
International Journal of Foundations of Computer Siene World Sienti� Publishing Company
Time and Energy Optimal List Ranking Algorithms on the k-ChannelBroadast Communiation Model with no Collision Detetion �KOJI NAKANOShool of Information Siene, Japan Advaned Institute of Siene and TehnologyTatsunokuhi, Ishikawa 923-1292, JapanReeived (reeived date)Revised (revised date)Communiated by Editor's nameABSTRACTA Broadast Communiation Model (BCM, for short) is a distributed system withno entral arbiter populated by n proessing units referred to as stations. The stationsan ommuniate by broadasting/reeiving a data paket to one of k distint ommuni-ation hannels. We assume that the stations run on batteries and expand power whilebroadasting/reeiving a data paket. Thus, the most important measure to evaluatealgorithms on the BCM is the number of awake time slots, in whih a station is broad-asting/reeiving a data paket. The main ontribution of this paper is to present timeand energy optimal list ranking algorithms on the BCM. We �rst show that the rank ofevery node in an n-node linked list an be determined in O(n) time slots with no stationbeing awake for more than O(1) time slots on the single-hannel n-station BCM with noollision detetion. We then extend this algorithm to run on the k-hannel BCM. Forany small �xed � > 0, our list ranking algorithm runs in O(nk) time slots with no stationbeing awake for more than O(1) time slots, provided that k � n1��. Clearly,
(nk) timeis neessary to solve the list ranking problem for an n-node linked list on the k-hannelBCM. Therefore, our list ranking algorithm on the k-hannel BCM is time and energyoptimal.1. IntrodutionA Broadast Communiation Model (BCM, for short) is a distributed systemwith no entral arbiter populated by n proessing units referred to as stationsS(1); S(2); : : : ; S(n). The fundamental harateristi of the model is the broad-ast nature of ommuniations. A data paket broadast on a hannel an bereeived by every station that has tuned to the hannel. The nature of end unitsis immaterial: they an well be proessors in a parallel omputing environment orradio transeivers in a wireless network. Likewise, the nature of the transmissionhannel is immaterial: it ould be a global bus in a multiproessor system or a radiofrequeny hannel in a radio network. It is important to note that the BCM modelprovides a ommon generalization of bus-based parallel arhitetures, luster om-� Work supported in part by the Teleommuniations Advanement Foundations.1

puting environment, loal area networks, and single-hop radio networks. Althoughthe BCM is assumed to operate in synhronous mode, we do not presribe a par-tiular synhronization mehanism. We feel that this is best left to the partiularappliation. For example, in radio networks, synhronization may be provided byan interfae to a ommerially-available Global Positioning System [17℄.We employ the ommonly-aepted assumption that when two or more stationsare broadasting on a hannel in the same time slot, the orresponding paketsollide and are lost. The BCMs has two kinds of assumptions in terms of ollisiondetetion (CD) apability [20, 21, 22, 29℄. In the BCM with CD, the status of aradio hannel is:NULL: if no station broadast on the hannel in the urrent time slot,SINGLE: if exatly one station broadast on the hannel in the urrent time slot,COLLISION: if two or more stations broadast on the hannel in the urrent timeslot.The status of a hannel an be deteted by stations that tune to it. In the BCMwith no ollision detetion the status of a radio hannel is:NOISE: if either no station broadasts or two or more stations broadast on thehannel in the urrent time slot, andSINGLE: if exatly one station broadasts on the hannel in the urrent time slot.In other words, the BCM with no CD annot distinguish between no broadaston the hannel and the result of two or more stations broadasting on the hannel.Several workers have argued that from a pratial standpoint the no CD assumptionmakes a lot of sense sine in many situations, espeially in the presene of noisyhannels, the stations annot distinguish between the no transmission ase and theollision of several pakets that arises when several stations attempt to broadast atone [4, 5, 24℄. On the other hand, many other radio or ellular networks inludingAMPS, GSM, ALOHA-net, as well as the well-known Ethernet are systems whereollision detetion is possible [1, 2, 6, 7, 19℄. Our algorithms presented in this paperrun on the BCM with no CD.We assume that broadasting/reeiving data pakets in the BCM is very ostly.For example, if the stations run on batteries and, therefore, saving battery poweris exeedingly important, as reharging batteries may not be possible while on mis-sion. It is well known that a station expends power while its transeiver is ative,that is, while transmitting or reeiving a paket [12, 14, 23, 25, 27, 28℄. It is perhapssurprising at �rst that a station expends power when reeiving a paket. Conse-quently, we are interested in developing algorithms that allow stations to powertheir transeiver o� (i.e. go to sleep) to the largest extent possible. Aordingly,we judge the goodness of an algorithm by the following two yardstiks:running time slots: the overall number of time slots required by the algorithm toterminate 2

1 2 3 4 5 6 7 8 9Figure 1: An example of a linked listawake time slots: for eah individual station the total number of time slots when ithas to be awake in order to broadast/reeive a data paket.The hallenge is to strike a sensible balane between the two, by designing algo-rithms that take a small number of time slots to terminate while being, at the sametime, as energy-eÆient as possible.A linked list is a basi data struture frequently used in many proessing tasks.A linked list L of n nodes is spei�ed by an array p suh that p(i) ontains a pointerto the next node of node i in the list of L. Figure 1 illustrates an example of alinked list. A node i is the end of the list if p(i) = i. Further, if there exists no nodej suh that p(i) = j, then node i is the top of the list. Nodes 2 and 8 in Figure 1are the top and the end nodes of the list, respetively. The list ranking problemasks to determine the rank of every node i (1 � i � n), whih is the distaneto the end of the list. The list ranking has many appliations. For example, anumber of algorithms suh as omputing a preorder/postorder numbering of nodesin a tree and �nding lowest ommon anestor of nodes use the list ranking as a keyingredient [16, 15℄.The list ranking problem has been solved in several ontexts [10, 11, 15, 26℄. Itis well known that the list ranking problem an be solved in O(log n) time usingn proessors on the PRAM [13, 16℄. This parallel list ranking algorithm uses thepointer jumping tehnique [3, 16℄, whih repeatedly hanges eah pointer suh that anew pointer is the suessor of the suessor. The pointer jumping is repeated untilall pointer points at the end node of the list. Further, it is known that the numberof proessors an be redued to nlogn without inreasing the omputing time [11, 16℄.Suppose that a pointer p(i) is stored in station S(i) on the BCM. If energy-eÆieny is not an issue, the list ranking problem an be solved on the BCM easilyby traversing the list from the end of the list toward the top as follows: First, aunique station S(i) satisfying p(i) = i broadasts i on the hannel. Every stationreeives i. Clearly, if p(j) = i, then the rank of node j is 1. Next, station S(j)broadasts j on the hannel, and every station reeives it. Again, if p(j0) = j,then the rank of node j0 is 2. Continuing similarly, the rank of every node anbe determined in n � 1 time slots. However, this algorithm is not energy eÆient.Station S(i) storing pinter p(i) of the top node i must be awake for n�1 time slots.One of the straightforward strategies to design an energy-eÆient algorithm onthe BCM is to simulate known PRAM algorithms. It is known that the list rankingproblem an be solved in O(log n) time using n proessors on the PRAM [13, 16℄.We are going to show that an energy-eÆient list raking algorithm on the BCM an3

be obtained by simulating a known PRAM list ranking algorithm as follows: �rst,it should be lear that any single step ommuniation performed on the n-proessorO(n)-memory-ell PRAM an be simulated by the n-station n-hannel BCM inO(1) time slots. This an be done by assigning O(1) memory ells to eah station.Then, read/write operations on the PRAM an be simulated using ommuniationhannels on the BCM in obvious way. Hene, any algorithm running in O(log n)time using n proessors and O(n) memory ells on the PRAM an be simulated bythe n-station n-hannel BCM in O(log n) time slots. Clearly, no station is awakefor more than O(log n) time slots in this simulation. Further, ommuniation usingn hannels in a single time slot an be simulated on the k-hannel BCM (k � n)in O(nk) time slots. Thus, the list ranking problem an be solved in O(n log nk) timeslots with eah station being awake for at most O(log n) time slots. However thisalgorithm is not time and energy optimal.The main ontribution of this paper is to present time and energy optimal listranking algorithms on the BCM with no CD. Surprisingly, stations are awake foronly O(1) time slots in our list ranking algorithms. We �rst show that the rank ofevery node in an n-node linked list an be done in O(n) time slots with no stationbeing awake for more than O(1) time slots on the single-hannel n-station BCMwith no CD. We then extend this algorithm to run on the k-hannel BCM. Forevery small �xed � > 0, our algorithm runs in O(nk) time slots with no station beingawake for more than O(1) time slots, provided that k � n1��. Clearly, every p(i)must be broadast at least one. Hene,
(nk) time is neessary to solve the listranking problem for an n-node linked list on the k-hannel BCM. Therefore, ouralgorithm is time and energy optimal.This paper is organized as follows: Setion 2 shows basi tehniques used for ourenergy-eÆient list ranking and shows a list ranking algorithm on the single-hannelBCM with no CD. This algorithm runs in O(n logn) time slots with at most n2�stations (1 � � � logn) being awake for O(�) time slots. In Setion 3, we modifythis list ranking algorithm to run in O(n) time slots with eah station being awakefor O(1) time slots on the single-hannel BCM with no CD. In Setion 4, we extendthis list ranking algorithm to run on the k-hannel BCM. Setion 5 o�ers onludingremarks and open problems.2. List ranking using list shrinkThe main purpose of this setion is to show fundamental tehniques used in ourtime and energy optimal list ranking algorithm. We �rst assume that the BCMhas the ollision detetion apability. Later, we show how to avoid using the CDapbablity.We use a fundamental tehnique for solving the list ranking problem as follows:This tehnique uses two arrays of variables q[i℄ and r[i℄ for every i (1 � i � n).Initially, q[i℄ is storing pointer p(i) for every i, and r[i℄ = 0 if node i is the end ofthe list, and r[i℄ = 1 otherwise. During the exeution of list ranking algorithms, r[i℄is always storing the distane from node i to q[i℄. When the list ranking algorithmterminates, for every i, q[i℄ is storing the pointer to the end of the list. Thus, eah4

r[i℄ is storing the rank of node i. This tehnique is used in the pointer jumping [16℄,whih repeats operations q[i℄ q[q[i℄℄ and r[i℄ r[i℄+r[q[i℄℄ for every i (1 � i � n)in parallel. After logn iterations, every q[i℄ is storing the pointer to the end of thelist, thus, r[i℄ is storing the rank of node i. The orretness of the pointer jumpingan be easily seen as follows. Suppose that every r[i℄ (1 � i � n) is storing thedistane from node i to node q[i℄. Then, the distane from node i to node q[q[i℄℄ isthe sum of r[i℄ and r[q[i℄℄. Thus, after exeuting q[i℄ q[q[i℄℄ and r[i℄ r[i℄+r[q[i℄℄in parallel, r[i℄ is storing the distane from node i to q[i℄ in the initial list. Afterlogn iterations of these operations, every q[i℄ is storing the index of the end nodeand r[i℄ is the rank of node i.Our list ranking algorithm uses two arrays q and r. For a urrent linked liststored in array q, a left sublist is a sequene hi1; i2; : : : ; imi of nodes suh thati1 > i2 > � � � > im and ij+1 = q[ij ℄ for every j (1 � j � m � 1). A left sublist isa maximal left sublist if no other left sublist ontains it. We say that nodes i1 andim are the head and the tail of the maximal left sublist hi1; i2; : : : ; imi. Similarly,we an de�ne a right sublist, a maximal right sublist, and their head and tail nodes.In Figure 1, h9; 7; 3; 1i is a maximal left sublist, and both h1; 4; 6; 8i and h2; 5; 9i aremaximal right sublists. Further, node 1 is the tail node of h9; 7; 3; 1i as well as thehead of h1; 4; 6; 8i.Our list ranking algorithm repeats shrinking maximal left and right sublists.Further, every leaf node that has no predeessor is eliminated. More preisely, ouralgorithm repeats list-shrink desribed as follows:list-shrinkStep 1: shrink left sublists by proedure left-shrink.Step 2: eliminate leaf nodes by proedure leaf-elimination.Step 3: shrink right sublists by proedure right-shrink.Step 4: eliminate leaf nodes by proedure leaf-elimination.Figure 2 illustrates eah step of list-shrink exeuted for the linked list in Figure 1.Somewhat surprisingly, list-shrink an be done in O(n) time slots with no stationbeing awake for more thanO(1) time slots. Further, list-shrink eliminates at leasthalf of the nodes.We will show the details of eah step of list-shrink. Let q and r be the arraysstoring pointers of a linked list and the distane as explained above. Proedureleft-shrink is desribed as follows.left-shrinkfor i 1 to n doS(i) broadasts q[i℄ and r[i℄ on the hannel.S(j) satisfying q[j℄ = i < j reeives them and sets q[j℄ q[i℄ andr[j℄ r[j℄ + r[i℄.Clearly, left-shrink takes n time slots. Further, eah S(i) is awake at time slotsi and q[i℄ and is asleep for remaining time slots. Thus, every station is awake forat most two time slots. Suppose that left-shrink is exeuted for the linked list in5

1 2 3 4 5 6 7 8 9 4 5 6 8 9
4 5 6 8 9 4 8left-shrink leaf-elimination

leaf-eliminationright-shrinkFigure 2: Eah step of list-shrinkFigure 1. Note that r[8℄ = 0, and r[i℄ = 1 for all i (i 6= 8). In time slot i = 1, stationS(1) broadasts q[1℄(= 4) and r[1℄(= 1) on the hannel. Station S(3) reeives thembeause q[3℄ = 1 < 3. It sets q[3℄ q[1℄(= 4) and r[3℄ r[3℄+r[1℄(= 2). No stationreeives in time slot i = 2. In time slot i = 3, station S(3) broadasts q[3℄(= 4) andr[3℄(= 2) on the hannel. Station S(7) reeives them and sets q[7℄ q[3℄(= 4) andr[7℄ r[7℄ + r[3℄(= 3). No station reeives in time slots i = 4; 5, and 6. In timeslot i = 7, station S(7) broadasts q[7℄(= 4) and r[7℄(= 3) on the hannel. StationS(7) reeives them and sets q[9℄ q[7℄(= 4) and r[9℄ r[9℄ + r[7℄(= 4). Finally,no station reeives in time slots i = 8 and 9. It is easy to see that, after exeutingleft-shrink, q[i1℄ = q[i2℄ = � � � = q[im℄ holds for eah left sublist hi1; i2; : : : ; imi,Table 1 illustrates for the values of of q and r after eah step of list-shrink. Inthe table, the values of q and r are with underlines when the orresponding nodesare eliminated. Further, they are blank if the orresponding station is asleep.After left-shrink, the graph may have several leaves, whih is a node havingno predeessor. Clearly, we obtain a new shrunk list by removing the leaves. Thefollowing proedure leaf-elimination �nds all leaves.leaf-eliminationfor i 1 to n doS(j) broadasts j if j = q[i℄.S(i) monitors the hannel.If the status of the hannel is NULL then node i is a leaf.Note that leaf-elimination uses the ollision detetion apability. Later, we willmodify leaf-elimination to run on the BCM with no CD. In leaf-elimination,station S(i) is awake at time slots i and q[i℄. Hene, no station is awake for morethan two time slots. 6

Table 1: The values of loal variables for the list in Figure 1node 1 2 3 4 5 6 7 8 9q r q r q r q r q r q r q r q r q rinitial input 4 1 5 1 1 1 6 1 9 1 8 1 3 1 8 0 7 1left-shrink 4 1 5 1 4 2 6 1 9 1 8 1 4 3 8 0 4 4leaf-elimination 4 1 5 1 4 2 6 1 9 1 8 1 4 3 8 0 4 4right-shrink 8 2 4 5 8 1 8 0 4 4leaf-elimination 8 2 4 5 8 1 8 0 4 4left-shrink 8 2 8 0leaf-elimination 8 2 8 0right-shrink 8 0leaf-elimination 8 0rewind (T = 4) 8 0rewind (T = 3) 8 2 8 0rewind (T = 2) 8 2 8 7 8 1 8 0 8 6rewind (T = 1) 8 3 8 8 8 4 8 2 8 7 8 1 8 5 8 0 8 6Proedure right-shrink performs the same operation in the opposite order asleft-shrink. Sine eah step of list-shrink an be done in n time slots withevery station being awake for two time slots, we have,Lemma 1 Proedure list-shrink takes 4n time slots with no station being awakefor more than 8 time slots.We are going to prove that no more than n2 nodes are in the list at the end oflist-shrink. Suppose that a list has s maximal right sublists L1; L2; : : : ; Ls inthis order. For example, in Figure 1, s = 2 and L1 = h1; 4; 6; 8i and L2 = h2; 5; 9i.For simpliity, we assume that L1 and Ls ontain the top and the end nodes ofthe whole list, respetively. We an show the proof similarly when this is not thease. From the de�nition, eah maximal right sublist Li has at least two nodes.Further, no node is ontained in two or more maximal right sublists. Hene, wehave 2s � n. At the end of Step 2, every node that is not in maximal right sublistsare removed. For example, in Figure 2, nodes 3 and 7 are removed. Further, thehead node (nodes 1 and 2 in Figure 2) of eah maximal right sublist is removed.Clearly, the list obtained after Step 2 has at most s maximal right sublists. Notethat the lists may have less than s maximal right sublists, beause two or moreadjaent maximal sublists may be merged into one. Sine every left sublist has twonodes, every reamining nodes is in one of the maximal right sublists at the end ofStep 2. Let L01; L02; : : : ; L0s0 (s0 � s) denote the maximal sublists obtained at the endof Step 2. We an evaluate the number of nodes in the list obtained after Step 4as follows. At the end of Step 4, no more than two nodes in L0s remain. The twonodes are the end of the whole list and the head of L0s. For example, in Figure 2,nodes 8 and 4 remain. Further, no node in L0i (2 � i � s0) but its tail remain. Allnodes in L01 are eliminated in Step 4. Thus, at the end of Step 4, the list has atmost s0 nodes. Sine s0 � s � n2 , we have the following lemma.Lemma 2 After exeuting list-shrink on a list of n nodes, the resulting list hasno more than n2 nodes.Lemma 2 implies that all nodes but the end of the list are eliminated by repeating7

list-shrink for logn times. After that, the rank of every node an be omputedby rewinding the 2 logn iterations of leaf-elimination as follows. For eah nodei, let t(i) denote an integer suh that node i has been eliminated in the t(i)-th(1 � i � 2 logn) leaf-elimination. For onveniene, let t(j) = 2 logn for the endnode j of the whole list. Suppose that node q[i℄ is the end of the list and r[i℄ isstoring the rank of node i. Then, for every node j satisfying q[j℄ = i, its rank isthe sum of r[j℄ and r[i℄. Using this fat, the rank of node i is stored in r[i℄ by thefollowing proedure.rewindfor T 2 logn downto 1 dofor i 1 to n doif t(i) � T then S(i) broadasts q[i℄ and r[i℄every S(j) satisfying t(j) = T and q[j℄ = i reeives q[i℄ and r[i℄ andsets q[i℄ q[j℄ and r[j℄ r[j℄ + r[i℄.Table 1 shows the values of q and r during the exeution of rewind. They haveunderlines, when the orresponding station is awake and hange its q and r.If q[j℄ = i when rewind starts, t(i) > t(j) holds. Hene, eah station S(j)always sueeds in reeiving q[i℄ and q[j℄. It is easy to see that rewind runs in2n logn time slots. When rewind terminates, every q[i℄ is storing the end of thelist, and thus r[i℄ is the rank of node i. Further, eah station i is awake for at mostt(i) time slots while rewind is running. Reall that station i is asleep after thet(i)-th leaf-elimination until it is awake for rewind. Thus, station i is awake forO(t(i)) time slots for list ranking. From Lemma 2, the number of nodes i satisfyingt(i) � 2� is at most n2� for every 1 � � � logn. Therefore, we have,Lemma 3 The list ranking problem an be solved in O(n logn) time slots with atmost n2� (1 � � � logn) station being awake for O(�) time slots on the single-hannel BCM.Reall that, in the list ranking algorithm for Lemma 3, only leaf-eliminationuses the ollision detetion apability. In what follows, we are going to show howwe perform leaf-elimination without CD.For eah node i, let q�1[i℄ denote its predeessor in the unnret linked list. Anode i is eliminated in Step 2 i� the values of q[i℄ and q�1[i℄ before starting Step 1satisfy one of the following three onditions:� q�1[i℄ does not exists (i.e. node i is the top of the whole list),� q[i℄ < i < q�1[i℄ (i.e. node i is in a maximal left sublist but it is neither thehead nor the tail), or� q[i℄ > i and i < q�1[i℄ (i.e. node i is the tail of a maximal left sublist).Hene, one every station S(i) learns the value of p�1[i℄, it an determine if node iis eliminated in Step 2. It is easy to see that every S(i) an learn p�1[i℄ in n timeslots with eah station being awake for two time slots on the single-hannel BCM8

with no CD. Consequently, proedure leaf-elimination is performed without theollision detetion apability.3. Time and energy optimal list rankingReall that, in eah list-shrink, at most half of the nodes remain in the list.By renumbering the remaining nodes after eah leaf-elimination, we an reduethe running time slots. In other words, we give a unique number in the range [1; n0℄to eah remaining node, where n0 is the number of remaining nodes.For this purpose, we use an energy optimal pre�x-sums algorithm desribed asfollows: Suppose that we have an array a of n numbers. Eah a(i) (1 � i � n)is stored in S(i). The pre�x-sums problem asks to ompute the i-th pre�x-sumpre�x (i) = a(1) + a(2) + � � � + a(i) for every i. The pre�x-sums problem an besolved in n�1 time slots with every station being awake for at most two time slots.The details of the algorithm are spelled out as follows.prefix-sumsS(1) sets pre�x (1) a(1).for i 1 to n� 1 doS(i) broadasts pre�x (i)S(i+ 1) reeives pre�x (i) and sets pre�x(i+ 1) pre�x(i) + a(i).It is easy to see that every S(i) learns pre�x(i) when prefix-sums terminates.Further eah station S(i) is awake for at time slots i and i� 1. Thus, we haveLemma 4 All the pre�x-sums an be omputed in n� 1 time slots with no stationbeing awake for more than two time slots.Using prefix-sums, all of the remaining nodes an be renumbered. Supposethat list-shrink is exeuted for a list of n nodes. Let a(i) = 1, if node i isremaining, and a(i) = 0 if node i is eliminated. By omputing the pre�x-sums of a,we assign eah remaining node i new ID pre�x (i). Then, every remaining node hasa unique ID in the range [1; n1℄, where n1 is the number of remaining nodes.After assigning new IDs to the remaining nodes, we �rst arrange them to stationsS(1); S(2); : : : S(n1) suh that eah S(i) (1 � i � n1) is storing remaining nodewith new ID i. After that, pointers are hanged aording to the new ID usingnode-transfer as follows:node-transferfor i 1 to n2 doif node j is remaining and pre�x(j) = i then S(j) broadasts q[j℄ and r[j℄.S(i) reeives them. Let q0(i) denote the value of q[j℄.for i 1 to n doS(i) broadasts pre�x (i).S(j) suh that q0(j) = i reeives and store it in q[j℄.After exeuting list-shrink on the list in Figure 1, two nodes 4 and 8 remain.By prefix-sums, nodes 4 and 8 reeives new IDs pre�x(4) = 1 and pre�x(8) = 2,9

respetively. Thus, after exeuting node-transfer, S(1) and S(2) are storing newnodes 1 and 2, respetively. Further, q[1℄ = 2; r[1℄ = 2 and q[2℄ = 2; r[2℄ = 0.From Lemma 2, n1 � n2 holds. Thus, node-transfer orretly moves node i toS(pre�x (i)) and runs in 32n time slots. If S(i) has remaining node i, it is awake attime slots pre�x (i) and n2 + i. Further, for every S(i) (1 � i � n1), it is awake attime slots i and n+ q0(i). Thus no station is awake for more than four time slots.After node-transfer, we exeute list-shrink on the new list with n1 nodes.Suppose that we have n2 nodes after exeuting the seond list-shrink. We useprefix-sums and node-transfer to move the n2 nodes to n2 stations S(n2 +1); S(n2 + 2); : : : ; S(n2 + n2). Continuing similarly, the list ranking problem an besolved. In general, after the i-th list-shrink (1 � i � logn� 1), the ni remainingnodes are moved to ni stations S(n� n2i�1 +1); S(n� n2i�1 +2); : : : S(n� n2i�1 +ni).Using the ni stations, list-shrink is exeuted on the new list of ni nodes. Thistakes O(n2i) time slots and stations storing the remaining nodes are awake for O(1)time slots. From Lemma 2, ni � n2i holds for every i (1 � i � logn). Hene, nostation is working for two more iterations after the �rst iteration of list-shrink.Thus, the logn iterations of list-shrink, prefix-sums, and node-transfer anbe done in O(n+ n2 + n4 + � � �+1) = O(n) time slots with eah station being awakefor O(1) time slots. We an modify rewind aording to new position of nodes.Finally, we have the following important theorem.Theorem 1 The list ranking of an n-node linked list given to n stations an bedone in O(n) time slots with no station being awake for more than O(1) time slotson the single-hannel BCM with no CD.4. List Ranking on the k-hannel BCMThis setion is devoted to show that the list ranking an be done in O(nk) timeslots on the k-hannel BCM with no station being awake for O(1) time slots. Ouridea is to simulate the single-hannel list ranking algorithm on the k-hannel BCM.We �rst show a list ranking algorithm on the BCM whih has exatly pn hannels.We then go on to generalize this algorithm to run on the k-hannel BCM.We �rst demonstrate how we simulate left-shrink on the pn-hannel BCM.Imagine that nodes are partitioned into pn groups suh that the i-th (1 � i � pn)group onsists of nodes in the range [(i � 1)pn + 1; ipn℄. Eah maximal sub-list is partitioned into segments so that a segment onsists of nodes in the samegroup. Proedure left-shrink is simulated by two subproedures left-shrink1and left-shrink2 that we desribe next. In left-shrink1, eah segment isshrunk. After removing leaf nodes, left-shrink2 shrinks eah maximal left sublist.Figure 3 illustrates left-shrink1 and left-shrink2.In left-shrink1, segments onsist of nodes in the range [(i � 1)pn + 1; ipn℄are shrunk using hannel i (1 � i � pn). For any pair i; j (1 � i; j � pn), let ki; jkdenote (i� 1)pn+ j. The details of left-shrink1 are spelled out as follows:left-shrink1for i 1 to pn do in parallel 10

left-shrink1leaf-eliminationleft-shrink2leaf-elimination

input list

Figure 3: Left shrink on the k-hannelfor j 1 to pn doS(ki; jk) broadasts q[ki; jk℄ and r[ki; jk℄ on hannel i.S(ki; j0k) satisfying q[ki; j0k℄ = ki; jk < ki; j0k reeives them from hannel iand sets q[ki; j0k℄ q[ki; jk℄ and r[ki; j0k℄ r[ki; j0k℄ + r[ki; jk℄.Clearly, left-shrink1 runs in pn time slots with eah station being awake forat most two time slots. After exeuting left-shrink1, q[ki; jk℄ is storing a newpointer, whih is the suessor of the tail node of the segment. After that, leavesare eliminated using the pn hannel in a similar way as follows:leaf-eliminationfor i 1 to pn do in parallelfor j 1 to pn doS(ki0; j0k) broadasts ki0; j0k on hannel i if ki; jk = q[ki0; j0k℄.S(ki; jk) monitors hannel i.If the status of the hannel is NULL then node ki; jk is a leaf.Clearly, all nodes in the maximal left sublists but the tails of the segments are re-moved by leaf-elimination. Note that the remaining tails in the same maximalleft sublist are in distintive groups. Using this fat, left-shrink2 shrinks maxi-11

mal left sublists. Reall that, in left-shrink1, nodes ki; 1k; ki; 2k; : : : ; ki;pnk arebroadast on hannel i in this order. In left-shrink2,pn nodes k1; jk; k2; jk; : : : ;kpn; jk are broadast on hannel j. This broadast enables us to shrink maximalleft sublists. The details are spelled out as follows:left-shrink2for j 1 to pn do in parallelfor i 1 to pn doS(ki; jk) broadasts q[ki; jk℄ and r[ki; jk℄ on hannel j.S(ki0; jk) satisfying q[ki0; jk℄ = ki; jk < ki0; jk reeives them from hannel jand sets q[ki0; jk℄ q[ki; jk℄ and r[ki0; jk℄ r[ki0; jk℄ + r[ki; jk℄.Clearly, left-shrink2 runs in pn time slots with eah station being awake for atmost two time slots. It is easy to see that, after exeuting left-elimination again,all nodes but one in eah maximal sublist are removed. Similarly, we an performright-shrink on the k-hannel BCM.Again, leaf-elimination on the k-hannel BCM uses the ollision detetionapability. We avoid using this apbability similarly to the single-hannel BCMase. A node ki; jk is a leaf node at the end of left-shrink1 i� the values ofq[ki; jk℄ and q�1[ki; jk℄ before starting left-shrink1 satisfy one of the followingthree onditions:� q�1[ki; jk℄℄ does not exists,� q[ki; jk℄ < ki; jk < q�1[ki; jk℄ and nodes ki; jk and q�1[ki; jk℄ are in the samegroup or� q[ki; jk℄ > ki; jk and ki; jk < q�1[ki; jk℄Hene, one every station S(ki; jk) learns the value of p�1[ki; jk℄, it an deter-mine if node ki; jk is eliminated in leaf-elimination. It is easy to see that everyS(ki; jk) an learn p�1[ki; jk℄ in O(pn) time slots with eah station being awakefor two time slots on the single-hannel BCM with no CD. Consequently, proedureleaf-elimination exeuted after left-shrink1 an be done without the olli-sion detetion apability. Proedure leaf-elimination after left-shrink2 anbe done without CD similarly to the single-hannel ase. Thus, list-shrink run-ning in O(n) time slots on the single-hannel BCM an be simulated in O(pn) timeon the pn-hannel BCM.Next, we are going to show how we implement prefix-sums for n numbersin the pn-hannel BCM. Suppose that the input array a is partitioned into pngroups of pn numbers. It is easy to see that, using a single hannel the (loal)pre�x-sums within eah group an be omputed in pn time slots. Let A(i) (1 �i � pn) be the sum of numbers in group i. After that, the (global) pre�x-sums ofA(1); A(2); : : : ; A(pn) is omputed using a single hannel in pn time slots. Eahpre�x-sum of array a is omputed by adding a loal pre�x-sum and a global pre�x-sum in obvious way. Thus, the prefix-sums of n numbers an be omputed usingpn hannels in O(pn) time slots. It is easy to see that no station being awake for12

more than O(1) time slots. Further, we an implement node-transfer to run inpn time slots with no station being awake more than O(1) time slots in a obviousway. Consequently, list-shrink, prefix-sums, and node-transfer for an n-nodelist an be implemented on the pn-hannel BCM to run in O(pn) time slots withno station being awake for more than O(1) time slots.left-shrink1for i 1 to pn do in parallelfor j 1 to pn doS(ki; jk) broadasts q[ki; jk℄ and r[ki; jk℄ on hannel i.S(ki; j0k) satisfying q[ki; j0k℄ = ki; jk < ki; j0k reeives them from hannel iand sets q[ki; j0k℄ q[ki; jk℄ and r[ki; j0k℄ r[ki; j0k℄ + r[ki; jk℄.After exeuting list-shrink, prefix-sums, and node-transfer on an n-node list,we obtain the shrunk list with less than n nodes. Let n1; n2; : : : ; nlogn be the numberof nodes suh that ni is the number of remaining n nodes after the i-th iteration oflist-shrink and prefix-sums on the k-hannel BCM. We use n2i (� ni) proessorsand p n2i hannels to perform the i-th iteration, whih takes O(p n2i) time slots.Hene, logn iterations take at most O(pn+p n21 +p n22 + � � �+p1) = O(pn) timeslots. Thus, the list ranking an be done in O(pn) time slots with no station beingawake for O(1) time slots on the pn-hannel BCM.Next, let us onsider the ase when the BCM has less than pn hannels. Letk (� pn) be the number of available hannels. Communiation using pn hannelsan be simulated in pnk time slots in obvious way. Thus, the list ranking probleman be solved in pnk �O(pn) = O(nk) time slots. Consequently, we have,Lemma 5 The list ranking of an n-node linked list given to n stations an be donein O(nk) time slots with no station being awake for more than O(1) time slots onthe k-hannel BCM with no CD provided that k � pn.In what follows, we show a list ranking algorithm on the BCM with more thanpn hannels. Suppose that n 23 hannels are available. We partition the nodes inton 23 groups suh that the i-th (1 � i � n 23) group in the range [(i� 1)n 13 + 1; in 13 ℄.Eah maximal sublist is partitioned into segments so that a segment onsists ofnodes in the same group. We assign to eah of the n 23 hannels to a group, andshrink eah segment in O(n 13) time slots in a similar way to left-shrink1. Wethen remove leaf nodes similarly to leaf-elimination. Clearly, at most one noderemains in eah segment.Next, we repartition nodes into n 13 groups suh that the i-th (1 � i � n 13) grouponsists of nodes in the range [(i�1)n 23 +1; in 23 ℄. We also repartition eah maximalleft sublist into segments based on the repartitioned groups. We assign n 13 hannelsto eah group and shrink eah segment in a similar way to left-shrink2. Thistakes O(n 13) time slots. After that, all leaves are removed.We then go on to shrink eah maximal left sublist. For this purpose, everynode i (1 � i � n 23) in the 1st group broadasts q[i℄ and r[i℄ on hannels. Sinen 23 nodes are in the 1st group, this is feasible. All nodes j satisfying q[j℄ = i < jreeive them, and performs q[i℄ q[j℄ and r[j℄ r[j℄ + r[i℄. Next, every node13

i (n 23 + 1 � i � 2n 23) in the 2nd group broadasts q[i℄ and r[i℄ on hannels. Allnodes j satisfying q[j℄ = i > j reeive them and hange q[j℄ and r[j℄ in the sameway. Continuing similarly, every maximal left sublist an be shrunk. Using thistehnique, the list ranking problem an be solved in O(n 13) time on the n 23 -hannelBCM.Finally, suppose that n1� 1 hannels available for any �xed � 2. We gen-eraize left-shrink1 and left-shrink2 as follows: Let ki�1; i�2; : : : ; i0k denotean integer satisfying ki�1; i�2; : : : ; i0k = i�1n �1 + i�2n �2 + � � �+ i0.left-shrink(m)for all 1 � i�1; : : : ; im+1; im�1; : : : ; i0 � n 1 do in parallelfor im 1 to n 1 doS(ki�1; i�2; : : : ; i0k) broadasts q[ki�1; i�2; : : : ; i0k℄and r[ki�1; i�2; : : : ; i0k℄ on hannel ki�1; : : : ; im+1; im�1; : : : ; i0k.S(ki�1; : : : ; im+1; j; im�1; : : : ; i0k) satisfyingq[k��1; : : : ; im+1; j; im�1; : : : ; i0k℄ = ki�1; i�2; : : : ; i0k <ki�1; : : : ; im+1; j; im�1; : : : ; i0kreeives them from it and setsq[ki�1; : : : ; im+1; j; im�1; : : : ; i0k℄ q[ki�1; i�2; : : : ; i0k℄ andr[ki�1; : : : ; im+1; j; im�1; : : : ; i0k℄ + = r[ki�1; i�2; : : : ; i0k℄.Clearly, left-shrink(m) uses (n 1)�1 = n1� 1 hannels. Also, left-shrink(1)and left-shrink(2) orrespond to left-shrink1 and left-shrink2 if = 2.Thus, the reader should have no diÆulty to on�rm that, a sequene of proe-dures, left-shrink(1), leaf-elimination left-shrink(2), leaf-elimination,: : :, left-shrink(m), leaf-elimination simulates list-shrink. Further, allthe other proedures inluding right-shrink, leaf-elimination, prefix-sums,node-transfer, and rewind an be simulated similarly on the n1� 1 -hannel BCM.Therefore, we haveTheorem 2 For every � 2, the list ranking of an n-node linked list given to nstations an be done in O(n 1) time slots with no station being awake for more thanO() time slots on the n1� 1 -hannel BCM with no CD.Let � = 1 be a small �xed real number. From above theorem, we have thefollowing important orollary.Corollary 1 For any small �xed � > 0, the list ranking of an n-node linked list anbe done in O(nk) time slots with no station being awake for more than O(1) timeslots on the k-hannel n-station BCM with no CD provided that k � n1��.5. Conluding RemarksWe have shown that the rank of every node in an n-node linked list an bedetermined in O(n) time slots with no station being awake for more than O(1) timeslots on the single-hannel n-station BCM. We have extended this algorithm to runon the k-hannel BCM. For any small �xed � > 0, our list ranking algorithm runs inO(nk) time slots with no station being awake for more than O(1) time slots, provided14

that k � n1��. Clearly,
(nk) time is neessary to solve the list ranking problem foran n-node linked list on the k-hannel BCM. Therefore, our list ranking algorithmon the k-hannel BCM is time and energy optimal. Sine the number of hannelsis small in pratie, our algorithm is always optimal. However, from a theoretialpoint of view, it remains open to show a list ranking algorithm running in O(log n)time slots with eah station being awake for O(1) time slots on the nlogn -hannelBCM.Referenes1. N. Abramson, Ed., Multiple Aess Communiations: Foundations for EmergingTehnologies, IEEE Press, New York, 1993.2. N. Abramson, Multiple aess in wireless digital networks, Proeedings of the IEEE,82, (1994), 1360{1370.3. S. G. Akl, Parallel Computation: Models and Methods Prentie Hall, 1997.4. R. Bar-Yehuda, O. Goldreih, and A. Itai, EÆient emulation of single-hop radionetwork with ollision detetion on multi-hop radio network with no ollision dete-tion, Distributed Computing, 5, (1991), 67{71.5. R. Bar-Yehuda, O. Goldreih, and A. Itai, On the time-omplexity of broadast inmulti-hop radio networks: An exponential gap between determinism and random-ization, Journal of Computer and Systems Sienes, 45, (1992), 104{126.6. D. Bertzekas and R. Gallager, Data Networks, Seond Edition, Prentie-Hall, 1992.7. R. Binder, N. Abramson, F. Kuo, A. Okinaka, and D. Wax, ALOHA paket broad-asting { a retrospet, AFIPS Conf Proeedings, May 1975, 203{216.8. J. L. Bordim, J. Cui, T. Hayashi, K. Nakano, and S. Olariu, Energy-eÆient initial-ization protools for ad-ho radio network, IEICE Trans. on Fundamentals, E83-A,9, pp.1796-1803, 2000.9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introdution to algorithms, MIT Press,1994.10. R. Cole and U. Vishkin, Deterministi Coin Tossing With Appliations to OptimalParallel List Ranking, Information and Control, 70,32{56, 1986.11. R. Cole and U. Vishkin, Approximate parallel sheduling. Part I: The basi teh-nique with appliations to optimal parallel list ranking in logarithmi time, SIAMJ. Computing, 17, 1, 128{142, 198812. K. Feher, Wireless Digital Communiations, Prentie-Hall, Upper Saddle River, NJ,1995.13. A. Gibbons and W. Rytter, EÆient parallel algorithms, Cambridte UniversityPress, 1988.14. E. P. Harris and K. W. Warren, Low power tehnologies: a system perspetive, Pro.3-rd International Workshop on Multimedia Communiations, Prineton, 1996.15. T. Hayashi, K. Nakano, and S. Olariu, EÆient List Ranking on the Reon�gurableMesh, with Appliations, Theory of Computing Systems, 31, 593{611, 1998.16. J. J�aJ�a, An introdution to parallel algorithms, Addison-Wesley, 1992.17. E. D. Kaplan, Understanding GPS: priniples and appliations, Arteh House,Boston, 1996.18. F. T. Leighton, Introdution to parallel algorithms and arhitetures, Morgan Kauf-mann, 1992. 15

19. R. M. Metalfe and D. R. Boggs, Ethernet: distributed paket swithing for loalomputer networks, Communiations of the ACM, 19, (1976), 395{404.20. A. Mii, and I. Stojmenovi, A hybrid randomized Initialization protool for TDMAin single-hop wireless networks, Workshop on Advanes in Parallel and DistributedComputational Models, 2002.21. K. Nakano and S. Olariu, Randomized initialization protools for ad-ho networks,IEEE Trans. on Parallel and Distributed Systems, 11, 7, 749{759, 2000.22. K. Nakano and S. Olariu, Uniform Leader Eletion Protools in Radio Networks, toappear in IEEE Trans. on Parallel and Distributed Systems, 200223. K. Nakano, S. Olariu, A. Y. Zomaya, Energy-EÆient Deterministi Routing Pro-tools in Radio Networks, IEEE Trans. on Parallel and Distributed Systems, 12, 6,544{557, 2001.24. K. Nakano, and S. Olariu, Energy-EÆient Initialization Protools for Single-HopRadio Networks with no Collision Detetion, IEEE Trans. on Parallel and Dis-tributed Systems 11, 8, 851{863, 2000.25. R.A. Powers, Batteries for low-power eletronis, Pro. IEEE, 83, pp.687{693, 1995.26. M. Reid-Miller, List Ranking and List San on the CRAY C-90, ournal of Computerand System Sienes", (1996), 53, 3.27. A. K. Salkintzis and C. Chamzas, An in-band power-saving protool for mobile datanetworks, IEEE Transations on Communiations, COM-46, (1998), 1194{1205.28. K. Sivalingam, M. B. Srivastava, and P. Agrawal, Low power link and aess proto-ols for vireless multimedia networks, Pro. IEEE Vehiular Tehnology ConfereneVTC'97, Phoenix, AZ, May, 1997.29. D. E. Willard, Log-logarithmi seletion resolution protools in a multiple aesshannel, SIAM Journal on Computing, 15, (1986), 468{477.

16

