International Journal of Foundations of Computer Science
© World Scientific Publishing Company

Efficient Hardware Algorithms for n Choose k Counters using the
Bitonic Merger

YASUAKI ITO, KOJI NAKANO, and YOUHEI YAMAGICHI*

Graduate School of Engineering, Hiroshima University
Kagamiyama, Higashi-Hiroshima, 739-8527, JAPAN

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

An “n choose k” counter (C(n, k) counter for short) is a counter which lists all n-bit
numbers with (n — k) 0’s and k 1’s. The C(n, k) counters have applications to solving
combinatorial optimization problems and image processing. The main contribution of
this work is to present an efficient hardware implementation of the C(n,k) counter. In
some applications, C(n, k) counters are used only for small k. The second contribution
is to show more efficient implementations that support C(n, k) counters only for small k.
We evaluate the performance of our new implementation and known implementations in
terms of the number of used slices and the clock frequency for the Xilinx VirtexII family
FPGA XC2V3000-4. Although the theoretical analysis shows that our implementation
is not the best, it runs in higher clock frequency using fewer number of slices than the
other implementations.

1. Introduction

An FPGA (Field Programmable Gate Array) is a programmable VLSI in which
a hardware design can be embedded quickly. Typical FPGAs consist of an array
of programmable logic elements, distributed memory blocks, and programmable
interconnections between them. The logic block usually contains either a four-
input logic function or a multiplexer and several flip-flops. The distributed memory
block is usually a dual-port RAM on which a word of data for possibly distinct
addresses can be read/written at the same time. Design tools are available to the
users to embed their hardware logic designs into the FPGAs. Our goal is to use
FPGAs to accelerate useful computations. In particular, it is very challenging to
develop FPGA-based solutions that are faster and more efficient than traditional
software solutions.

Let C(n, k) denote a set of all n-bit binary numbers that has (n — k) 0’s and &

* Currently with Paltek Corporation, Japan.

1’s. For example, C(6, 3) is

C(6,3) = {000111,001011,001101,001110, 010011,
010101, 010110, 011001,011010, 011100, 100011,
100101, 100110, 101001, 101010, 101100, 110001,
110010, 110100, 111000} (1)

An “n choose k” counter (C(n, k) counter for short) is a counter that lists all num-
bers in C(n, k). It has shown in [10] that several computations including combina-
torial optimization and image processing can be accelerated using C(n, k) counters.
For example, suppose that we have a function f : {0,1}" — {0,1,...,m} for some
positive integer m, and we need to find an n-bit binary number r such that f(r)
takes the minimum value over all possible 2™ n-bit binary numbers x. In other
words, our task is to compute

ro= arg min f(). (2)
This task is a kind of combinatorial optimization, which has many practical appli-
cations. A fast and efficient solution for this task is to design an instance-specific
solution using an FPGA as follows. We design a circuit that computes f(x) for any
given n-bit binary numbers . The output x of the n-bit counter is given to this
circuit computing f(x). A comparator is used to compare the current value of f(x)
and the minimum value obtained so far. If the current value f(x) is smaller, then
the current minimum f(x) and x are updated. This hardware approach is promis-
ing if there exists an efficient (i.e. compact and of small depth) circuit computing
f. For example, it was presented in [10] that halftoning [5, 6, 7] for digital gray
scale images can be accelerated using a C(n, k) counter.

Another example of function f for which this approach works efficiently is the
MAX-SAT problem. An input instance of the MAX-SAT problem is a set of m
Boolean formulas fi, fa,..., fim of n Boolean variables. MAX-SAT problem is a
combinatorial optimization problem to find an assignment of Boolean variable val-
ues that maximizes the number of satisfied formulas (or minimizes the number of
unsatisfied formulas). To solve the MAX-SAT problem using the above approach,
we define function f: {0,1}" — {0,1,...,m} such that

f(x) = [{filfi(x) is not satisfied}|. (3)

It should be clear that, = in formula (2) for function f in (3) is an optimal solution
of the MAX-SAT problem. Also, Boolean formulas can be implemented in the
FPGA by a combinational circuit in an obvious way. For example, an AND binary
operator in a Boolean formula can be implemented using an AND gate with fan-in
2. Thus, the circuit computing f(x) above can be implemented in the FPGA very
efficiently and the above approach works for the MAX-SAT problem. This approach
is an instance-specific solution [1, 9, 14], because the circuit embedded in the FPGA
depends on the input instance (i.e. m Boolean formulas) of the problem. Actually,
several results for solving SAT problem have been presented [12, 13, 14].

In some application, C(n, k) counters are used only for small k. For example,
suppose that an input instance of the MAX-SAT is given as a CNF(Conjunctive
Normal Form) and most of the literals in the input formula are negative. For such
instance of MAX-SAT, it is expected that the optimal solution has few 1 (or true)
assignments. Hence, we can omit the evaluation of the value of f(x) for input x
that has many 1’s. If this is the case, it is sufficient for C(n, k) counter to support
only small k and it is possible to increase the clock frequency and reduce the number
of used slices. Their methods for solving SAT problem can be accelerated using this
idea.

The first contribution of this work is to present an efficient hardware implemen-
tation of C(n, k) counters, that we call bitonic shift implementation. The second
contribution is to show more efficient implementations that supports C(n, k) coun-
ters only for small k. We evaluate the performance of our new implementation in
terms of the number of used slices and the clock frequency for the Xilinx VirtexII
family FPGA XC2V3000-4 [11]. Although our implementation is not the best from
the theoretical point of view, it runs in higher clock frequency using fewer number
of slices than known implementations.

This paper is organized as follows. In Section 2, we show basic ideas for efficient
implementation of C(n,k) counters. Section 3 shows known implementations of
C(n, k) counters. Section 4 presents a new implementation of C(n, k) counters. In
Section 5, we modify known implementations and our new implementation to list
C(n, k) numbers only for small k. In Section 6, we evaluate the performance of
these implementations for Xilinx VirtexIT FPGA, XC2V3000-4. Section 7 offers
concluding remarks.

2. Basic ideas for implementing C(n, k) counters

The main purpose of this section is to show basic ideas for implementing C(n, k)
counters, which was presented in [10].
We can list all numbers in C(n, k) using the following five rules:

Rule 0: (initialization) Let the current number be 0" *1*.

Rule 1: If the current number is (0+ 1)*010? for some i > 0, then the next number
is (0 + 1)*100°.

Rule 2: If the current number is (04 1)*011¢ for some i > 1, then the next number
is (0 4+ 1)*101%

Rule 3: If the current number is (0 + 1)*01170¢ for some i > 1 and j > 1, then the
next number is (0 + 1)*10017.

Rule 4: (termination) If the current number is 1¥0"~* then terminate the listing.

Note that, as used in regular expressions, (0 4+ 1)* represents any sequence over

{0,1} of length zero or longer, and 1* represents a sequence of consecutive k 1’s.
Let a be a current number and 8 be its next number obtained using one of the

Rules 1, 2, and 3. Clearly, if a has exactly k& 1’s, then 8 has exactly k& 1’s. Hence,

Table 1: Examples of z, y, z, u, s, and ¢

i 109 |8|7[6|5]4[3]|2]1
z(current) | 0 [1 |1|0|1|1|1|{0|0]|0
Yy —|{1]0{0|1{0]|0|0|0O|O

z —|1|1{1|1{0]|0|0|0O|O

u —10]|0]|0|1|0]|0|0|0|O

s — o(ojoj1f{1jojofo

¢ —|10(0|0j0O]O|O|1|1
z(next) O(1|1]1]0]|0f0]|O|1]|1

all the numbers generated using these rules have exactly k& 1’s. Suppose that o and
B are binary integers. Then, it is easy to see that a < f always holds. Also, no
number v that has exactly k 1’s satisfies « < v < . Thus, the five rules above
generates all C(n, k) numbers, and every C(n, k) number is generated exactly once.

The key rules are Rules 1, 2, and 3. Let us see how the next number is deter-
mined. Let z,,x,_1 ---x; be the current number. Further, let p (1 <p <n —1) be
the smallest index of such that z,41 = 0 and z, = 1. The next number can be
obtained using the following two operations:

swap operation swap the values of z,.1 and .
shift operation shift z,_1z,_>---z; to the right until z; = 1.

In Rules 1 and 2, the swap operation is performed to find the next number. Both
the swap and the shift operations are performed when Rule 3 is applied.

First, we show how we implement the swap operation which is performed in
Rules 1, 2, and 3. For this purpose, we determine index p above. Let y; = T;41 Ax;
for every i (1 < i < n —1). Further, let z; = y; Vyi—1 V -+ V yy, for every i
(2 <i < n). In other words, z1 = 1 and z; = x; V z;—1 for every i (2 <i<n—1).
Thus, every z; can be simply computed using the cascade of n — 2 OR gates. Since
z is the prefix OR of y, z can be obtained using the parallel prefix circuit [2, 3],
which has O(n) gates of depth O(logn). Let u; = z1, and u; = 2; A Z;—1 for each
(2 <i<n-—1). It should be clear that, u; = 1 iff p = i. We refer the reader to
Table 1 for examples of z, ¥y, z, and u. The swap operation can be simply done by

Ty — ;D (u Vv ui—1) (1<i<n), (4)

where u, = up = 0 and & denotes the XOR operator.

Next, we will show how the shift operation is implemented. Recall that the shift
operation is performed for Rule 3. Let s; = Z; A x; for each i (1 < i < n —2).
Clearly, s is a sequence of bits to be shifted to the right. Let ¢,_ot,—3 -+t be a
sequence of bits that can be obtained by repeating the shift of s,_2$,_3 - s until
the rightmost bit is 1. We refer the reader to Table 1 for examples of s and t. Once
t is obtained, we can perform the shift operation by the following formula:

zp — (iAz)VH (1 <i<n), (5)

where s, = sp—1 = t, = t,—1 = 0 for simplicity. We assume that every bit of ¢; is 0
when all bits of s; are 0. Then, when Rules 1 or 2 are applied, s; = t; = 0 for all ¢.
Thus, from formulas (4) and (5) combined, regardless of the applied rules, the next
number z can be obtained by a single formula as follows:

€r; ((.Tl D (’ll,i_l \Y ’ll,l)) A Zz) V t;. (6)

Now we can conclude a basic algorithm for listing all C(n, k) numbers.

As we have seen, y can be obtained by n — 1 NOT gates and n — 1 AND
gates. The prefix OR circuit, which can be implemented using O(n) gates of depth
O(logn) [2], is used to compute z. Once z is obtained, u and s can be computed
using n — 2 NOT gates and n — 2 AND gates, each. After that, if ¢ is obtained,
each z; can be computed using two OR gates, one AND gate, and one XOR gate.
Thus, a C(n, k) counter can be implemented using O(n) gates of depth O(logn)
excluding the circuit for computing ¢ from s. However, it is not easy to obtain
t. In what follows, we will show how we obtain ¢ from s. For later reference, let
s = ON—I=m1l0™ where N = n — 2. Clearly, we need to compute ¢t = 0V —!1°,

3. Known implementations of C(n, k) counters

This section shows two known implementations [10] the simple shift and the bi-
nary shift implementations that compute ¢ from s. The simple shift implementation
runs in high frequency for small n although it uses so many gates that it does not
fit in the FPGA for large n. The binary shift implementation uses much smaller
number of gates, but it runs in low frequency.

3.1. The simple shift implementation

Although the description of the simple implementation shown in this paper is
different from that in [10], they are essentially the same. Also, the description in
this paper is much simpler than that in [10].

It is easy to see that s has at least ¢ 1’s if

(81 A Sl) \% (82 A Si+2) \% (83 A Si+3) VeV (SN—i+1 A SN)
is 1. Using this fact, each t; can be determined as follows:

tl = 81V82\/S3\/"'VSN, (7)
ti (81 A Sl) V (82 A Si+2) \ (83 A Si+3) VeV (SN—i+1 A SN) t Z 2. (8)

Therefore, #; can be computed using at most N —i + 1 AND gates and N —i OR
gates. Thus, ¢t can be computed using at most N+ (N —1)+---+1 < w < "72
AND gates and at most (N —1)+ (N —2)+---+1< NTZ < "72 OR gates. Since
each t; can be computed by a tree of N —1 OR gates with fan-in 2, the depth of

the circuit is at most log N < logn.

3.2. The binary shift implementation

The binary shift implementation computes the binary representation of the
number of 1’s in s and generates the same number of 1’s by exponential shift-
ing. For simplicity, we assume that N = 2% — 1 for some integer u. Let [be
the number of 1’s in s and [,l,_1 ---l; be the binary representation of [, that is
I=1,-2% 1 41, 1-2%"24+...4]; -2° The binary representation l,l,_1 ---1; can
be computed by the Muller-Preparata’s adder tree circuit[8]. Let s¢ (0 < j < u)
be a sequence of length 2/ — 1 determined by the following procedure.

for j + 1 to u do

if [; = 0 then 5 « 02 "50-1

else s ¢« gli—1)12""
If I; = 1 then 2771 1’s are added to the sequence. Thus, it is not difficulty to see
that ¢ = s holds. Further, each s¢) can be computed from s~ using 2/ — 1
multiplexers whose output is determined by [;. Thus, ¢ can be computed using at
most 2! — 1422 —1 4.4+ 2% —1 < 2N < 2n multiplexers. Also, it is easy to
confirm that the depth of the circuit is O(u) = O(logn).

4. New implementations of C(n, k) counters

Our new idea is to use the bitonic merging [3] for implementing the C(n,k)
counters. A sequence of bits is bitonic if

(1) it has consecutive 0’s of length at least 0 followed by consecutive 1’s of length
at least 0, and

(2) it satisfies (1) by performing a cyclic shift.

For example, 00000111 is bitonic from (1). Thus, all of sequences 00001110, 00011100,
00111000, 01110000, 11100000, 11000001, 10000011 are bitonic from (2). Also, both
00000000 and 1111111 are bitonic from (1).

Let A = ajas---an be a bitonic sequence of length N Further, let B =
biby---bysp and C' = cica...cn/p be two sequences of length N each defined as
follows:

¢ = a;Vain 1<i<N/2 (10)

For example, if A = 00111000, then B = 0000 and C = 10111. For sequences B as
C' thus obtained, we have the following lemma:
Lemma 1 (1) The total number of 1’s in B and C' is the same as those in A.

(2) If A has at least N/2 1’s, then C has no 0’s. Similarly, if A has at most N/2
1’s, then B has no 1’s.

(3) Both B and C are bitonic.

Proof: If a; = a;yn/2 = 1, then b; = ¢; = 1. If one of a; and a;; n/» is 0 and
the other one is 1, then b; = 0 and ¢; = 1. If a; = aiyn/2 = 0, then b; = ¢; = 0.
Hence (1) holds. If A has at least N/2 1’s then either a; or a;; /2 is 1 and thus,

[@e] [G]

VAN

| Cn/a || Cn/a | | Cn/a || Cn/a |

Figure 1: The tree structure of bitonic circuit

C has no 0’s. If A has at most N/2 1’s, then either a; or a;yn/» is 0 and B has
no 1’s. Therefore, (2) holds. For any non-negative integer x, y, and z such that
x+y+z=N,let A=0%1Y0%. If y > N/2 then, C has no 0’s and thus C is
bitonic. Also, since B = 01¥=N/20% B is bitonic. If y < N/2 then, B has no
I’s and thus B is bitonic. Similarly, since C' = 0%1¥0N/2=2~V if z 4 y < N/2 and
C = 1#+y=N/20N/2=y1N/2=2 if 4 4 y > N/2. Thus, B is bitonic. Consequently (3)
holds. Q.E.D.

Let Cn denote the circuit that computes formulas (9) and (10). Since both B
and C' are bitonic, we can recursively use this circuit for each of B and C. The
resulting circuit has a binary tree structure as illustrated in Figure 1. It should
be clear that, From Lemma 1, this circuit computes 0°721Y from 0%1%0%. We call
this circuit bitonic circuit. See Figure 2 for illustrating the bitonic circuit for
N =38.

The bitonic circuit can be used to compute ¢t = 0V='1! from s = 0N ~I=m1l0™.
Thus, we can obtain an implementation of C(n, k) counter using the bitonic circuit.
We call this implementation bitonic shift implementation. The bitonic circuit
has 1 Cn, 2 Cny28, 4 Cnyas, -+, N/2 Cos. Since Cn has N/2 AND gates and N/2
OR gates, the bitonic circuit has 1 x N +2x N/2+--- 4+ N/2x 2 = Nlog N gates
of depth log N. Thus, the bitonic shift implementation has N =log N = O(nlogn)
gates of depth log N = O(logn).

Table 2 summarizes theoretical analysis of the performance of three implemen-
tations for C(n, k) counters. All of the implementations has depth O(logn). The
binary shift uses only O(n) gates, while the other implementations needs more than
O(n) gates. From the theoretical analysis, the binary shift is the best implemen-
tations. However, the constant factor hidden in big-O notation is very large. The
binary shift implementation has tree of adders and three of selectors. Although both
trees has O(n) gates of depth O(logn), the constant factor is not small. On the
other hands, constant factor in big-O notation in the simple shift and the bitonic
shift is small. To compute t from s using AND and OR gates with fan-in 2, the
simple shift uses less than N2 gates of depth log N. The bitonic shift uses N log N
gates of depth log V. Thus, it is possible that the simple shift and the bitonic shift
implementations outperforms the binary shift implementation for practically small

o 7

)
—_

o [

o

)
[
—

qqu? e
Ay
7

TYT

Figure 2: The bitonic circuit for n = 8

?
I
I

Table 2: Theoretical analysis of the performance of implementations of C(n, k)
counters

implementations gates delay

simple shift O(n?) O(logn)
binary shift O(n) O(logn)
bitonic shift O(nlogn) | O(logn)

n.

5. C(n, k) counters for small k

The main purpose of this section is to design several implementation of C(n, k)
counters for small k. More specifically, for some small fixed k, we design counters
that can list C(n,¢) numbers (1 <4 < k). In some applications, this restriction is
possible. Since the counter does not have to list C(n, k) numbers for large k, we
may reduce the hardware resources and increase the clock frequency.

Let us modify the simple shift, the binary shift, and the bitonic shift implemen-
tations to support C(n, k) counters for small k. For this purpose, we will modify
circuits to compute ¢ = 0V ~'1! from s = 0V ~'=™1/0", where N = n — 2. Note
that to implement a C(n, k) counter, the sub-circuits need to compute ¢ from s for
[=1,2,...k—1.

We first modify the simple shift implementation of a C(n, k) counter for small k.
Since s and ¢t has at most k—11’s, ¢, =t,_1 =--- =t =0and t1,t2,...,tx_1 can
be either 0 or 1. Thus, it is sufficient to compute ¢, %o, ..., tr_1 and we can omit the
circuit to compute tg, tgt1,...,t,. Recall that each t; (1 <i<n) needs N —i+1
AND gates and N —i OR gates. Hence, N+ (N —-1)+---+ N —k+2=O(Nk) =
O(nk) AND gatesand (N —=1)+ (N —=2)+---+ N —k+1=O(Nk) = O(nk) OR
gates. It should be clear that the depth of the circuit is still log N < logn.

We next modify the binary shift implementation. In the binary shift imple-
mentation, the binary representation l,[, 1 ---l; of [is computed by the Muller-
Preparata’s adder tree circuit. Since I < k — 1, we need only log(k — 1)-bit binary
representation. Thus, adders of the Muller-Preparata’s adder tree circuit can be
limited to log(k — 1) bits. However, the Muller-Preparata’s adder tree circuit still
has O(n) gates with depth O(logn). Using the binary representation, s = s{los k=1
is computed by the following procedure:

for j < 1tologk—1do

if I; = 0 then s) « 02~ gD

else 501 « gli—1)127"
Thus, from the log(k — 1)-bit binary representation of I, s can be computed using at
most 2! —1 422 — 14 ... 4 2°8k=1 _1 < k multiplexers of depth O(log k). So, the
Muller-Preparata’s adder circuit is dominant in the binary shift implementation.
Hence, it still has O(n) gates with depth O(logn).

Finally, we modify bitonic shift implementation. Suppose that 0°1¥0% (z+y+2z =
N) is given to the bitonic circuit. If b is small, the output of the most of C;
(1t =1,2,4,...,N/2) has no 1’s. We can remove such C; from the bitonic circuit.
We assume that y < k for some small k always holds. Then, the left Cxn/o in
Figure 1 can be removed if k¥ < N/2. Similarly, if k¥ < N/4, only the rightmost C /4
is necessary. In general, if k < N/2, then the rightmost Cp/oi is necessary and the
other Cy/2i’s in the bitonic circuit can be removed.

Let j be the largest integer satisfying k > 2/. The resulting circuit has 1 Cx,
1 Cny2y ooy 1 Cnyoi-ty 2 Cnyass, 4 Cypaitrs, .., 2/ Cys. Hence the total number
of gatesis N+ N/2+ N/4+ -+ +n/20" L +2-N/2/ +4- N/2I+L ... N/27 .2 <
2N +j - N/29t1 = O(N + klogk).

Table 3 summarizes the theoretical analysis of the performance. The bitonic
shift implementation uses O(n) gates if klogk = O(n), that is, K = O(n/logn).
Thus, the binary shift and the bitonic shift implementations use the same number
of gates if k¥ = O(nlogn). On the other hand, as we are going to show later, the
actual implementations to FPGAs show that the bitonic shift implementation uses
fewer hardware resources and runs in higher frequency.

6. Performance Evaluation

This section is devoted to show the performance evaluation for the Xilinx Vir-
texII family FPGA XC2V3000-4, which has 14336 slices. A slice is a unit block of
the VirtexII FPGA, which has two four-input function generators, carry logic, mul-
tiplexers, and two storage elements [4]. We have used Xilinx ISE logic design tool

Table 3: Theoretical analysis of the performance of implementations of C(n, k)
counters for small &

implementations gates delay |
simple shift O(nk) O(logn)
binary shift O(n) O(logn)
bitonic shift O(n + klogk) | O(logn)

(Ver 7.1i) to analyze the timing and the number of slices used. We have wrote the
HDL source codes for C(n, k) counter implementations in RTL (Register Transfer
Level) of Verilog HDL. We have used default parameter values, for example “Op-
timization goal = Speed” and “Optimization effort = Normal”, for logic synthesis
using Xilinx ISE logic design tool. Also, we gave no user constraints to synthesize
our Verilog HDL source codes.

Figure 3 shows the clock frequency and the number of used slices for n =
8,16,32,64,128,256, 512, and 1024 estimated based on the net list obtained by
XST logic synthesis tool, which is a part of Xilinx ISE logic design tool. For
n > 512, the simple shift implementation does not fit in the XC2V3000-4. The sim-
ple shift and the bitonic shift implementation runs in almost the same frequency
for all n (n < 256). The binary shift implementation runs in lower frequency than
the others. Recall that the binary shift implementation has two circuits: (1) the
Muller-Preparata’s adder tree circuit to compute the number of 1’s and (2) the
multiplexer tree to generate consecutive 1’s. Although both circuits has O(logn)
depth, the adder-tree is complicated and has large depth. Hence, as long as the
Muller-Preparata’s adder tree is used, the clock frequency of the binary shift im-
plementation cannot be better than the other two implementation.

As shown in Figure 3, the bitonic and the binary shift implementations use
almost the same number of slices in the FPGA. On the other hand, the simple shift
uses much more slices and does not fit in the FPGA for n > 512. Consequently, from
the practical point of view, the bitonic shift implementation runs higher frequency
and uses fewer slices, and thus it is the best among the tree.

Figure 4 shows the performance of the implementations that lists C(n, k) num-
bers for small k. Since each implementation has a sub-circuit that computes ¢ from
s with at most 8 1’s, it can support C(n, k) counters for k¥ < 8 +1 = 9. Also,
Figure 5 shows the performance of the implementations that lists C(n, k) numbers
for k < 17. In either case, for large n such that n > 128, the bitonic shift implemen-
tation works in the highest frequencies. Further, in both cases of £k < 9 and k < 17,
the bitonic shift implementation uses fewest slices among the three. Therefore, the
bitonic shift implementation is the best implementation.

7. Conclusions

The main contribution of this work is to present an efficient implementation of
C(n, k) counters. We also presented implementations that supports C(n, k) coun-
ters for small k. The performance of the implementations are evaluated in terms

10

MHz—T T T Slices
bitonic —{J— 10000
of ! simple
150 PN - S binary 25— -
: ' 1000
100 100
50 U R — -1
10 17y ; bitonic —L—
: : simple
i ; binary
1 n
10 100 1000
Figure 3: The performance of implementations of C(n, k) counters
MHz—T T T Slices [T T T
bitonic —{_— 10000 :
! ! simple
TTor) S S binary 7257 -
: : ' 1000
100 100
50 U R — i
0 ; bitonic —L—
: : : . simple
i i i i binary
n 1 n
10 100 1000 10 100 1000

Figure 4: The performance of implementations of C(n, k) counters for £ < 9

MHz—T T T Slices
bitonic —{J— 10000
: : simple —O—

150 fodemmem e b binary —X— -
! ' ' 1000

100 ‘

100

50 I R i
0 : bitonic —L1—
; ; ; ; simple
i i i i binary
n 1 n
10 100 1000 10 100 1000

Figure 5: The performance of implementations of C(n, k) counters for k < 17

11

of the number of used slices and the clock frequency for the Xilinx VirtexII FPGA
XC2V3000-4. The results show that our new implementation called bitonic imple-
mentation is the best implementation from the practical point of view.

Acknowledgments

This work is supported in part by Grant-in-Aid for Exploratory Research of
the MEXT. The authors would like to thank anonymous referees for their valuable
comments.

References

1.

J. L. Bordim, Y. Ito, and K. Nakano. Accelerating the CKY parsing using FPGAs.
IEICE Transactions on Information and Systems, E86-D(5):803-810, May 2003.

. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University
Press, 1988.

Xilinx Inc. Virtez-II Platform FPGAs: Complete Data Sheet, 2003.

. Y. Ito and K. Nakano. FM screening by the local exhaustive search, with hardware

acceleration. to appear in International Journal of Computer Science, February
2005.

D.E. Knuth. Digital halftones by dot diffusion. ACM Trans. Graphics, 6-4:245-273,
1987.

7. D. L. Lau and G. R. Arce. Modern Digital Halftoning. Marcel Dekker, 2001.
8. D. E. Muller and F. P. Preparata. Bounds to complexityies of network for sorting

10.

11.
12.

13.

14.

and for switching. J. ACM, 22:195-201, 1975.

K. Nakano and E. Takamichi. An image retrieval system using FPGAs. IEICE
Transactions on Information and Systems, E86-D(5):811-818, May 2003.

K. Nakano and Y. Yamagishi. Hardware n choose k counters with applications to
the partial exhaustive search. IEICE Trans. on Information € Systems, 2005.

Nallatech. Xtreme DSP Development Kit User Guide, 2002.

M. Platzner and G. D. Micheli. Acceleration of satisfiability algorithms by recon-
figurable hardware. In Proc. of International Conference on Field Programmable
Logic and Applications (FPL), pages 69-78, 1988.

T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya. Solving satisfiability problems
using reconfigurable computing. IEEE Trans. on VLSI Systems, pages 109-116,
Feb. 2001.

P. Zhong, P. Ashar, S. Malik, and M. Martonosi. Using reconfigurable computing
techniques to accelerate problems in the CAD domain: A case study with boolean
satisfiability. In Design Automation Conference, pages 194-199, 1998.

12

