congestion (i.e. the
cut width for embedding on a rectangular grid) of binary hypercubes [6]. Vrt’o
proved that the cut width of the mesh of d-ary trees of depth n is 6(d"*!). The
readers should refer to [11] for a survey of published results for graph layouts.

The exact values of the cut width and total edge length of A? still remain to be
solved.

Acknowledgments

The author would like to thank Professor Omer Egecioglu and Professor Imrich
Vrt’o for their valuable comments.

References

1
2

3.

10.

11.

12.

13.

14.

15.

16.

S. G. Akl. Parallel Sorting Algorithms. Academic Press, 1985.
S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, 1989.

M. C. Azizoglu and Omer Egecioglu. The isoperimetric number of d-dimensional
k-ary arrays, International Journal of Foundations of Computer Science, 10(3):289—
300, 1999.

. M. C. Azizoglu and Omer Egecioglu. The bisection width and the isoperimetric

number of arrays, to appear in Discrete Applied Mathematics,

. B. Becker and H. U. Simon. How robust is the n-Cube ? In Proc. of 27th Symposium

on Foundation of Computer Science, pages 283—291, October 1986.

S. L. Bezrukov, J. D. Chavez, L. H. Harper, M. Rottger, U.-P. Schroeder. The
congestion of n-Cube layout on a rectangular grid, Discrete Mathematics, 213:13—
19, 2000.

L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus structures
for a computer network. IEEE Transactions on Computers, C-33(4), April 1984.

G. Brebner. Relating routing and two-dimensional grids. In P. Bertolazii and
F. Luccio, editors, VLSI: Algorithms and Architectures, pages 221-231. Elsevier
Science Publishers B.V.(North-Holland), 1985.

W. J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE
Transactions on Computers, 39(6):775-785, June 1990.

R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton. Preserving average proximity in
arrays. Communications of the ACM, 21(3):228-231, March 1978.

J. Diaz, J. Petit, and M. Serna. A survey on graph layout problems to appear in
ACM Computing Surveys, 2002.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified polynomial
complete problems. SIGACT, pages 4763, 1974.

L. H. Harper. Optimal assignments of numbers to vertices. J. Soc. Indust. Appl.
Math, 12(1):131-135, March 1964.

F. T. Leighton. Complezity Issues in VLSI: Optimal Layouts for the Shuffle-
Ezchange Graph and Other Networks. MIT Press, 1983.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays - Trees
- Hypercubes. Morgan Kaufmann, 1992.

F. Makedon and I. H. Subdorough. On minimizing width in linear layouts. Discrete

19

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Applied Mathematics, 23:243-265, 1989.

Y. Manabe, K. Hagihara, and N.Tokura. The minimum bisection widths of the cube-
connected-cycles graph and cube graph. Trans. IEICE(D) Japan, J76-D(6):647—
654, June 1984. in Japanese.

K. Nakano, W. Chen, T. Masuzawa, K. Hagihara, and N. Tokura. Cut width and
bisection width of hypercube graph. IEICE Transactions, J73-A(4):856-862, April
1990. in Japanese.

K. Nakano, Linear layouts of generalized hypercubes, In Proc. of Graph-Theoretic
Concepts in Computer Science (LNCS 790), pages 364-375, June 1993.

L. Niepel and P. Tomasta. Elevation of a graph. Czechoslovak Mathematical
Journal, 31(106):475-483, 1981.

A. L. Rosenberg. Preserving proximity in arrays. SIAM J. Comput., 4(4):443-460,
December 1975.

C. D. Thompson. Area-time complexity for VLSI. In Proc. of 11th Symposium on
Theory of Computing, pages 81-88. ACM, 1979.

I. Vrt’o. Cutwidth of the mesh of d-ary Trees. In Proc. of European Conference
on Parallel Processing, pages 242-245, 1997.

K. Wada and K. Kawaguchi. Optimal bounds of the crossing number and the bisec-
tion width for generalized hypercube graphs. In Proc. of 16th Biennial Symposium
on Communications, pages 323-326, May 1992.

K. Wada, H. Suzuki, and K. Kawaguchi. The crossing number of hypercube graphs.
In Proc. of 48rd Convention of IPS Japan, pages 1-95, 1991. in Japanese.

S. M. Yuan. Topological properties of supercube. Information Processing Letters,
37:241-245, March 1991.

20

