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A Graph Rewriting Approach for Converting Asynchronous ROMs
into Synchronous Ones
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SUMMARY Most of FPGAs have Configurable Logic Blocks (CLBs)
to implement combinational and sequential circuits and block RAMs to
implement Random Access Memories (RAMs) and Read Only Memories
(ROMs). Circuit design that minimizes the number of clock cycles is easy
if we use asynchronous read operations. However, most of FPGAs sup-
port synchronous read operations, but do not support asynchronous read
operations. The main contribution of this paper is to provide one of the
potent approaches to resolve this problem. We assume that a circuit using
asynchronous ROMs designed by a non-expert or quickly designed by an
expert is given. Our goal is to convert this circuit with asynchronous ROMs
into an equivalent circuit with synchronous ones. The resulting circuit with
synchronous ROMs can be embedded into FPGAs. We also discuss several
techniques to decrease the latency and increase the clock frequency of the
resulting circuits.
key words: FPGA, block RAMs, asynchronous read operations, rewriting
algorithm

1. Introduction

An FPGA is a programmable VLSI (Very Large Scale In-
tegration) in which a hardware designed by the users can
be embedded quickly. Typical FPGAs consist of an array
of programmable logic blocks (slices), memory blocks, and
programmable interconnects between them. The logic block
contains four-input logic functions implemented by a LUT
and/or several registers. Using four-input logic functions,
registers, and their interconnections, any combinational cir-
cuit and sequential logic can be implemented. The memory
block is a dual-port RAM which can perform read and/or
write operations for a word of data to two distinct or same
addresses in the same time. Usually, the dual-port RAM
supports synchronous read and synchronous write opera-
tions. The read and write operations are performed at the
rising clock edges. The dual-port RAM outputs data of a
specified address after the rising edge. Similarly data is writ-
ten to a specified address at the rising edge of clock if write
enable is high. Design tools are available to the users to
embed their hardware logic into the FPGAs. Some circuit
implementations are described [1]–[4] to accelerate compu-
tation.

In this paper, we focus on the asynchronous and syn-
chronous read operations of memory blocks as follows:

Asynchronous read operation The memory block outputs
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the data specified by the address given to the address
port. When the address value is changed, the output
data is updated immediately within some delay time. In
other words, the output data port always outputs M[d],
which is the data stored in the input address value d.

Synchronous read operation Even if the address value is
changed, the output data is not updated. The output
data is updated based on the address value at the ris-
ing edge of clock. More specifically, the output data
port outputs M[d], where d is the address data at the
previous point of rising clock edge.

Let AROMs and SROMs denote ROMs with asynchronous
and synchronous read operations, respectively. In general,
the circuit design is simpler and easier to the designers, in
particular to the non-expert circuit designers if AROMs are
available. In asynchronous read operation, the value of a
specified address can be obtained immediately. However, in
synchronous read operation, one clock cycle is required to
obtain it. Nevertheless, block RAMs embedded in most of
the current FPGAs do not support asynchronous read oper-
ation for increasing its operating clock frequency.

The main contribution of this paper is to present a cir-
cuit rewriting approach that converts an asynchronous cir-
cuit consisting

combinational circuits (CCs), registers (Rs),
and ROMs with asynchronous read operations
(AROMs)

into an equivalent synchronous circuit consisting

combinational circuits (CCs), registers (Rs),
and ROMs with synchronous read operations
(SROMs).

Note that, most of the current FPGAs support synchronous
read operation, but do not support asynchronous one. We are
thinking the following scenario to use our circuit rewriting
algorithm:

• An asynchronous circuit designed by a non-expert, or
quickly designed by an expert is given.
• Our circuit rewriting algorithm convert it into an equiv-

alent synchronous circuit.
• The resulting synchronous circuit can be implemented

in FPGAs.

In other words, designers can design a circuit for FPGAs un-
der the assumption of asynchronous read operation, which
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Fig. 1 An example of circuits using an AROM and an SROM.

is simpler and easier than one with synchronous read opera-
tion.

We will show a simple example illustrating that the cir-
cuit design is simpler if AROMs are available. Suppose that
for an input X0, we need to compute Xn = Xn−1 + f (Xn−1)
for every n ≥ 1. We assume that the function f is computed
using a ROM. More specifically, we use a ROM such that
address i is storing a value of f (i). Figure 1 (a) illustrates a
circuit with an AROM to compute X1, X2, . . . for input X0.
An AROM is used to compute the value of f (Xn) for a given
Xn. It should be clear that this circuit outputs X1, X2, . . .
in every clock cycle. Figure 1 (b) shows a circuit with an
SROM. Since one clock cycle is necessary to read the value
of f (Xn) for input Xn, we need to insert a register to syn-
chronize two inputs Xn and f (Xn) of the adder as illustrated
in the figure. This circuit outputs X1, X2, . . . in every two
clock cycles. Hence, the circuit in Fig. 1 (b) needs double
clock cycles over the circuit in Fig. 1 (a). Using our algo-
rithm to the sub-circuit with solid lines (wires) in Fig. 1 (a),
we can obtain the circuit in Fig. 1 (c) automatically. In the
circuit with an SROM in Fig. 1 (c), X1, X2, . . . is output in ev-
ery clock cycle. Thus, the timings of the circuits in Fig. 1 (a)
and (c) are identical.

It is not trivial for the non-expert designers to minimize
the number of clock cycles to obtain circuit as illustrated in
Fig. 1 (c). However, our algorithm can do it automatically.
Although, clock performance may degrade in the converted
circuit; however, designers can make a trade-off between the
maximum delay and number of clock cycles for their de-
signs. The readers should refer to Fig. 2 for an illustration.
In Fig. 2, the number of clock cycles is increased as well as
the maximum delay is decreased by inserting the pipelined
registers. In general, the insertion of the pipelined registers
is not difficult. On the other hand, our algorithm may de-
crease the number of clock cycles by removing redundant
registers. Although it may increase the maximum delay,
sometimes the resulting circuit takes smaller total comput-

Fig. 2 A relation between the maximum delay and the number of clock
cycles.

ing time.
The outlines of our new idea are as follows:

1. We introduce a negative register (NR), which is an
imaginary register latching a future input data.

2. We define simple five rules that rewrite a circuit.
3. The rewriting algorithm that we propose just repeats

applying these rules until no more rules can be applied.
When the rewriting algorithm terminates, we have an
equivalent AROM-free circuit to the original circuit.

The key and innovative idea is to introduce a negative reg-
ister. In our rewriting algorithm, a circuit with AROMs is
first converted into an AROM-free circuit with negative reg-
isters. After that, our algorithm continues to rewrite circuit
such that all NRs are removed. When the algorithm termi-
nates, all negative registers will be removed if possible, and
the resulting circuit becomes an equivalent to the original
circuit.

A circuit implementation with AROMs is better than
SROMs implementation, because of less power consump-
tion, easy to design etc. But it has some problems like small
in size so that it does not support the designer’s demand,
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more expensive, and less speedy [5]–[7]. To cut the clock
distribution power, an asynchronous circuit design in FP-
GAs is very much suitable, described in [8]–[10]. However,
it is not supported by the current FPGAs.

On the other hand, a circuit implementation with
SROMs is dominating the modern digital circuit design in-
dustry, because it supports the modern FPGA architecture
although it has some drawbacks to design like clock distri-
bution, more power consumption etc [5], [7]. So we should
use SROMs when we need a function of ROMs.

One of the research works described the implementa-
tion of asynchronous circuit in FPGA [11]. In this paper,
they described the problems like hazards, timing constraints,
state holding elements, analog components and decomposi-
tion of the asynchronous circuit implementation in FPGA.
Another research work described a novel FPGA architecture
for implementing various styles of asynchronous logic [12].
They implemented a full-adder circuit in two different logic
styles. While in synchronous circuits a clock globally con-
trols the activity where as asynchronous circuit activity is
locally controlled using communication channels to detect
the presence of data at their inputs and outputs. An asyn-
chronous module communicates with each other using re-
quests and acknowledges [13]. Some dedicated FPGAs have
also been developed to test asynchronous designs. Unfor-
tunately, these FPGAs are closely associated to a style of
design. For instance, MONTAGE [11] and PGA-STC [14]
are based on an asynchronous design, GALSA [15] and
STACC [16] are globally asynchronous FPGAs but locally
synchronous and PAPA [17] is a fully asynchronous FPGA
dedicated to optimize pipeline circuits.

To the best of our knowledge, there is no previous re-
search work on our topic. It is well known that the architec-
ture of the current FPGAs is the best suited for digital syn-
chronous circuit designs. Unfortunately, they do not have
block RAMs supporting asynchronous read operations. It is
also known that AROM is implemented in LUTs which is
easy to use because of the immediate output of data. How-
ever it is small in size and costly. Therefore, our target
is to generate an AROM-free fully synchronous sequential
circuit from a sequential circuit with AROMs which is an
equivalent to the original circuit so that it can support the
modern FPGA architecture.

We summarize several significant points of our results
as follows:

• Negative registers (NRs) are newly introduced. Fur-
ther, the correctness of our algorithm is proved in a rig-
orous manner.
• Our circuit rewriting algorithm moves all redundant

registers toward the output ports. They can be removed
to decrease the latency of the circuit. Therefore, the
circuit that obtained has minimum latency in the sense
that all redundant registers are deleted.
• We can also improve the clock frequency by inserting

registers appropriately. These performance improve-
ment technique for the resulting circuit will be dis-

cussed in Sect. 5.
• FPGA vendors may think that they will support asyn-

chronous read operation for next-generation FPGAs
satisfying low latency circuits with forfeiting the high
clock frequency. If this is the case, our rewriting ap-
proach is useless. However, our results suggest to the
FPGA vendors that support of asynchronous read oper-
ation is not necessary, because it can be automatically
converted into synchronous one using our algorithm.
• The readers may think that circuits dealt with this pa-

per are too restricted where as circuits in real-world are
more complicated. However, it may be possible to ex-
tract a sub-circuit from the complicated circuit. We can
then apply our circuit rewriting algorithm to this sub-
circuit.
• Even if a user designs a circuit with pipeline structure,

our algorithm moves pipeline registers toward the out-
put ports and destroys the pipeline structure. However,
it may be possible to perform AROM-free conversion
locally without collapsing a global pipeline structure.
For this purpose, we need to extract sub-circuits in the
original circuit such that they contain no pipeline regis-
ter. By using our algorithm for each sub-circuit, it can
be converted into AROM-free circuit. Since the timing
of each sub-circuit is not changed, the whole converted
circuit is identical to the original circuit. In this way,
our algorithm may be applicable to the pipelined cir-
cuits.

This paper is organized as follows: Section 2 briefly
describes the circuits and their equivalency. In Sect. 3, we
describe our rewriting algorithm, circuit graph and also ex-
plain the equivalency for our rewriting rules. Section 4
presents the proof of the correctness of our rewriting algo-
rithm. In Sect. 5, we explain the performance improvement
of the AROM-free resulting circuits. Finally Sect. 6 con-
cludes this work and also describes the future works.

2. Circuits and Their Equivalence

Let us consider a synchronous sequential circuit that con-
sists of input ports, output ports, combinational circuits
(CCs), registers (Rs), Read Only Memories (ROMs), a
global clock input (clock), and a global reset input (reset).

A combinational circuit (CC) is a network of funda-
mental logic gates with no feedback. So, it can compute
Boolean functions represented by Boolean formulas, such
as F = A · B + B · C and G = B ·C as illustrated in Fig. 3.
Once inputs are given, the outputs are computed in small
propagation delay.

A b-bit register has a clock input and a reset input. It
can store a b-bit data as shown in Fig. 4. If reset is 1, then
the b-bit data is initialized by 0. If reset is 0, the stored data
is updated by the value given to the input port d at every
rising clock edge. The data stored in the register is always
output from port q.

A ROM (Read Only Memory) has a b-bit input d
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Fig. 3 An example of a combinational circuit (CC).

Fig. 4 A register (R), a synchronous ROM (SROM) and an asynchronous
ROM (AROM).

and a c-bit data output q. It is storing 2b words such as
M[0],M[1], . . . ,M[2b − 1] with c bits each. We deal with
two types of ROMs in terms of read operations as follows:

• Synchronous ROM (SROM) An SROM has a clock
input and a reset input. If reset is 1 then the stored value
is initialized by 0. The read operation is performed at
every rising clock edge when reset is 0. The output q is
the value of M[d] at the latest rising clock edge.
• Asynchronous ROM (AROM) An AROM has no

clock input and no reset input. The value of M[d] is
continuously output from port q.

The Fig. 5 shows a timing diagram of reading operations
of the R, SROM, AROM and NR. In the figure, time
0, 1, 2, . . . correspond to rising edges of the periodic clock
input. Initially global reset is 1 and it drops to 0 just be-

Fig. 5 A timing chart of a register (R), an SROM, an AROM and a neg-
ative register (NR).

fore time 0. Data d0, d1, d2, . . . are given to the input port
d. As shown in the figure, the value of output, q of R
and SROM is 0 at time 0. Also, at time 1, 2, . . . the val-
ues of output, q of R and SROM are d0, d1, d2, . . . and
M[d0],M[d1],M[d2], . . ., respectively. For the AROM, the
data M[d0],M[d1],M[d1], . . . are taken from the output port,
q immediately at time 0, 1, 2, . . ., respectively.

In current FPGAs, an SROM can be implemented in
embedded block RAMs. However, an AROM is imple-
mented in LUTs, which are very costly. Hence, we should
use SROMs when we need a function of ROMs. On the
other hand, AROM is easy to use, because we can get out-
put data from the AROM immediately.

We will describe a behavior of a circuit element using
a sequence of output at every rising clock edge for the pe-
riodic clock (clock is inverted into a fixed frequency), and
initial reset (initially, reset is 1 and drops to 0 before the
first rising clock edge) as illustrated in Fig. 5. The behavior
of each circuit element is described by the output sequences
as follows:

• Combinational Circuit (CC) For simplicity, we as-
sume 3-input 2-output combinational circuit which is
shown in Fig. 3. There is no difficulty to extend the
definition for general m-input n-output combinational
circuit. We assume that, at time i (i ≥ 0), ai, bi, and ci

are given to the 3 input ports A, B, and C. Let f and
g be the two functions with three arguments that deter-
mine the value of output ports F and G. The output
sequences of F and G are as follows:

CC(F): 〈 f (a0, b0, c0), f (a1, b1, c1), f (a2, b2, c2), . . .〉
CC(G): 〈g(a0, b0, c0), g(a1, b1, c1), g(a2, b2, c2), . . .〉

• Register (R) Let di denote an input value given to an
input port d at time i (i ≥ 0). The output sequence is
described as follows:

R: 〈0, d0, d1, d2, . . .〉
• Synchronous and Asynchronous ROMs (SROMs
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Fig. 7 SROM, R+AROM, and AROM+R.

Fig. 6 An example of a fully synchronous circuit and the corresponding
circuit graph with potentiality.

and AROMs) Let M[ j] denote the value stored in ad-
dress j ( j ≥ 0) of the ROM. The output sequences of
SROM and AROM are as follows:

SROM: 〈0,M[d0],M[d1],M[d2], . . .〉
AROM: 〈M[d0],M[d1],M[d2],M[d3], . . .〉

In this paper, we assume that a fully synchronous cir-
cuit has data inputs, data outputs, a global clock input, a
global reset input, combinational circuits (CCs), registers
(Rs), SROMs, AROMs, and their interconnects. The read-
ers should refer to the Fig. 6 for illustrating an example of a
fully synchronous circuit. The global clock and the global
reset are directly connected to the clock input ports and the
reset input ports of all Rs and SROMs. Also, we assume that
a circuit has no loop.

Let us define equivalence of two fully synchronous cir-
cuits for the periodic clock and initial reset. We say that
two circuits X and Y are an equivalent if, for any input se-
quence, the output sequences are the same except for first
several outputs. For the reader’s benefit, we will show an
example of the equivalence.

Let us consider a circuit R+AROM, that is, the out-
put of R is connected to the input of AROM as illustrated
in Fig. 7. We also consider a circuit AROM+R, in which
the output of AROM and the input of R are connected. For
the periodic clock with initial reset, the output sequences of
SROM, R+AROM, and AROM+R are as follows:

SROM: 〈0,M[d0],M[d1],M[d2], . . .〉
R+AROM: 〈M[0],M[d0],M[d1],M[d2], . . .〉
AROM+R: 〈0,M[d0],M[d1],M[d2], . . .〉

Since these three circuits have the same output in time
1, 2, . . ., they are equivalent. Note that the outputs in time
0 are not equal. In this paper, we ignore first several clock
cycles when we determine the equivalency of the circuits.

Suppose that a circuit X with AROMs is given. The
main contribution of this paper is to show

• a necessary condition such that an AROM-free circuit,
Y can be generated, which is equivalent to X, and
• an algorithm to derive Y if the necessary condition is

satisfied.

For later reference, we will introduce a negative regis-
ter (NR), which is a nonexistent device used only for show-
ing our algorithm to derive Y and related proofs. Recall that,
a regular register latches the input at the rising clock edge.
A negative register latches a future input. The Fig. 5 also
shows a timing diagram of a negative register (NR). An NR
latches the value of input d at the rising edge of two clock
cycles later as illustrated in Fig. 5. Thus, the NR has the fol-
lowing output sequence for a periodic clock with an initial
reset is as follows:

NR: 〈d1, d2, d3, . . .〉.
In our algorithm to derive an AROM-free circuit Y , circuits
with NRs will be used as interim results.

3. Circuit Graph and Rewriting Rules

We simply use a directed graph to denote the interconnec-
tions of a fully synchronous circuit. We call such graph as a
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circuit graph. A circuit graph consists of a set of nodes and
a set of directed edges connecting two nodes. Each node is
labeled by either I (Input port), O (Output port), CC (Com-
binational Circuit), R (Register), NR (Negative Register),
AROM, or SROM. A node with label I is connected with
one or more outgoing edges. A node with label O is con-
nected with exactly one incoming edge. A node with label
CC has one or more incoming edges and one or more out-
going edges. A node with label R, NR, AROM, or SROM
has one incoming and one outgoing edge. We also assume
that a circuit graph is a directed acyclic graph (DAG), that
is, it has no directed cycles. The Fig. 6 illustrates an ex-
ample of a directed graph. Note that nodes with label I, R,
NR, AROM, or SROM has only one outgoing edge. The
readers may think that one outgoing edge is a too stringent
restriction because it does not allow two or more fan-outs.
However, we can implement multiple fan-outs by attaching
a simple combinational circuit (CC) that just duplicates the
input. For example, a CC with one input port A and two
output ports F and G such that F = A and G = A is used to
implement fan-out 2 as illustrated in Fig. 8.

For a given circuit X with AROMs, we will show an

Fig. 9 Rules to rewrite a circuit graph.

algorithm to derive an AROM-free and NR-free circuit, Y
by rewriting circuits. We assume that X is given as a cir-
cuit graph. We will define rules to rewrite a circuit graph.
The readers should refer to Fig. 9 for illustrating the rules,
where P and S denote predecessor and successor nodes re-
spectively. The nodes between predecessor and successor
nodes are rewritten as follows:

Rule 0 AROM node is rewritten into SROM+NR.
Rule 1 Adjacent R and NR nodes are rewritten into NULL

circuit, that is, they are removed.
Rule 2 R+SROM (or NR+SROM) is rewritten into

Fig. 8 A combinational circuit to implement fan-out 2 circuit.
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SROM+R (or SROM+NR).
Rule 3 If one of the incoming edges of a CC node is con-

nected to an NR node, then the NR node is removed,
an R node is added to all the other incoming edges, and
the NR node is moved to all the outgoing edges of the
CC node.

Rule 4 If all the incoming edges of a CC node are con-
nected to an R node, then all the Rs are removed to all
the outgoing edges of the CC node.

Let us confirm that, after applying one of the rewriting
rules, an original circuit and the resulting circuit are equiv-
alent. Let ai, bi, ci, and di (i ≥ 0) denote inputs given from
the predecessor node at time i.

Rule 0 Both AROM and SROM+NR have the output
sequence 〈M[d0],M[d1],M[d2],M[d3], . . .〉, and thus
they are equivalent.

Rule 1 R+NR and NR+R have the output sequences
〈d0, d1, d2, d3, . . .〉 and 〈0, d1, d2, d3, . . .〉, respectively.
Also, NULL circuit has the output sequence 〈d0, d1, d2,
d3, . . .〉. Thus, they are equivalent.

Rule 2 R+SROM and SROM+R have the output se-
quences 〈0,M[0],M[d0],M[d1], . . .〉 and 〈0, 0,M[d0],
M[d1], . . .〉, respectively and thus they are equivalent.
On the other hand, NR+SROM and SROM+NR have
the output sequences 〈0,M[d1],M[d2],M[d3], . . .〉
and 〈M[d0],M[d1],M[d2],M[d3] . . .〉, respectively and
thus they are equivalent.

Rule 3 The output sequences of the left-hand side of
the rule are 〈 f (a1, b0, c0), f (a2, b1, c1), f (a3, b2, c2), . . .〉
and 〈g(a1, b0, c0), g(a2, b1, c1), g(a3, b2, c2), . . .〉. Those
of the right-hand side are 〈 f (a1, b0, c0), f (a2, b1, c1),
f (a3, b2, c2), . . .〉 and 〈g(a1, b0, c0), g(a2, b1, c1),
g(a3, b2, c2), . . .〉. Thus, they are equivalent.

Rule 4 The output sequences of the left-hand side of the
rule are 〈 f (0, 0, 0), f (a0, b0, c0), f (a1, b1, c1), . . .〉 and
〈g(0, 0, 0), g(a0, b0, c0), g(a1, b1, c1), . . .〉. Those of the
right-hand side are 〈0, f (a0, b0, c0), f (a1, b1, c1), . . .〉
and 〈0, g(a0, b0, c0), g(a1, b1, c1), . . .〉. Thus, they are
equivalent.

We are now in position to describe the rewriting algo-
rithm. Suppose that an input circuit graph has nodes with
labels I, O, R, AROM, SROM, and CC. The following
rewriting algorithm generates a circuit graph equivalent to
the original circuit graph.

Find a minimum i such that Rule i can be applied
to the current circuit graph. Rewrite the circuit
graph using such Rule i. This rewriting procedure
is repeated until no more rewriting is possible.

The readers should refer to Fig. 10 for illustrating interim
and resulting circuit graphs obtained using our rewriting al-
gorithm. In this figure, nodes applied rules are highlighted.

Let us observe the behavior of our rewriting algorithm.
First, our rewriting algorithm repeats the applying Rule 0 to
all AROM nodes until all AROM nodes are rewritten into

SROM+NR. After that, NR nodes are moved toward the
output nodes using Rules 2 and 3. Similarly, R nodes are
moved toward the output nodes using Rules 2 and 4 when-
ever possible. Also, adjacent pairs of R and NR are removed
by Rule 1. Thus, intuitively, all NR nodes in the resulting
circuit graph are moved and placed just before the output
nodes.

For the purpose of clarifying the condition such that
our rewriting algorithm can generate NR-free circuit graph,
we define the potentiality of the nodes in a circuit graph.
Suppose that a node v of a circuit graph has k (≥ 0) incom-
ing edges such as (u1, v), (u2, v), . . . , (uk, v). Let us define the
potentiality p(v) of a node v as follows:

• If v is I, then p(v) = 0.
• If v is O or SROM, then p(v) = p(u1).
• If v is AROM or NR then p(v) = p(u1) − 1.
• If v is R then p(v) = p(u1) + 1.
• If v is CC, then p(v) = min(p(u1), p(u2), . . . , p(uk)).

The Fig. 6 also shows the potentiality of each node.
We have the following theorem.

Theorem 1: All O nodes of a circuit graph have non-
negative potentiality, if and only if our rewriting algorithm
generates an AROM-free and NR-free circuit graph, equiv-
alent to the original circuit graph.

In other words, we can determine a fully synchronous circuit
that can be converted into an AROM-free circuit by evalu-
ating the potentiality of all O nodes of the corresponding
circuit graph. Also, the potentiality of all O nodes are non-
negative, our rewriting algorithm generates an AROM-free
and NR-free circuit graph, and the corresponding fully syn-
chronous circuit is AROM-free and equivalent to the origi-
nal fully synchronous circuit. For example, in Fig. 10, the
potentiality of the right O node is negative. Hence, the re-
sulting circuit graph has an NR node and our rewriting algo-
rithm fails to remove all NRs.

4. Proof of Theorem 1

The main purpose of this section is to show a proof of The-
orem 1. We will show several lemmas for a proof of Theo-
rem 1.

Let us observe how the potentiality of nodes is changed
by our rewriting algorithm. We focus the potentiality of suc-
cessor nodes. Let P and S denote the predecessor and suc-
cessor nodes for Rules 0, 1, and 2. Also, let P1, P2, P3, and
S 1, S 2 be the three predecessor and two successor nodes in
Rules 3 and 4. We compute the potentiality of each succes-
sor node both before and after applying the rules as follows.

Rule 0 p(S ) = p(P) − 1.
Rule 1 p(S ) = p(P).
Rule 2 p(S ) = p(P) + 1 if R and p(S ) = p(P) − 1 if NR.
Rule 3 p(S 1) = p(S 2) = min(p(P1) − 1, p(P2), p(P3)) =

min(p(P1), p(P2) + 1, p(P3) + 1) − 1.
Rule 4 p(S 1) = p(S 2) = min(p(P1)+ 1, p(P2)+ 1, p(P3)+

1) = min(p(P1), p(P2), p(P3)) + 1.
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Fig. 10 Interim and resulting circuit graphs obtained by our rewriting algorithm for a circuit graph.

Thus, the potentiality of every successor node is never
changed by applying the rules. In every rule, O nodes can
only be successor nodes. Thus, we have,

Lemma 2: The potentiality of every O node of the result-
ing circuit graph is the same as that of the corresponding O
node of the original circuit graph.

In Fig. 10, the potentialities of the left and the right O
nodes are 0 and −1, respectively, and these values are never
changed.

In a circuit graph, let a segment be a directed path
u1, u2, . . . , uk such that, u1 and uk are either I, O, SROM,
or CC, and u2, . . . , uk−1 are either R or NR. Note that, if
k = 2 then it represents a null segment with u1, u2. We also
have the following lemma.

Lemma 3: Let u be an NR node and (u, v) be its outgoing
edge in the resulting circuit graph. Node vmust be either NR
or O node. Also, all NR nodes must be in segments ending
at O node.

Proof If v is an R, SROM, or CC node then Rules 1, 2, or
3 can be applied. Since no more rules can be applied to the
resulting circuit graph, vmust be either NR or O node. Since
the successor of NR nodes must be NR or O node, all NR
nodes must be in segments ending at O node.

From Lemma 3, we will prove that all SROM and CC
nodes in the resulting circuit graph have zero potentiality.

Lemma 4: All SROM and CC nodes in the resulting cir-
cuit graph have non-negative potentiality.
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Proof Since the resulting graph is AROM-free, nodes fol-
low NR nodes can have negative potentiality. Since no seg-
ment ending at SROM or CC has NR nodes, their potential-
ity must be non-negative.

Similarly, we have the following lemma.

Lemma 5: All SROM and CC nodes in the resulting cir-
cuit graph have non-positive potentiality.

Proof We assume that the resulting circuit graph has a
SROM or CC node with positive potentiality, and show a
contradiction. Let v be a first SROM or CC node with neg-
ative potentiality, that is, all SROM and CC nodes in all di-
rected paths incoming to v have non-positive potentiality and
SROM or CC node v has positive potentiality.

Case 1 v is an SROM node
Let (u, v) denote the incoming edge. If u is either R or
NR, then Rule 2 can be applied. Since no more rules
can be applied to the resulting circuit graph, it must be
either I, SROM, or CC. If this is the case, p(u) = 0 and
thus, p(v) = 0, a contradiction.

Case 2 v is a CC node
Let (u1, v), (u2, v), . . . , (uk, v) (k ≥ 1) denote the incom-
ing edges. From Lemma 3, none of u1, u2, . . . , uk is an
NR node. If all of them are R nodes, then Rule 4 can
be applied. Thus, at least one of them is not an R node.
It follows that at least one of them is either I, SROM,
or CC node. From the assumption, the potentiality of
such node is non-positive, Hence, the potentiality of v
is non-positive, a contradiction.

We are now in position to show the proof of Theorem 1.
From Lemma 4 and 5, all SROM and CC nodes in the result-
ing circuit graph have zero potentiality. Hence, if the poten-
tiality of one of the O nodes in the resulting circuit graph is
negative, a segment ending at O node in the resulting graph
should have NR from Lemma 3. Similarly, if the potential-
ity of all the O nodes is non-negative, no segment ending at
an output node has NR in the resulting circuit graph. From
Lemma 2, the potentiality of O nodes does not change by
our rewriting algorithm. Thus, all output nodes of a circuit
graph have negative potentiality, if and only if our rewrit-
ing algorithm generates the resulting circuit graph with NR
nodes. This completes the proof of Theorem 1.

From Theorem 1, it is not always possible to have an
equivalent AROM-free circuit. However, we may modify a
circuit such that it can be converted into an almost equivalent
AROM-free circuit. For this purpose, we compute the po-
tentiality of all O nodes in the corresponding circuit graph.
After that, we insert registers just before O nodes with nega-
tive potentiality so that the potentiality of the corresponding
O nodes turns into a zero. Since the potentiality of the cor-
responding O nodes now is 0, it can be converted into an
equivalent AROM-free circuit according to our Theorem 1.
The readers should refer to the Fig. 11 for illustrating an ex-
ample. Note that, the resulting circuit is not equivalent to
the original circuit. However, the difference is the latency

Fig. 11 A circuit almost equivalent to that of Fig. 6 that can be converted
into an AROM-free circuit.

of the output. Thus, we can say that the resulting circuit is
almost equivalent to the original circuit.

5. Circuit Performance Improvement

Basically, our rewriting algorithm moves registers toward
the output ports. Hence, in general, the resulting circuits
may have long paths from input ports to registers/SROMs
and/or from registers/SROMs to registers/SROMs. There-
fore, the resulting AROM-free circuit has large propagation
delay and low clock frequency.

In this section, we will describe the ideas to improve
the performance of the AROM-free circuit in terms of the
latency and the delay, although performance improvement
of the AROM-free resulting circuits is the beyond of this
paper.

5.1 Minimizing Latency by Eliminating Redundant Reg-
isters

We first define redundant registers in the resulting AROM-
free circuits. The registers which are connected to the edges
ending at O nodes are called redundant registers. The re-
dundant registers are highlighted in Fig. 12. Essentially, the
redundant registers only work just as buffers for the out-
put nodes. Thus, the latency of each output port can be
decreased by eliminating redundant registers if it does not
cause a timing problem for a circuit connected to the output
port. Also, we can say that, after removing all redundant
registers, the latency is minimized, because no other regis-
ters can be deleted.

5.2 Increasing Clock Frequency by Adding Registers

We will describe here about the clock performance improve-
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Fig. 12 An example to improve the performance in the AROM-free cir-
cuit by eliminating redundant registers.

ment of the AROM-free resulting circuits. The maximum
clock frequency depends on the longest path between in-
put ports to registers/SROMs, registers/SROMs to regis-
ters/SROMs, and registers/SROMs to output ports. The
longest path is shown as an example in Fig. 13 (a) by high-
lighting the arrows. Due to the longest path in the clock
dependent circuits (i.e. circuits with Rs, CCs and SROMs
in our case), the clock performance of those circuits must
be degraded. To overcome of this problem, we need to di-
vide the AROM-free resulting circuits (when no rule is ap-
plicable) into several layers so that the longest path becomes
small. Designers can select the layers properly in order to
make the longest path into small for getting optimum clock
performance. In fact, the proper selection of the layers in
the AROM-free resulting circuits for getting optimum clock
performance may be another research work. This topic is
beyond of this paper.

Figure 13 (a) shows an example of two layers. The
cutting points (created by layers and edges) are highlighted
by the bullet circles in Fig. 13 (a). After that, we can add
registers at every cutting point in the AROM-free result-
ing circuits such that longest path in the clock dependent
AROM-free resulting circuits becomes small as illustrated
in Fig. 13 (b). Due to the small path instead of the longest
path, the clock performance of the AROM-free resulting cir-
cuits can be improved definitely. In this case, we can ignore
the latency of the added registers in the AROM-free result-
ing circuits. The Fig. 13 represents the clock performance
improvement of the AROM-free resulting circuit.

6. Conclusions

In this paper, we have presented a rewriting algorithm and

Fig. 13 An example for improving the clock performance in the AROM-
free circuit.

five rewriting rules to convert a sequential circuit with
AROMs into an equivalent fully synchronous circuit with
no AROMs for the current FPGA. Using our rewriting al-
gorithm, any sequential circuit with AROMs can be con-
verted into an equivalent fully synchronous sequential cir-
cuit with no AROMs to support the modern FPGA architec-
ture. It is not trivial to convert the sequential circuits with
ARAMs into the equivalent fully synchronous circuits with
no ARAMs for supporting the modern FPGA. We are now
developing an algorithm for a circuit with ARAM, RAM
with asynchronous read operations. As a future work, we
have a plan to work on the clock performance improvement
in the AROM-free resulting circuits.
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