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An Energy Efficient Leader Election Protocol for Radio Network
with a Single Transceiver

Jacir Luiz BORDIM†, Yasuaki ITO††, and Koji NAKANO††a), Members

SUMMARY In this work we present an energy efficient leader elec-
tion protocol for anonymous radio network populated with n mobile sta-
tions. Previously, Nakano and Olariu have presented a leader election
protocol that terminates, with probability exceeding 1 − 1

f ( f ≥ 1), in
log log n + o(log log n) + O(log f ) time slots [14]. As the above protocol
works under the assumption that every station has the ability to transmit
and monitor the channel at the same time, it requires every station to be
equipped with two transceivers. This assumption, however, is unrealis-
tic for most mobile stations due to constraints in cost, size, and energy
dissipation. Our main contribution is to show that it is possible to elect
a leader in an anonymous radio network where each station is equipped
with a single transceiver. Quite surprisingly, although every station has
only one transceiver, our leader election protocol still runs, with probabil-
ity exceeding 1 − 1

f ( f ≥ 1), in log log n + o(log log n) + O(log f ) time
slots. Moreover, our leader election protocol needs only expected O(n) to-
tal awake time slots, while Nakano and Olariu’s protocol needs expected
O(n log log n) total awake time slots. Since every leader election protocol
needs at least Ω(n) awake time slots, our leader election protocol is optimal
in terms of the expected awake time slots.
key words: adhoc networks, collision detection, distributed algorithms,
randomized algorithms

1. Introduction

A radio network (RN, for short) is a distributed system with
no central arbiter, consisting of n radio transceivers, hence-
forth referred to as stations. In a single-channel RN the sta-
tions communicate over a common radio frequency chan-
nel, which is known to all the stations. An RN is said
to be single-hop when all the stations are within transmis-
sion range of each other. In this work we focus on single-
channel, single-hop radio networks. Single-hop radio net-
works are the basic ingredients out of which larger, multi-
hop radio networks are built [3], [18]. As customary, time
is assumed slotted and all transmissions are edge-triggered,
that is, take place at time slot boundaries [3], [5], [8]. In a
time slot, a station can transmit or listen to the channel using
a transceiver. Note that, a transceiver can perform one of the
transmitting and listening operations in a time slot. Should
a station need to do both operations at the same time, two
transceivers are necessary. However, this assumption is un-
realistic as most mobile devices are usually equipped with
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a single transceiver due to stringent constraints in size and
power consumption.

In this work, the stations are assumed to have a local
clock that keeps synchronous time, perhaps by interfacing
with a Global Positioning System (GPS, for short) [6], [15],
[16]. It is well documented that GPS systems using military
codes achieve a level of accuracy that is orders of magnitude
better than their commercial counterparts [6]. In particular,
this allows the stations to detect time slot boundaries and,
thus, to synchronize.

We employ the commonly-accepted assumption that
when two or more stations are transmitting on a channel at
the same time slot, the corresponding packets collide and are
garbled beyond recognition. It is customary to distinguish
among radio networks in terms of their collision detection
capabilities. In the RN with collision detection the status of
a radio channel in a time slot is:

NULL: if no station transmitted in the current time slot,
SINGLE: if exactly one station transmitted in the current

time slot,
COLLISION: if two or more stations transmitted the chan-

nel in the current time slot.

Note that, if a station has two transceivers, it can send a
packet and can detect the status of the channel in the same
time slot. However, if a station with a single transceiver
sends a packet, it cannot detect the status of the channel.

It is well known that a station expends power while its
transceiver is active, that is, while sending or receiving a
packet. As mobile stations run on batteries, saving battery
power is exceedingly important as recharging them may not
be possible while on mission. Thus, in terms of battery con-
sumption, the transmission of a packet and channel monitor-
ing are costly operations. Consequently, we are interested in
developing protocols that allow the stations to power their
transceiver off (i.e. go to sleep) to the largest extent pos-
sible, so as to save energy. We estimate the goodness of
a algorithm by the following two yardsticks: running time
slots: the overall number of time slots required by the al-
gorithm to terminate; awake time slots: for each individual
station the number of time slots when it has to be awake in
order to transmit a packet or listening to the channel; and
total awake time slots: the sum of awake time slots over all
stations.

The problem that we address in this work is the classi-
cal leader election problem which asks to designate one of
the stations in the network as leader. In other words, after
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executing the leader election protocol, exactly one station
learns that it was an elected leader. Historically, the leader
election problem was addressed in wired networks [1], [2],
[7], [9], [17], where each station can specify a destination
station.

The leader election problem can be studied in the fol-
lowing three scenarios:

Scenario 1: The number n of stations is known in advance;
Scenario 2: The number n of stations is unknown, but an

upper bound u on n is known in advance;
Scenario 3: Neither the number of stations nor an upper

bound on this number is known in advance.

It is intuitively clear that the task of leader election is the
easiest in Scenario 1 and the hardest in Scenario 3, with Sce-
nario 2 being in-between the two.

Several randomized protocols for single-channel,
single-hop networks have been presented in the literature.
Metcalfe and Boggs [10] presented a leader election proto-
col for Scenario 1 that is guaranteed to terminate in O(1)
expected time slots. Their protocol is very simple: ev-
ery station keeps transmitting on the channel with probabil-
ity 1

n . When the status of channel becomes SINGLE, the
unique station that has transmitted is declared the leader.
Later, Nakano and Olariu [12] presented two leader elec-
tion protocols for Scenario 3. The first one terminates,
with probability 1 − 1

n , in O(log n) time slots†. Nakano
and Olariu [13] also presented a leader election protocol for
Scenario 3 terminating with probability at least 1 − 1

f , in

O(min((log n)2 + (log f )2, f
3
5 log n)) time slots.

In a landmark paper, Willard [18] presented a leader
election protocol for the conditions of Scenario 2 terminat-
ing in log log u + O(1) expected time slots. Willard’s proto-
col involves two stages: the first stage, using binary search,
guesses in log log u time slots a number i, (0 ≤ i ≤ log u),
satisfying 2i ≤ n < 2i+1. Once this approximation for n
is available, the second stage elects a leader in O(1) ex-
pected time slots using the protocol of [10]. Thus, the pro-
tocol elects a leader in log log u + O(1) expected time slots.
Willard [18] went on to improve this protocol to run un-
der the conditions of Scenario 3 in log log n + o(log log n)
expected time slots. The first stage of the improved pro-
tocol uses the technique presented in Bentley and Yao [4],
which finds an integer i satisfying 2i ≤ n < 2i+1, sidestep-
ping the need for a known upper-bound u on n. Nakano
and Olariu [14] improved Willard’s protocol and proposed
a leader election protocol terminating, with probability ex-
ceeding 1− 1

f , in log log n+o(log log n)+O(log f ) time slots.
However, in these protocols every station must be equipped
with two transceivers, because a station sending a packet
need to detect the status of the channel. Also, since every
station must be awake for all the time slots, their protocol is
not energy efficient.

Our main contribution is to show a leader election pro-
tocol under the assumption that every station has a single
transceiver. Hence, it is not possible to transmit a packet
and detect the status of the channel at the same time. Quite

surprisingly, although every station has only one transceiver
our leader election protocol still runs, with probability ex-
ceeding 1 − 1

f ( f ≥ 1), in log log n + o(log log n) + O(log f )
time slots. Also, our leader election protocol needs only
expected O(n) total awake time slots, while Nakano and
Olariu’s protocol needs expected O(n log log n) total awake
time slots. Since every station must be awake for at least
one time slot, every leader election protocol with n stations
needs Ω(n) awake time slots. Thus, our leader election pro-
tocol is optimal in terms of the expected awake time slots.

The remainder of this paper is organized as follows.
Section 2 offers a brief refresher of basic probability the-
ory results. Section 3 shows an idea to implement leader
election protocols in radio networks with every station be-
ing equipped with a single transceiver. Section 4 develops a
leader election protocol that terminates with probability ex-
ceeding 1 − 1

f ( f ≥ 1), in log log n + o(log log n) + O(log f )
time slots. We also proved this protocol needs only expected
O(n) total awake time slots. Finally, Sect. 5 offers conclud-
ing remarks and directions for further investigations.

2. A Brief Refresher of Probability Theory

The main goal of this section is to review elementary proba-
bility theory results that are useful for analyzing the perfor-
mance of our protocols. For a more detailed discussion of
background material we refer the reader to [11].

Throughout, Pr[A] will denote the probability of event
A. Let E1, E2, . . . , Em be arbitrary events over a sample
space. It is clear that, by using the well known De Morgan
law,

Pr[E1 ∩ E2 ∩ · · · ∩ Ek] ≥ 1 −
m∑

i=1

Pr[Ei]. (1)

Notice that (1) holds regardless of whether or not the events
Ei are independent.

For a random variable X, E[X] denotes the expected
value of X. Let X be a random variable denoting the number
of successes in n independent Bernoulli trials with parame-
ter p. It is well known that X has a binomial distribution and
that for every integer r, (0 ≤ r ≤ n),

Pr[X = r] =
(

n
r

)
pr(1 − p)n−r. (2)

Thus, the probability that r = 0 is at most

Pr[X = 0] = (1 − p)n < e−np. (3)

To analyze the tail of the binomial distribution, we shall
make use of the following estimates, commonly referred to
as Chernoff bound [11]:

Pr[X < (1 − ε)E[X]] < e−
ε2
2 E[X] (0 ≤ ε ≤ 1). (4)

Let X be a random variable assuming only nonnega-
tive values. The following inequality, known as the Markov

†In this paper, log and ln are used to denote the logarithms to
the base 2 and e, respectively.
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inequality, will be also used

Pr[X ≥ c · E[X]] ≤ 1
c

for all c ≥ 1. (5)

To evaluate the expected value of a random variable,
we state the following lemma.

Lemma 1: Let X be a random variable taking a value
smaller than or equal to T (F) with probability at least F,
(0 ≤ F ≤ 1), where T is a non-decreasing function. Then,
E[X] ≤

∫ 1
0 T (F)dF.

Proof. Let k be any positive integer. Clearly, X is no more
than T ( i

k ) with probability i
k for every i (1 ≤ i ≤ k). Thus,

the expected value of X is bounded by

E[X] ≤
k∑

i=1

(
i
k
− i − 1

k

)
T
( i
k

)
=

k∑

i=1

1
k

T
( i
k

)
.

As k → ∞, we have E[X] ≤
∫ 1

0 T (F)dF. !
For later reference, we state the following corollary.

Corollary 2: Let X be a random variable taking a value
no more than log f with probability at least 1 − 1

f . Then,
E[X] ≤ 1.

Proof. Let F = 1 − 1
f and apply Lemma 1. we have

E[X] ≤
∫ 1

0
log

1
F

dF = [F − F log F]1
0 = 1.

!

3. Simulating Two Transceivers by One Transceiver

This section is to show an idea to implement a leader elec-
tion protocol to run in radio networks with each station be-
ing equipped with one transceiver.

Let U be a set of two or more stations (i.e. |U | ≥ 2), S
be a subset of U. Note that either S or U − S can be empty.

Suppose that all the stations broadcast on the channel.
If the stations have two transceivers, all the stations can lis-
ten to the channel and can detect the status of the channel.
Thus, all the stations can learn if |S | = 0, |S | = 1, or |S | ≥ 2.
However, if every station has a single transceiver this is not
possible. Only the stations in U−S can listen to the channel
and can learn if |S | = 0, |S | = 1, or |S | ≥ 2.

In most leader election protocols, it is a key ingredient
that all stations in U learn the status of the channel. We
are going to show that, in two time slots, all stations in U
(|U | ≥ 2) can learn if |S | = 0, |S | = 1, or |S | ≥ 2. The
protocol is as follows:

Protocol Simulation2(U,S)
Time Slot 1 Every station in S transmits on the channel and

every station in U − S listen to the channel.
Time Slot 2 Every station in U−S transmits on the channel

if the status of the channel was SINGLE in Time Slot
1.

Table 1 Possible channel status of the two time slots of Simulation2
(U, S ).

Time Slot
|S | |U − S | 1 2
0 ≥ 2 NULL NULL
1 1 SINGLE SINGLE
1 ≥ 2 SINGLE COLLISION
≥ 2 1 COLLISION NULL
≥ 2 0 COLLISION NULL
≥ 2 ≥ 2 COLLISION NULL

Clearly, at the end of time slot 1, all the stations in U−S
know if |S | = 0, |S | = 1, or |S | ≥ 2. Stations in S need to
determine if |S | = 0, |S | = 1, or |S | ≥ 2 by the status of the
channel in time slots 2. Table 1 shows all possible channel
status in the two time slots. From the table, it is easy to
confirm that, if the status of the channel in time slot 2 is
either SINGLE or COLLISION then |S | = 1. If it is NULL,
then either |S | = 0 or |S | ≥ 2. Clearly, if |S | = 0, then S
has no station that needs to learn |S |. Thus, stations in S can
learn that |S | ≥ 2 if the status of the channel at time slot 2 is
NULL.

Thus, we have,

Lemma 3: Let U be a set of two or more stations, and S
be a subset of U. All stations in U can learn, in two time
slots, if |S | = 0, |S | = 1, and |S | ≥ 2.

Note that if |U | = 1 it is impossible to learn if |S | = 0,
|S | = 1, and |S | ≥ 2.

Next, we will show that if we do not have to distinguish
|S | = 1 and |S | ≥ 2, then one time slot is sufficient. In other
words, we have,

Lemma 4: Let U be a set of one or more stations, and S be
a subset of U. All stations in U can learn, in one time slot,
if |S | = 0 or |S | ≥ 1.

This can be archived by executing Simulation1(U,S) as
follows:

Protocol Simulation1(U,S)
Time Slot 1 Every station in S transmits on the channel and

every station in U − S listen to the channel.

It is obvious that if S has at least one station, then it
knows that |S | ≥ 1. Hence, it is not necessary for the stations
in S to learn |S | from U − S .

4. Our Leader Election Protocol

The main purpose of this section is to develop a leader elec-
tion protocol in a radio network with n stations that ter-
minates, with probability exceeding 1 − 1

f , in log log n +
o(log log n) + O(log f ) time slots, where f ≥ 1 is an arbi-
trary parameter.

Our protocol repeatedly performs “Sieve” operation
until a leader is elected. Initially, every station is active. In
the “Sieve” operation, every station flips a biased coin and
belongs to S with a certain probability. If |S | = 1, a unique
station in S is elected as a leader. If |S | ≥ 2, then all stations
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in S remain active and the other stations go asleep. If |S | = 0
then all stations remain active. By repeating this “Sieve” op-
eration, the number of active station decreases, and at some
point, a leader is elected. The next section shows the details
of our leader election protocol.

4.1 Our Protocol and Its Correctness

Let U be a set of all n stations. We assume that n ≥ 2,
because leader election is not possible if n = 1. If n = 1,
then the channel status is always NULL when the station
listen to the channel. Hence, the station cannot distinguish
between (1) no station transmits and (2) no station exists.

We begin by presenting two simple protocols,
Sieve2(p) and Sieve1(p), (p ≥ 0). These protocols are
the core of our leader election protocol. Let U be the set of
current active stations.

Protocol Sieve2(p): Every active station flips a biased
coin and belongs to S with probability 1

2p . By using
Simulation2(U,S ), every station learns that |S | = 0,
|S | = 1, or |S | ≥ 2, in two time slots. If |S | = 0, all ac-
tive stations remain active. If |S | = 1, a single station
in S is declared as a leader and all the other stations go
asleep. If |S | ≥ 2, all the stations in S remain active,
and the other stations go asleep.

Protocol Sieve1(p): Every active station flips a biased
coin and belongs to S with probability 1

2p . By using
Simulation1(U,S ), every station learns if |S | = 0,
or |S | ≥ 1, in one time slots. If |S | = 0, all active sta-
tions remain active. If |S | ≥ 1, all the stations in S
remain active, and the other stations go asleep.

Clearly, Sieve2(p) and Sieve1(p) run in two and
one time slots respectively, and |U | must be ≥ 2 when
Sieve2(p) is called and must be ≥ 1 when Sieve1(p)
is called.

In our leader election protocol, all stations are initially
active. At the end of the protocol, exactly one station re-
main active and is elected as a leader. The other stations are
asleep. The protocol proceeds in three phases as follows:

Protocol Leader-Election
Phase 1 Sieve2(202

), Sieve2(212
), Sieve2(222

), . . .,
Sieve2(2t2

) are performed until, for the first time,
|S | ≤ 1 in Sieve2(2t2

). If |S | = 1, then the station
in S is declared as a leader. If |S | = 0, then let U′ be
the set of active stations after Sieve2(2t2

) is called.
Phase 2 Sieve1(2t2−1), Sieve1(2t2−2), Sieve1(2t2−3),
. . ., Sieve1(20) are performed.

Phase 3 Let S ′ be the set of current active stations. Sta-
tions in U′ temporary wake up in two time slots, and
Simulation2(U ′, S ′) is executed to check if |S ′| = 1.
If so, the unique station in S ′ is declared as a leader.
Otherwise, Sieve2(1) is repeated until, eventually,
|S | = 1, at which point a leader has been elected.

Let us see that Leader-Election correctly finds a leader.

It should be clear that if |S | = 1 in the last call Sieve2(2t2
)

in Phase 1, a leader is elected correctly. If |S | = 0
in Sieve2(2t2

), then |S | must be ≥ 2 for all calls
Sieve2(202

), . . ., Sieve2(2(t−1)2
) in Phase 1. Also, note

that if |S | = 0 in the call Sieve2(2t2
), all the active station

before this call remain active after this call. Thus, we have
|U′| ≥ 2. In all calls of Sieve1 of Phase 2, all active sta-
tions remain active if |S | = 0, stations in S remain active
if |S | ≥ 1. Hence, |S ′| ≥ 1 when Phase 3 starts. Note that
if |S ′| = 1, Sieve2 does not work (See Lemma 3). There-
fore, at the beginning of Phase 3, Simulation2(U ′, S ′) is
called to determine if |S ′| = 1 or |S ′| ≥ 2. Also, stations
in U′ know the value of t, and Phase 2 always runs in t2

time slot, hence, they know when they must be awake for
Simulation2(U ′, S ′). If |S ′| = 1, then a leader is elected.
If |S ′| ≥ 2, iterative calls of Sieve2(1) can elect a leader.
Consequently, Leader-Election always finds a leader.

4.2 The Time Complexity of Our Protocol

We now turn to the task of evaluating the number of time
slots it takes the protocol to terminate. Phase 1 terminates
when Sieve2 returns |S | ≤ 1. Thus, there exist an integer t
such that the status of the channel is:

• |S | ≥ 2 in the calls Sieve2(202
), Sieve2(212

),
Sieve2(222

), . . . , Sieve2(2(t−1)2
), and

• |S | ≤ 1 in the call Sieve2(2t2
).

Let f ≥ 1 be an arbitrary real number and write

s = )
√

log log(2n f )*. (6)

To motivate the choice of s in (6) we show that with prob-
ability exceeding 1 − 1

4 f , s provides an upper bound on
t. Suppose that we have n′ (≤ n) active stations when
Sieve2(2s2

) is called. Let X be the random variable de-
noting the number of stations in S in this call. Clearly, the
expected value E[X] of X is at most

E[X] <
n′

22s2 ≤
n

2n f
=

1
2 f
. (7)

Using the Markov inequality (5) and (7) combined, we can
write

Pr[X ≥ 2] < Pr[X ≥ 4 f E[X]] ≤ 1
4 f
.

This implies that with probability exceeding 1 − 1
4 f , |S | ≤ 1

in the call Sieve2(2s2
) confirming that

t ≤ s holds with probability exceeding 1 − 1
4 f
.

Recall that each call of Sieve2 and Sieve1 need two and
one time slots, respectively. Thus, with probability exceed-
ing 1 − 1

4 f , Phase 1 terminates in 2(t + 1) ≤ 2(s + 1) =

2)
√

log log(2n f )* + 2 = 2
√

log log n + O(log log f ) time
slots. Since Phase 2 terminates in at most s2 = log log n +
O(log log f ) time slots, we have proved the following result.
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Lemma 5: With probability exceeding 1− 1
4 f , Phase 1 and

Phase 2 combined take at most log log n + o(log log n) +
O(log log f ) time slots.

Our next goal is to evaluate the number of ac-
tive stations at the end of Phase 2. Let Sieve2(2s2

),
Sieve1(2s2−1), Sieve1(2s2−2), . . ., Sieve1(20) be a se-
quence of the calls from the last call of Phase 1 to the
last call of Phase 2. We say that a call of Sieve2(2m) or
Sieve1(2m) (0 ≤ m ≤ s2) in this sequence is failure if

n′ > 22m · ln(4(s2 + 1) f ) and |S | = 0,

where n′ is the number of active stations when the call starts.
Let us show that the probability of the failure is not

large. Let Y be the random variable denoting the number
of stations in S in the call Sieve2(2m) or Sieve1(2m).
Suppose that n′ > 22m · ln(4(s2 + 1) f ) holds. Then, |S | = 0
with probability at most

Pr[Y = 0] =
(
1 − 1

22m

)n′

< e−
n′

22m

≤ e− ln(4(s2+1) f ) =
1

4(s2 + 1) f
.

Thus, the probability that the call fails is at most 1
4(s2+1) f .

Importantly, this probability is independent of m. Hence,
from (1) we have

Lemma 6: The probability that none of the s2 + 1
calls Sieve2(2s2

), Sieve1(2s2−1), Sieve1(2s2−2), . . .,
Sieve1(20) from the last call of Phase 1 to the last call
of Phase 2 is at least 1 − 1

4 f .

Suppose that all of these s2+1 calls are success. Let us
evaluate the number of active stations at the end of Phase 2.
Let m be an integer such that

• the call Sieve1(2m) or Sieve2(2m) returns |S | = 0,
and
• all the calls Sieve1(2m−1), Sieve1(2m−2), . . .,
Sieve1(20) return |S | ≥ 1.

Clearly, such m always exists because the first call
Sieve2(2s2

) in the sequence (i.e the last call of Phase 1)
returns |S | = 0. Let n′ be the number of active stations when
Sieve1(2m−1) is called. Since we are assuming that all the
s2 + 1 calls are not failure, n′ ≤ 22m · ln(4(s2 + 1) f ) holds.
Also, any active station at this moment is still active after
the last call Sieve1(20) with probability

1
22m−1 · 22m−2 · · · 220 =

1
22m−1 .

Let Y ′ be the random variable denoting the number of active
stations when the last call Sieve1(20) is terminated. We
have E[Y ′] = n′

22m−1 ≤ 2 ln(4(s2 + 1) f ). Hence, using the
Markov inequality (5) the probability that Y ′ > 8 f ln(4(s2 +
1) f ) is at most

Pr[Y ′ > 8 f ln(4(s2 + 1) f )] ≤ Pr[Y ′ > 4 f E[Y ′]]

<
1

4 f
.

Therefore, we have,

Lemma 7: At the end of Phase 2, the number of active sta-
tions is at most 8 f ln(4(s2 + 1) f ) with probability at least
1 − 1

4 f under the assumption that none of the s2 + 1 calls
from the last call of Phase 1 to the last call of Phase 2 is
failure.

Finally, we are interested in getting a handle on
the number of time slots involved in Phase 3. We as-
sume that at the end of Phase 2 the number of active
stations is 8 f ln(4(s2 + 1) f ). Recall that Phase 3 calls
Simulation2(U ′, S ′) in two time slots, and repeatedly
calls Sieve2(1). In each Sieve2(1), each active sta-
tion belongs to S with probability 1

2 . A particular call
Sieve2(1) is failure if after the call more than n′

2 stations
remain active, where n′ (≥ 2) is the number of active stations
just before the call. In other words, the call Sieve2(1) is
failure if

• |S | > n′
2 or

• |S | = 0.

Clearly, the probability that |S | > n′
2 is at most 1

2 . Since
n′ ≥ 2, the probability that |S | = 0 is at most ( 1

2 )n′ ≤ 1
4 .

Thus, a particular call Sieve2(1) fails with probability at
most 1

2 +
1
4 =

3
4 . For simplicity, we assume that Sieve2(1)

fails with probability 3
4 and succeeds with probability 1

4 .
Since we have at most 8 f ln(4(s2+1) f ) active stations when
Phase 3 starts, k successful calls of Sieve2(1) such that
( 1

2 )k · 8 f ln(4(s2 + 1) f ) ≤ 1 is sufficient to elect a leader.
Hence, we set

k = )log(8 f ln(4(s2 + 1) f ))*.
Suppose that Sieve2(1) is called 8k + 32 ln(4 f ) times, and
let Z be the random variable denoting the number of success
calls. Since the probability of success is 1

4 , it should be clear
that E[Z] = 2k + 8 ln(4 f ). From the Chernoff Bounds (4),
the probability that we have less than k success calls is at
most

Pr[Z < k] = Pr
[
Z <
(
1 − 1

2

)
E[Z]
]

< e−
1
8 ·(2k+8 ln(4 f )) <

1
4 f
.

Therefore, with probability at least 1 − 1
4 f , among 8k +

32 ln(4 f ) calls of Sieve2(1) there are at least k success-
ful ones. It follows that if at the end of Phase 2 we have
at most 8 f ln(4(s2 + 1) f ) active stations, then Phase 3 calls
Sieve2(1) at most 8k + 32 ln(4 f ) = O(log f )+ o(log log n)
times. Since each Sieve2(1) takes two time slots, we have

Lemma 8: If at most 8 f ln(4(s2 + 1) f ) stations are ac-
tive when Phase 3 starts, Phase 3 takes at most O(log f ) +
o(log log n) times with probability at least 1 − 1

4 f ,
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From Lemmas 5, 6, 7, and 8, and (1) combined, we
have

Theorem 9: Protocol Leader-Election terminates, with
probability at least 1− 1

f , in at most log log n+o(log log n)+
O(log f ) time slots.

4.3 The Total Awake Time Slots of Our Protocol

Let us see the energy efficiency of our leader election proto-
col. Nakano and Olariu presented a leader election protocol
running in log log n+ o(log log n) +O(log f ) time slots with
probability 1 − 1

f . This protocol is not energy efficient be-
cause all the stations must be awake for all the time slots
and monitor the channel. On the other hand, in our leader
election protocol, most of the stations go asleep and turn
off the transceivers. Only the candidate of a leader remain
awake. Let us evaluate the total awake time slots, which is
the sum of the awake time slots over all stations. Clearly,
the total awake time slots of the Nakano and Olariu’s leader
election protocol is n log log n + o(n log log n) + O(n log f )
with probability 1− 1

f . Thus, from Corollary 2, the expected
total awake time slot is n log log n + O(n). We are going to
show that the expected total awake time slot is O(n) in our
leader election protocol.

We first show that Phase 1 of our protocol runs in
O(n) expected awake time slots. Recall that, in Phase 1
Sieve2(202

), Sieve2(212
), . . . are performed until for the

first time, S is empty. Thus, a particular station is in S in the
call Sieve2(2i2) (i ≥ 1) with probability

1

2202
2212 · · · 22i2 .

If this is the case, this station is still active and awake for
two time slots in the next call Sieve2(2(i+1)2

). Thus, the
expected number of awake time slots of a particular station
is,

2 +
2

2202 +
2

2202
2212 + · · · = O(1).

It follows that the expected total awake time slots in Phase 1
is n × O(1) = O(n).

Next, we will show that the expected total awake time
slots for Phases 2 and 3 is o(n). It is clear that ( j + 1)2 ≤ 2 j2

holds for all j ≥ 1. Thus, for all j ≥ 1, we have

22( j+1)2 ≤ 222 j2

. (8)

For a fixed n, let j be the integer such that

2202

2212

· · · 22 j2 ≤ log n
2
< 2202

2212

· · · 22( j+1)2

.

Clearly, 22 j2

< log n
2 holds. From (8), we have 22( j+1)2

<

2
log n

2 =
√

n. Thus, for enough large n, we have the double
inequality

log n
2
< 2202

2212

· · · 22( j+1)2

<

√
n log n

2
.

Hence, for such j, at the end of the call Sieve2(2( j+1)2
) the

expected number of active stations is at least 2n
log n and at most

2
√

n
log n . Let us evaluate the probability that, for all the j+2 calls

Sieve2(202
), Sieve2(212

), . . ., Sieve2(2( j+1)2
), S is not

empty. The probability that a particular station is in S for
all these j + 2 calls is at least 1

2202
2212 ···22( j+1)2

> 2√
n log n

. Thus,
from (3), the probability that none of the n stations is not
this case is at most
(
1 − 2√

n log n

)n
< e−

2
√

n
log n .

Hence, with probability at least 1 − e−
2
√

n
log n , S is not empty in

the call Sieve2(2( j+1)2
) in Phase 1.

Let us consider the following two cases:

Case 1: S is not empty in the call Sieve2(2( j+1)2
) in

Phase 1, and
Case 2: Otherwise,

and evaluate the total awake time slots separately.
Case 1: At the end of Sieve2(2( j+1)2

), the expected num-
ber of active station is at most

n

2202
2212 · · · 22(i+1)2

<
2n

log n
.

Since Phases 2 and 3 runs in log log n + o(log log n) time
slots, The total awake time slots is (log log n+ o(log log n)) ·

2n
log n = o(n).
Case 2: Clearly, Case 2 happens with probability at most

e−
2
√

n
log n . Let us consider the worst case, that is, at the end of

Phase 1, all the n station remain active. Since Sieve2(1) is
repeatedly performed in Phase 3, it is not difficult to show
that Phases 2 and 3 combined takes no more than O(log n)
time slots. Hence, the expected total awake time slots is no
more than O(n log n). Since Case 2 happens with probability

e−
2
√

n
log n , Case 2 adds at most O(n log n) · e−

2
√

n
log n < o(n) awake

time slots to the total awake time slots.
Consequently, we have proved that,

Theorem 10: The expected total awake time slots of Pro-
tocol Leader-Election is O(n).

5. Conclusions

In this paper, we have presented a leader election protocol
in radio network with each station being equipped with a
single transceiver. Our protocol elects a leader in log log n+
o(log log n) + O(log f ) time slots with probability at least
1 − 1

f for every f ≥ 1. The total awake time slots of our
leader election protocol is expected O(n).

This protocol improves Nakano and Olariu’s leader
election protocol in several points: Their leader election pro-
tocol requires two transceivers per station. Also, it spends
expected O(n log log n) total awake time slots.
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