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ABSTRACT

Connected component labeling is a process that assigns unique labels to the con-

nected components of a binary image. The main contribution of this paper is to present
a low-latency hardware connected component labeling algorithm for k-concave binary
images designed and implemented in FPGA. Pixels of a binary image are given to the
FPGA in raster order, and the resulting labels are also output in the same order. The

advantage of our labeling algorithm is low latency and to use a small internal storage of
the FPGA. We have implemented our hardware labeling algorithm in an Altera Stratix
Family FPGA, and evaluated the performance. The implementation result shows that for

a 10-concave binary image of 2048 × 2048, our connected component labeling algorithm
runs in approximately 70ms and its latency is approximately 750µs.

Keywords: Connected component labeling, FPGA, Image processing, Hardware algo-
rithm

1. Introduction

Connected component labeling is a process that assigns unique labels to the
connected components of a binary (black and white) image as labels. As illustrated
in Figure 1, each connected component of black pixels is assigned an integer value
as a unique label. More specifically, each pixel assigned a label such that pixels in
the same connected component have the same label and those in different connected
components have different labels. In this figure, 3 connected components of black
pixels have assigned labels 1, 2, or 3. There are two common ways of defining
connectedness in a binary image, i.e., 4-connectedness and 8-connectedness [1]. In
this paper, we use the 4-connectedness.

In the field of the image recognition, connected component labeling is a basic and
important task as a preliminary step that finds the feature of the object [2, 3]. After
the connected component labeling, connected components corresponding to different
objects can be studied and recognized by higher level image analysis processes.

Since the component labeling is a basic and important task, there are a lot of
published works. They are based on the algorithmic techniques as follows:
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Figure 1: An example of connected component labeling for a binary image.

• Temporary labeling method [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]: Com-
ponent labeling is done by two or more separated stages that scan the binary
image in raster order. The first stage scans the input binary image and assigns
each connected component temporary labels. No two connected components
are assigned the same temporary label, but two or more temporary labels may
be given to a connected component. The second stage scans the input binary
image again, and chooses one of the temporary labels for each connected com-
ponent. Sometimes, more than two stages are executed until each connected
component has a unique label.

• Contour labeling method [17, 18]: This labeling method has two stages. The
first stage traces the contour of each connected components and assigned labels
to pixels in the contour. In the second stage, interior pixels are scanned and
assigned labels.

• Parallel processing approach [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]: Parallel
labeling is performed with parallel machine models such as the use of mesh
connected parallel processor arrays to speed-up the computation.

• Hardware algorithm [14, 26, 29]: Hardware implementations of the above al-
gorithms have also been proposed in order to accelerate processing speed.

The main contribution of this paper is to present a hardware algorithm that per-
forms low-latency connected component labeling using FPGAs. An FPGA (Field
Programmable Gate Array) is a programmable VLSI in which any circuit can be
embedded quickly. Typical FPGAs consist of an array of programmable logic el-
ements, distributed memory blocks, and programmable interconnections between
them. The logic block usually contains either a four-input logic function or a mul-
tiplexer and several flip-flops. The distributed memory block is usually a dual-port
RAM on which a word of data for possibly distinct addresses can be read/written
at the same time.
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Figure 2: Process of our labeling hardware for an input image of m × n.

It is difficult to implement the temporary labeling method for connected com-
ponent labeling in the FPGAs. The temporary labeling method needs to store
temporary labels for all pixels. However, the total size of memory blocks of the
FPGAs is no more than few megabits. If the size of image is 2048 × 2048 and
temporary labels have 16 bits, at least 64 megabits storage is necessary, which is
too large for current FPGAs. Of course, if a large external storage such as DRAMs
is available, all temporary labels of whole image can be stored. However, the use
of a large external storage is costly in terms of price and power consumption. The
use of external storage may not be possible if FPGAs are used for small and power
restricted devices such as cellular phones and digital cameras. Therefore, it is chal-
lenging to develop hardware algorithms that find connected components using the
FPGA with a small internal storage.

Our hardware component labeling algorithm implemented in the FPGA works
as follows: The binary image of m × n (m rows and n columns) is provided to the
FPGA such that a pixel is given to the FPGA in every clock cycle in raster order.
Hence, m × n pixels of the binary image are provided to the FPGA in mn clock
cycles. In the same time, the FPGA start outputting the resulting label of each
pixel in every clock cycle in raster order. Let L denote the latency of our component
labeling algorithm, that is, the FPGA outputs the label of the first pixel in L clock
cycles after the first binary pixel is provided. Clearly, the total computing time is
mn + L. Figure 2 illustrates a process of the above execution for an input image of
m × n.

The main advantage of our hardware component labeling algorithm is low la-
tency L, that is, L is much smaller than mn. In other words, the label of the first
pixel is computed before the last of the input binary image is given to the FPGA
as illustrated in Figure 2. Note that, if this is the case, the component labeling
for arbitrary binary image is not possible. For example, suppose that we need to
find the connected component of the binary image illustrated in Figure 3. Clearly,
pixels A and B are in the same connected component, they must be assigned the
same label. However, it is impossible to determine if they are in the same connected
component before reading the critical row, which is the lowest row containing the
shortest path between A and B. Since three rows must be read before the label of
B is output, the latency must be at least 3n to assign the same label to A and B.
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Figure 3: An example of 3-concave binary image.

So we need to restrict the binary image to complete correct component labeling in
low latency to obtain the correct labeling.

The second contribution of our paper is to introduce a class of binary images
called k-concave in which the connected component can be done in low latency. A
binary image is k-concave if the label of each pixel can be determined using all the
pixels on or above the pixel and k rows below it. More specifically, if a binary image
is k-concave, then for any two pixels p and q in the same connected component,
there exists a path going through the component that are on or above these pixels
and below k rows of them. We call such path a k-concave path. Figure 3 illustrates
an example of 3-concave binary image. As illustrated in the figure, there exists a
3-concave path between pixels A and B. The reader should have no difficulty to
confirm that there exists a 3-concave path for any pair of two pixels in the connected
component. Thus, the binary image in Figure 3 is 3-concave. However, this binary
image is not 2-concave, because there exists no 2-concave path between A and B.

From the theoretical point of view, the latency of our hardware connected com-
ponent algorithm is optimal. It should be clear that, from the definition of k-concave
binary images, the latency cannot be smaller than kn to complete the component
labeling for them. Our component labeling hardware algorithm is designed to com-
plete the labeling for k-concave binary image with latency approximately (2k+2)n.
Therefore our hardware algorithm is latency optimal in the sense that the latency
is within a constant factor of its lower bound.

Another important merit of our hardware algorithm is to use few internal stor-
age. Our hardware algorithm for k-concave binary image uses the internal storage
of size approximately O(kn) words. More specifically, the internal storage are used
as a frame buffer that stores the latest 2k + 2 rows of the binary image and some
O(1) words work data of pixels in these 2k + 2 rows.

We have also implemented our hardware component algorithm in the PCI board
with an Altera Stratix FPGA. We describe our hardware algorithm using Ver-
ilog HDL and the logic is synthesized using Altera Quartus II design tool. We
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Figure 4: Prefix subimage.

confirmed that our hardware component labeling algorithm works correctly in the
board, and evaluated the performance. The implementation result shows that for
a 10-concave binary image of 2048× 2048, our connected component labeling algo-
rithm runs in approximately 70ms and its latency is approximately 750µs.

This paper is organized as follows: Section 2 presents an overview of our con-
nected component labeling algorithm. Section 3 presents the details of it. In Sec-
tion 4, we show a hardware algorithm of connected component labeling for our
connected component labeling. In Section 5, we evaluate the performance of our
labeling hardware implementations. Finally, Section 6 is a brief conclusion.

2. Overview of our connected component labeling algorithm

In this section, we present an overview of our connected component labeling
algorithm. Before the overview, we introduce some definitions about a subimage
of an input binary image and connected components in the subimage. Let a prefix
subimage of a particular row denote a subimage which consists of the row and
the above. For example, Figure 4(b) shows the prefix subimage of the 6th row of
Figure 4(a). Clearly, the prefix subimage of the m-th row (i.e. the bottom row)
is the whole image. We call connected components in the prefix subimage prefix
connected components. In addition, let a k-prefix subimage of a particular row
denote a subimage which consists of rows on or above it and k rows below it. From
the definition, generally, it is clear that a k-prefix subimage of the p-th row and a
prefix subimage of the (p+k)-th row are equivalent. For example, Figure 4(c) shows
the prefix subimage of the 9th row of Figure 4(a) and also represents the 3-prefix
subimage of the 6th row. Also, connected components in the k-prefix subimage
are called k-prefix connected components. The readers should have no difficulty to
confirm that, if a binary image is k-concave, two pixels are connected if and only if
they are connected in the k-prefix subimage. Thus, we have,
Theorem 1 The k-prefix connected components of a k-concave image are equiva-
lent to the connected components of the whole image.
According to this theorem, we can obtain the connected component labeling for the
k-concave image by performing our connected component labeling method for its
k-prefix subimage.
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Figure 5: An example of our connected component labeling for a 3-concave binary
image of Figure 4(a).

To obtain connected component labels for k-concave images, we assign interme-
diate labels; prefix LMRS labeling, the i-prefix tentative labeling for i = 0, 1, 2, . . . , k

and final labeling. Figure 5 shows an example of our connected component labeling
for a 3-concave binary image. We briefly show the idea to perform our labeling as
follows.

1. The prefix LMRS labeling: In the prefix LMRS labeling, each run, which is a
maximal sequence of consecutive black pixels, is assigned one of the four sym-
bols L(left), M(middle), R(right), and S(single) (Figure 5(a)). Prefix LMRS
labels in each row are assigned for the prefix subimage as follows; if a prefix
connected component has a single run in the list, the run is labeled by S. If a
prefix connected component has more than two runs in the list, the leftmost
and the rightmost runs are labeled by L and R, respectively, and the other
runs between them are labeled by M. The prefix LMRS labeling is performed
from right to left with a stack in raster scan order by referring the assigned
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labels to the upper row.

2. The i-prefix tentative labeling for i = 0, 1, 2, . . . , k: First, each prefix con-
nected component is assigned an integer as a 0-prefix tentative label (Fig-
ure 5(b)). The 0-prefix tentative labels are assigned from left to right in each
row such that if two runs that are in a particular row belong to the same
prefix connected component, they are assigned by a same 0-prefix tentative
label. If not, they are assigned by distinct labels (Figure 6). Therefore, the

L M L M S R M R

1 1 1 12 2 23

Figure 6: An example of 0-prefix tentative labeling

0-prefix tentative labeling can be done simply by scanning the assigned prefix
LMRS labels using a stack. Let us consider the 0-prefix tentative algorithm in
a particular row. The algorithm scans the row from left to right and assigns
the 0-prefix tentative labels to runs, as follows.

• If a run assigned S is found, the run is assigned a new label.

• If a run assigned L is found, the run is assigned a new label and its label
is pushed to the stack.

• If a run assigned M is found, the run is assigned a label in the stack top.

• If a run assigned R is found, the run is assigned a label in the stack top
and the stack top is popped from the stack.

The above operation for each row is performed from the top row to the bottom
row, and then the algorithm completes the 0-prefix tentative labeling. Note
that the 0-prefix tentative labels are assigned labels from 1 in each row, that
is, the leftmost run that is assigned S or L is assigned label 1.

Next, the 1-prefix tentative labels are assigned by updating the 0-prefix ten-
tative labels from the 0-prefix tentative labels in the lower row such that if
two or more runs, which are in each row, are adjacent to runs with a label in
the lower row, a same label is assigned to those. For example, in Figure 7, the
6th and 7th runs from left in the p-th row are adjacent to a run in the lower
row, and then the runs which are assigned the same labels as the 6th and 7th
runs in the p-th row are assigned a same run. Then, we obtain the 1-prefix
tentative labels in each row that are assigned for the 1-prefix subimage.
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p-th row 1 1 1 12 2 23
1 2 13(p+1)st row

1 1 1 11 1 12
1 2 13

p-th row
(p+1)st row

Update labels in the p-th row with labels in the (p+1)st row

Figure 7: An example of 1-prefix tentative labeling

Similarly, executing the above update 2 times from two rows below it, we
obtain 2-prefix tentative labels in each row that are assigned for the 2-prefix
subimage (Figure 8).

p-th row 1 1 1 12 2 23
1 1 12

1 1 11

1(p+2)nd row
 (p+1)st row

p-th row

(p+2)nd row
 (p+1)st row

1

1 1 1 11 1 11
1 1 11

p-th row

(p+2)nd row
 (p+1)st row

1

1 1 1 12 2 23

Update labels in the (p+1)st row with labels in the (p+2)nd row

Update labels in the p-th row with labels in the (p+1)st row

Figure 8: An example of 2-prefix tentative labeling

To obtain k-prefix tentative labels, the above update is performed k times
from k rows below it in each row. From Theorem 1, after k-prefix tentative
labeling for k-concave image, if there are two or more runs that are assigned
the same label in a particular row, they belong to the same connected com-
ponents. If not, they belong to distinct connected components. For example,
to perform 3-prefix tentative labeling, 0-prefix tentative labeling, 1-prefix ten-
tative labeling, 2-prefix tentative labeling and 3-prefix tentative labeling are
executed (Figure 5(b)-(e)).
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Figure 9: Pipeline processing row by row for a 3-concave binary image.

3. The final labeling: In the final labeling, each run is assigned connected com-
ponent label using the k-prefix tentative labels. By scanning the k-prefix
tentative labels, the final labels are assigned in raster scans order such that if
a run that is adjacent to the upper row, the same label is assigned to the run
and if not, a new label is assigned. Then, we obtain the connected component
labels by outputting the labels pixel by pixel (Figure 5(g)).

Hereafter, let the connected component labeling for a k-concave binary image k-
concave labeling.

In our hardware algorithm for our connected component labeling, the above
methods are performed by pipeline processing row by row in parallel from the top
row to the bottom row. Figure 9 shows the pipeline processing for the p-th row
and the (p + 1)-th row in a 3-concave binary image. For a 3-concave image, the
pipeline processing consists of 8 stages row by row as shown in the figure. Note
that in the 4th and 6th stage, the process wait for the results for the (p + 1)-th
row. Figure 5(h) shows an assignment of the parallel processing when the final
labeling for the 4th row has been completed. The hardware can execute the above
operation for each pixel in 1 clock cycle. Then, the computing time for each row
is approximately 8n clock cycles for 3-concave image. In addition, the latency,
which is time from the first pixel is given to the first result of the final labeling, is
also approximately 8n clock cycles, and the computing time for the whole image
is approximately (m + 8)n clock cycles. More generally, for k-concave image, the
latency is approximately (2k + 2) and the computing time for the whole image is
approximately (m + 2k + 2)n clock cycles.

3. The details of our connected component labeling algorithm

As shown in Section 2, to obtain connected component labels for k-concave
images, we assign intermediate labels; prefix LMRS labeling, i-prefix tentative label-
ing for i = 0, 1, 2, . . . , k and final labeling. This section shows the details of these
methods.

3.1. The prefix LMRS labeling
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Recall that in the prefix LMRS labeling, each run is assigned one of the four
symbols L, M, R and S for the prefix subimage in each row.

We present the detail of the algorithm of the prefix LMRS labeling. The prefix
LMRS labels are assigned in raster scan order. Let us consider an assignment of the
prefix LMRS labels in the p-th row. We assume that it completes the assignment of
the prefix LMRS labels for the (p − 1)-th row. To assign the labels, the followings
are done, as follows.

Algorithm 1 (Prefix LMRS labeling):

Step 1: For each row p, compute the followings by scanning the p-th row and the
(p − 1)-th row from left to right.

(1-1) Use a stack to store the information of each prefix connected component in
the two rows. Each element of the stack consists of three values, left, right
and nest, as follows:

• left: a sequential ID of the leftmost run that belongs to a prefix connected
component in the p-th row.

• right: a sequential ID of the rightmost run that belongs to a connected
component in the p-th row.

• nest: the number of nested connections of the left side in the p-th row.

The sequential ID shows the number of runs from left in a particular row.

For example, the sequential ID of the leftmost run is 1 and the sequential
ID of the second run from left is 2. In addition, if there are no runs that
belongs to a prefix connected component in the p-th row, let left and right
be ϕ which represents a special symbol. If there is one run that belongs to a
prefix connected component in the p-th row, let left and right be its sequential
ID. When a run which belongs to a prefix connected component in the p-th
row is found, each element of the stack top is updated like the above.

According to this operation, the value of left and right shows the number of
runs that belong to the prefix connected component in the p-th row as follows;
if left = ϕ, there exist no runs in the prefix connected component, if left ̸= ϕ

and left = right , there exists one run in the prefix connected component, and
if left ̸= right , there exist two or more runs in the prefix connected component.

Then, a new element is pushed to the stack when the leftmost pixel of the
prefix connected component in the (p − 1)-th and p-th row is found, and
the top entry of the stack is popped when the rightmost pixel of connected
component in the (p−1)-th and p-th row is found so that the top entry of the
stack is always an element that is concerned with the scanned prefix connected
component at present.

(1-2) Assign a prefix LMRS label to the run when a run in the p-th row which
belongs to the scanned prefix connected component is found, as follows:
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Figure 10: An example of a process of an assignment prefix LMRS labels

• If left = ϕ, the run is assigned S.

• If left ̸= ϕ and left = right , the run is assigned R and the run at left is
assigned L.

• If left ̸= right , the run is assigned R and the run at right is assigned M.

After this assignment, each element of the stack top is updated. Note that ev-
ery run in the top row is assigned S because every prefix connected component
in the top row consists of a single row.

Figure 10 shows an example of a process of an assignment prefix LMRS labels
in the p-th row. We assume that the assignment of the prefix LMRS labels to the
(p− 1)-th row is completed (Figure 10(a)). To assign prefix LMRS labels, the p-th
row and (p − 1)-th row are scanned from left to right (Figure 10(b)-(h)). First, a
run which is assigned L in the (p − 1)-th row is found, then the element (left = ϕ

and right = ϕ) is pushed to the stack (Figure 10(b)). Next, a run in the p-th row is
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Figure 11: An example of the nested structure that connects at the left side

found and it is adjacent to the run in (p−1)-th row. Both elements of the stack top
are ϕ, then it shows that the run is a first run in the prefix connected component.
Therefore, the element of the stack top is updated to left = 1 and right = 1 and
the run is assigned S (Figure 10(c)). After that, a run in the p-th row is found and
it is adjacent to the run in (p − 1)-th row. The elements of the stack top are the
same, then the run is a second run in the prefix connected component. Therefore,
the element of the stack top is updated to right = 2 and the run which is shown
by left is assigned L and the scanned run is assigned R (Figure 10(d)). Next, a run
which is assigned L in the (p−1)-th row and a run which is adjacent to it are found.
These runs belong to a new prefix connected component, then the element (left = 3
and right = 3) is pushed to the stack and the run in the p-th row is assigned S
(Figure 10(e)). After that, a run which is assigned R in the (p− 1)-th row is found,
it is the leftmost run of the prefix connected component then the element of the
stack top is popped (Figure 10(f)). Next, a run in the p-th row is found and it is
adjacent to the run in (p − 1)-th row. The elements of the stack top are different,
then the run which is shown by right is assigned M and the scanned run is assigned
R and the element of the stack top is updated to right = 4 (Figure 10(g)). Finally,
the rightmost run of the prefix connected component is found, then the stack top
is popped (Figure 10(h)).

During scan, two or more prefix connected components in the upper row that
consists of a nested structure combined as the inside one connects to the left of
outside one in the p-th row (Figure 11). In this case, the stack is not pushed when
the inside prefix connected component is found. Then, when the rightmost run
of the inside prefix connected component is found, the stack must not be popped.
Therefore, we use nest that is an element of the stack entry. When the above case is
found, nest of the stack top is incremented and is decremented instead of popping.
For example, when a nest that connects at the left side in the p-th row is found,
nest of the stack top increments (Figure 11(a)). When the rightmost run of the nest
is found, nest of the stack top is decremented (Figure 11(b)).

3.2. The i-prefix tentative labeling for i = 0, 1, 2, . . . , k

Recall that the i-prefix tentative labeling assigns the i-prefix tentative labels
such that if two runs in a particular row belong to the same connected component
in the i-prefix subimage, they are assigned by a same i-prefix tentative label. If not,
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they are assigned by distinct labels. In this section, we show the algorithm for the
i-prefix tentative labeling for the case i = 0 and i > 0 separately, as follows.

Algorithm 2: (The k-prefix tentative labeling)

Step 1: (The 0-prefix tentative labeling)
Assign a same 0-prefix tentative label to two or more runs that are in a
particular row if they belong to the same connected component in the prefix
subimage, If not, assign distinct labels to them. This means that in the
0-prefix tentative labeling, each prefix connected component in each row is
assigned a unique label. Therefore, the 0-prefix tentative labeling can be
done simply by scanning the assigned prefix LMRS labels using a stack. For
each row p, assign the 0-prefix tentative labels by scanning from left to right
in the followings.

case 1: (a run assigned S is found)
Assign a new label to the run.

case 2: (a run assigned L is found)
Assign a new label to the run and push its label to the stack.

case 3: (a run assigned M is found)
Assign a label in the stack top.

case 4: (a run assigned R is found)
Assign a label to the run and pop the stack top from the stack.

Note that the 0-prefix tentative labels are assigned labels from 1 in each row,
that is, the leftmost run that is assigned S or L is assigned label 1. In the
0-prefix tentative labeling, the computing time for each pixel is O(1), and the
computing time for whole image that can be done for an input image of m×n

is mn because the 0-prefix tentative labels can be determined as soon as each
run and its prefix LMRS labels are given.

Step 2: (The i-prefix tentative labeling (i > 0))
Assign i-prefix tentative labels using the (i − 1)-prefix tentative labels using
a table such that when a (i− 1)-prefix tentative label in the (p + 1)-th row is
given as the table index, the entry of the table is the i-prefix tentative label
that is assigned to the adjacent one or more runs in the p-th row. For each
row p(> 1), assign the i-prefix tentative labels from the bottom row to the
top row as follows.

(1) Initialize every table entry to 0.

(2) Assign labels using the table as follows.

case 1: (a run is assigned by S or L is found)
Assign a new label which starts from 1 to its prefix connected compo-
nent since the run is the leftmost of the prefix connected component.
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case 2: (a vertically adjacent run in the (p + 1)-th row is found)
If the entry of the table where the index is the label of adjacent
run is 0, that is, it is the first time to meet an adjacent run in the
(p + 1)-th row, store the label to the entry. If not, that is the entry
of the table where the index is the label of adjacent run is not 0,
assign the label in the entry to the prefix connected component in
the p-th row.

To obtain the assignment of the k-prefix tentative labels from 0-prefix labels,
we perform 1-prefix tentative labeling, 2-prefix tentative labeling, . . . , k-prefix
tentative labeling, that is, the above process is executed k times. The com-
puting time of once update for an input image of m×n is mn such as 0-prefix
tentative labeling. Therefore, it takes kmn time to perform the k-prefix ten-
tative labeling for the image that is already assigned by 0-prefix tentative
labels.

3.3. The final labeling

We introduce the assignment of the connected component labeling using the
tentative labels. In this algorithm, the labels are assigned to each pixel in raster
scan order as follows.

Algorithm 3: (The final labeling)
For each row p, compute the followings from the top row to the bottom row.

Step 1: Make a table to convert the tentative labels to the connected component
labels. This can be done as follows.

(1) Trace the prefix connected components using the assigned prefix LMRS
labels.

(2) Store assigned connected component labels for each component with a
stack.

(3) Check whether the connected components is adjacent to any pixels that
are in the upper row. If a connected component is not adjacent to any
runs, update the table so as to convert the tentative label of the prefix
connected component to a new label.

Step 2: Convert the k-prefix tentative labels to the connected component labels by
referring the table and assign the connected component label to the scanned
pixel.

4. Hardware Algorithm for our connected component labeling

In this section, we show a hardware algorithm for our connected component
labeling (i.e. k-concave labeling).
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Recall that to perform our connected component labeling, the following processes
are performed for an input image in this order; the prefix LMRS labeling, the 0-
prefix tentative labeling, the 1-prefix tentative labeling, . . . , the k-prefix tentative
labeling and the final labeling. Each labeling method can be done in raster scan
order. The prefix LMRS labeling, the 1-prefix tentative labeling, . . . , the k-prefix
tentative labeling and the final labeling refer their prior process’s results in only
the upper or lower row. Therefore, each labeling method does not need to wait
its prior process’s results for the whole image. According to the above reason, the
hardware algorithm performs pipeline processing in parallel row by row from top
to bottom in the above order of labeling methods. For each row, namely, the prefix
LMRS labeling, the 0-prefix tentative labeling, the 1-prefix tentative labeling, . . . ,
the k-prefix tentative labeling and the final labeling are performed and each labeling
method executes concurrently.

Note that in the i-prefix tentative labeling (i > 0), the results for the individual
row can be also output until the process for the end of the row is finished, however
it refer the (i − 1)-prefix labels in the lower row. Because the parallel processing is
performed from the top row to the bottom row, then in our connected component
labeling, to assign labels to a particular row, the process must wait the assignment
of (i − 1)-prefix tentative labels to the lower row. On the other hand, in the prefix
LMRS labeling and the final labeling, the results for the individual row can be
output until the process for the end of the row is finished. Namely, a result for a
particular row is used in the process for the next row. Also, in the 0-prefix tentative
labeling the results for each input pixel can be output as soon as its own process is
finished, and the process for the next row can be done without its result.

Figure 12 shows our hardware implementation for the k-concave labeling that
performs the above processes. It consists of the circuits for the prefix LMRS label-
ing, the i-prefix tentative labeling for i = 0, 1, 2, . . . , k and the final labeling that are
arranged with cascade connection and perform pipeline processing, and two RAMs
that supply the subimage and its prefix LMRS labels to these circuits. We explain
each circuit, as follows:

• The circuit for the prefix LMRS labeling : The circuit for the prefix LMRS
labeling assigns the prefix LMRS labeling to each run. It has an input for
pixel data from the input image and outputs its prefix LMRS labels. It uses a
⌈n/2⌉ words storage to refer the assigned prefix connected components to the
upper row and a ⌈n/4⌉ words stack to store the information of the adjacent
prefix connected components. It takes 1 clock cycle for each input, however the
labels for each row cannot be determined until the operation for the rightmost
pixel is finished. Accordingly, the latency is n clocks cycles and the computing
time that the prefix LMRS labeling can be done for an input image mn clock
cycles.

• The circuit for the i-prefix tentative labeling for i = 0, 1, 2, . . . , k : The circuit
for the i-prefix tentative labeling for i = 0, 1, 2, . . . , k assigns the 0-prefix
tentative labels, 1-prefix tentative labels, 2-prefix tentative labeling, . . . , k-
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i = 0, 1, 2, ... , k

Figure 12: Our hardware implementation for k-concave labeling.

prefix tentative labels to each run. It has an input for pixel data, the prefix
LMRS labels and it outputs its k-prefix tentative labels. In addition, as
illustrated in Figure 13, it consists of the circuit for 0-prefix tentative labeling
and k circuits for the label rewriting.

The circuit for the 0-prefix tentative labeling assigns the 0-prefix tentative
labels to each prefix connected component. It has inputs for pixel data and
the prefix LMRS labels from the circuit for the prefix LMRS labeling and
outputs its 0-prefix tentative labels. Because it takes 1 clock cycle to assign
labels for each input and the labels can be determined as soon as the input
is given, then the latency is 1 clock cycle and the computing time that the
prefix LMRS labeling can be done for an input image mn clock cycles.

The circuit for the label rewriting rewrites labels by referring the labels in the
lower row. It uses a ⌈n/2⌉ words storage to refer the assigned prefix connected
components and a ⌈n/4⌉ words stack to store the information of the prefix
connected components. It takes 1 clock cycle for each input pixel, however the
labels for each row cannot be determined until the operation for the rightmost
pixel is finished. Then, the latency is n clock cycles and the computing time
that the circuit for a row can be done for an input image mn clock cycles.

As a result, the circuit for the k-prefix tentative labeling that consists of the
circuit for 0-prefix tentative labeling k circuits for the label rewriting uses
a k⌈n/2⌉ words storage to refer the assigned prefix connected components
to the upper row and a k⌈n/4⌉ words stack to store the information of the
adjacent prefix connected components. The latency is 2kn clock cycles and
the computing time that the prefix LMRS labeling can be done for an input
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The circuit for the label rewriting

1-prefix temporary labels

The circuit for the label rewriting

k-prefix temporary labels

2-prefix temporary labels

(k-1)-prefix temporary labels

The circuit for the label rewriting

0-prefix temporary labels

k

The circuit for the 0-prefix tentative labeling

Prefix LMRS labels

Figure 13: Hardware implementation for i-prefix tentative labeling for i =
0, 1, 2, . . . , k.

image mn clock cycles.

• The circuit for the final labeling: The circuit for the final labeling assigns the
component labels to each pixel. It has an input for pixel data, the prefix LMRS
labels and the k-prefix tentative labels and it outputs its k-prefix tentative
labels. It uses a ⌈n/2⌉ words storage to refer the assigned prefix connected
components to the upper row and a ⌈n/4⌉ words stack to store the information
of the adjacent prefix connected components. It takes 1 clock cycle for each
input and the labels for each row cannot be determined until the operation
for the rightmost pixel is finished. Accordingly, the latency is n clock cycles
and the computing time that the prefix LMRS labeling can be done for an
input image mn clock cycles.

• RAM: The two buffers stores the subimage data and its prefix LMRS labels
and supplies to these circuits. Each buffer consists of an array of RAMs. Each
buffer has 2k+2 banks to store and supply data row by row. More specifically,
the RAMs are used to store the latest 2k + 2 rows of the input binary image
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Table 1: Latency of each circuit for k-concave labeling.(n:width of the input image)

Circuit Latency[clock cycles]
The prefix LMRS labeling n

The i-prefix tentative labeling for i = 0, 1, 2, . . . , k 2kn
The final labeling n

Total (2k + 2)n

and their prefix LMRS labels.

According to using the above circuits, out hardware works as follows: The binary
image of m × n is provided to the hardware such that this input is given to the
hardware in every clock cycle in raster order. Hence, this input is sent to the
hardware in mn clock cycles. On the other hand, the latency is (2k + 2)n clock
cycles as shown in Table 1 because each circuit cannot start the process until each
prior process starts to output the results. Therefore, the total computing time is
(m + 2k + 2)n clock cycles.

This hardware algorithm for k-prefix tentative labeling uses the internal storage
of size approximately O(kn) words. More specifically, the internal storage are used
as a frame buffer that stores the latest 2k + 2 rows of the binary image and O(n)
words tentative data of pixels in these 2k + 2 rows.

5. Performance Evaluations

We have implemented our hardware algorithm for k-concave labeling in the PCI
board with an Altera Stratix family FPGA (EP1S25, speed grade 7, typical 2.5 mil-
lion gates with 2 Mbits embedded memory), and have evaluated the performance.
The logic is synthesized using Altera Quartus II design tool, and we have synthe-
sized the implementations of 0-concave labeling, 1-concave labeling,. . . , 10-concave
labeling, and executed them on the FPGA. These circuits can perform for the image
of the size 2048 × 2048.

Table 2 shows the result of the number of used logic elements, the size of used in-
ternal RAM and the maximum frequency of the synthesis of the k-concave labeling
circuits for various k’s. According to the table, the hardware implementation for 10-
concave labeling runs in 60MHz. Therefore, for a 10-concave image of 2048× 2048,
our 10-concave labeling circuit runs in approximately 70ms and its latency is ap-
proximately 750µs. The result confirms that this hardware implementation has
enough performance as a part of the image recognition system. Moreover, as k gets
larger, the number of used logic components and the size of used internal RAMs
are increasing in a linear fashion without excessive decrease of frequency. Conse-
quently, it is possible to use the intended hardware implementation by selecting the
appropriate value of k for used device or target application.

6. Concluding Remarks
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Table 2: Result of synthesis of the our hardware for k-concave labeling

Logic Inside Maximum
k Elements RAM [bit] Frequency [MHz]
0 1596 53760 72.66
1 2528 89344 63.52
2 3479 124928 61.32
3 4420 160512 64.07
4 5358 196096 60.00
5 6284 231680 60.87
6 7218 267264 61.47
7 8154 302848 61.47
8 9092 338432 62.02
9 10028 374016 60.71
10 10964 409600 61.61

We have presented a hardware connected component labeling algorithm for k-
concave binary images designed and implemented in FPGA. The hardware is per-
formed by row-based pipeline processing in parallel. Pixels of a binary image are
given to the FPGA in raster order, and the resulting labels are also output in the
same order. The advantage of our labeling algorithm is small latency and to use a
small internal storage of the FPGA. We have implemented our hardware labeling
algorithm in an Altera Stratix Family FPGA, and evaluated the performance. The
implementation result shows that for a 10-concave binary image of 2048×2048, our
connected component labeling algorithm runs in approximately 70ms and its latency
is approximately 750µs. The result confirms that this hardware implementation has
enough performance as a part of the image recognition system.
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