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ast Communi
ation Model (BCM, for short) is a distributed system withno 
entral arbiter populated by n pro
essing units referred to as stations. The stations
an 
ommuni
ate by broad
asting/re
eiving a data pa
ket to one of k distin
t 
ommuni-
ation 
hannels. We assume that the stations run on batteries and expand power whilebroad
asting/re
eiving a data pa
ket. Thus, the most important measure to evaluatealgorithms on the BCM is the number of awake time slots, in whi
h a station is broad-
asting/re
eiving a data pa
ket. The main 
ontribution of this paper is to present timeand energy optimal list ranking algorithms on the BCM. We �rst show that the rank ofevery node in an n-node linked list 
an be determined in O(n) time slots with no stationbeing awake for more than O(1) time slots on the single-
hannel n-station BCM with no
ollision dete
tion. We then extend this algorithm to run on the k-
hannel BCM. Forany small �xed � > 0, our list ranking algorithm runs in O(nk ) time slots with no stationbeing awake for more than O(1) time slots, provided that k � n1��. Clearly, 
(nk ) timeis ne
essary to solve the list ranking problem for an n-node linked list on the k-
hannelBCM. Therefore, our list ranking algorithm on the k-
hannel BCM is time and energyoptimal.1. Introdu
tionA Broad
ast Communi
ation Model (BCM, for short) is a distributed systemwith no 
entral arbiter populated by n pro
essing units referred to as stationsS(1); S(2); : : : ; S(n). The fundamental 
hara
teristi
 of the model is the broad-
ast nature of 
ommuni
ations. A data pa
ket broad
ast on a 
hannel 
an bere
eived by every station that has tuned to the 
hannel. The nature of end unitsis immaterial: they 
an well be pro
essors in a parallel 
omputing environment orradio trans
eivers in a wireless network. Likewise, the nature of the transmission
hannel is immaterial: it 
ould be a global bus in a multipro
essor system or a radiofrequen
y 
hannel in a radio network. It is important to note that the BCM modelprovides a 
ommon generalization of bus-based parallel ar
hite
tures, 
luster 
om-� Work supported in part by the Tele
ommuni
ations Advan
ement Foundations.1



puting environment, lo
al area networks, and single-hop radio networks. Althoughthe BCM is assumed to operate in syn
hronous mode, we do not pres
ribe a par-ti
ular syn
hronization me
hanism. We feel that this is best left to the parti
ularappli
ation. For example, in radio networks, syn
hronization may be provided byan interfa
e to a 
ommer
ially-available Global Positioning System [17℄.We employ the 
ommonly-a

epted assumption that when two or more stationsare broad
asting on a 
hannel in the same time slot, the 
orresponding pa
kets
ollide and are lost. The BCMs has two kinds of assumptions in terms of 
ollisiondete
tion (CD) 
apability [20, 21, 22, 29℄. In the BCM with CD, the status of aradio 
hannel is:NULL: if no station broad
ast on the 
hannel in the 
urrent time slot,SINGLE: if exa
tly one station broad
ast on the 
hannel in the 
urrent time slot,COLLISION: if two or more stations broad
ast on the 
hannel in the 
urrent timeslot.The status of a 
hannel 
an be dete
ted by stations that tune to it. In the BCMwith no 
ollision dete
tion the status of a radio 
hannel is:NOISE: if either no station broad
asts or two or more stations broad
ast on the
hannel in the 
urrent time slot, andSINGLE: if exa
tly one station broad
asts on the 
hannel in the 
urrent time slot.In other words, the BCM with no CD 
annot distinguish between no broad
aston the 
hannel and the result of two or more stations broad
asting on the 
hannel.Several workers have argued that from a pra
ti
al standpoint the no CD assumptionmakes a lot of sense sin
e in many situations, espe
ially in the presen
e of noisy
hannels, the stations 
annot distinguish between the no transmission 
ase and the
ollision of several pa
kets that arises when several stations attempt to broad
ast aton
e [4, 5, 24℄. On the other hand, many other radio or 
ellular networks in
ludingAMPS, GSM, ALOHA-net, as well as the well-known Ethernet are systems where
ollision dete
tion is possible [1, 2, 6, 7, 19℄. Our algorithms presented in this paperrun on the BCM with no CD.We assume that broad
asting/re
eiving data pa
kets in the BCM is very 
ostly.For example, if the stations run on batteries and, therefore, saving battery poweris ex
eedingly important, as re
harging batteries may not be possible while on mis-sion. It is well known that a station expends power while its trans
eiver is a
tive,that is, while transmitting or re
eiving a pa
ket [12, 14, 23, 25, 27, 28℄. It is perhapssurprising at �rst that a station expends power when re
eiving a pa
ket. Conse-quently, we are interested in developing algorithms that allow stations to powertheir trans
eiver o� (i.e. go to sleep) to the largest extent possible. A

ordingly,we judge the goodness of an algorithm by the following two yardsti
ks:running time slots: the overall number of time slots required by the algorithm toterminate 2



1 2 3 4 5 6 7 8 9Figure 1: An example of a linked listawake time slots: for ea
h individual station the total number of time slots when ithas to be awake in order to broad
ast/re
eive a data pa
ket.The 
hallenge is to strike a sensible balan
e between the two, by designing algo-rithms that take a small number of time slots to terminate while being, at the sametime, as energy-eÆ
ient as possible.A linked list is a basi
 data stru
ture frequently used in many pro
essing tasks.A linked list L of n nodes is spe
i�ed by an array p su
h that p(i) 
ontains a pointerto the next node of node i in the list of L. Figure 1 illustrates an example of alinked list. A node i is the end of the list if p(i) = i. Further, if there exists no nodej su
h that p(i) = j, then node i is the top of the list. Nodes 2 and 8 in Figure 1are the top and the end nodes of the list, respe
tively. The list ranking problemasks to determine the rank of every node i (1 � i � n), whi
h is the distan
eto the end of the list. The list ranking has many appli
ations. For example, anumber of algorithms su
h as 
omputing a preorder/postorder numbering of nodesin a tree and �nding lowest 
ommon an
estor of nodes use the list ranking as a keyingredient [16, 15℄.The list ranking problem has been solved in several 
ontexts [10, 11, 15, 26℄. Itis well known that the list ranking problem 
an be solved in O(log n) time usingn pro
essors on the PRAM [13, 16℄. This parallel list ranking algorithm uses thepointer jumping te
hnique [3, 16℄, whi
h repeatedly 
hanges ea
h pointer su
h that anew pointer is the su

essor of the su

essor. The pointer jumping is repeated untilall pointer points at the end node of the list. Further, it is known that the numberof pro
essors 
an be redu
ed to nlogn without in
reasing the 
omputing time [11, 16℄.Suppose that a pointer p(i) is stored in station S(i) on the BCM. If energy-eÆ
ien
y is not an issue, the list ranking problem 
an be solved on the BCM easilyby traversing the list from the end of the list toward the top as follows: First, aunique station S(i) satisfying p(i) = i broad
asts i on the 
hannel. Every stationre
eives i. Clearly, if p(j) = i, then the rank of node j is 1. Next, station S(j)broad
asts j on the 
hannel, and every station re
eives it. Again, if p(j0) = j,then the rank of node j0 is 2. Continuing similarly, the rank of every node 
anbe determined in n � 1 time slots. However, this algorithm is not energy eÆ
ient.Station S(i) storing pinter p(i) of the top node i must be awake for n�1 time slots.One of the straightforward strategies to design an energy-eÆ
ient algorithm onthe BCM is to simulate known PRAM algorithms. It is known that the list rankingproblem 
an be solved in O(log n) time using n pro
essors on the PRAM [13, 16℄.We are going to show that an energy-eÆ
ient list raking algorithm on the BCM 
an3



be obtained by simulating a known PRAM list ranking algorithm as follows: �rst,it should be 
lear that any single step 
ommuni
ation performed on the n-pro
essorO(n)-memory-
ell PRAM 
an be simulated by the n-station n-
hannel BCM inO(1) time slots. This 
an be done by assigning O(1) memory 
ells to ea
h station.Then, read/write operations on the PRAM 
an be simulated using 
ommuni
ation
hannels on the BCM in obvious way. Hen
e, any algorithm running in O(log n)time using n pro
essors and O(n) memory 
ells on the PRAM 
an be simulated bythe n-station n-
hannel BCM in O(log n) time slots. Clearly, no station is awakefor more than O(log n) time slots in this simulation. Further, 
ommuni
ation usingn 
hannels in a single time slot 
an be simulated on the k-
hannel BCM (k � n)in O(nk ) time slots. Thus, the list ranking problem 
an be solved in O(n log nk ) timeslots with ea
h station being awake for at most O(log n) time slots. However thisalgorithm is not time and energy optimal.The main 
ontribution of this paper is to present time and energy optimal listranking algorithms on the BCM with no CD. Surprisingly, stations are awake foronly O(1) time slots in our list ranking algorithms. We �rst show that the rank ofevery node in an n-node linked list 
an be done in O(n) time slots with no stationbeing awake for more than O(1) time slots on the single-
hannel n-station BCMwith no CD. We then extend this algorithm to run on the k-
hannel BCM. Forevery small �xed � > 0, our algorithm runs in O(nk ) time slots with no station beingawake for more than O(1) time slots, provided that k � n1��. Clearly, every p(i)must be broad
ast at least on
e. Hen
e, 
(nk ) time is ne
essary to solve the listranking problem for an n-node linked list on the k-
hannel BCM. Therefore, ouralgorithm is time and energy optimal.This paper is organized as follows: Se
tion 2 shows basi
 te
hniques used for ourenergy-eÆ
ient list ranking and shows a list ranking algorithm on the single-
hannelBCM with no CD. This algorithm runs in O(n logn) time slots with at most n2�stations (1 � � � logn) being awake for O(�) time slots. In Se
tion 3, we modifythis list ranking algorithm to run in O(n) time slots with ea
h station being awakefor O(1) time slots on the single-
hannel BCM with no CD. In Se
tion 4, we extendthis list ranking algorithm to run on the k-
hannel BCM. Se
tion 5 o�ers 
on
ludingremarks and open problems.2. List ranking using list shrinkThe main purpose of this se
tion is to show fundamental te
hniques used in ourtime and energy optimal list ranking algorithm. We �rst assume that the BCMhas the 
ollision dete
tion 
apability. Later, we show how to avoid using the CD
apbablity.We use a fundamental te
hnique for solving the list ranking problem as follows:This te
hnique uses two arrays of variables q[i℄ and r[i℄ for every i (1 � i � n).Initially, q[i℄ is storing pointer p(i) for every i, and r[i℄ = 0 if node i is the end ofthe list, and r[i℄ = 1 otherwise. During the exe
ution of list ranking algorithms, r[i℄is always storing the distan
e from node i to q[i℄. When the list ranking algorithmterminates, for every i, q[i℄ is storing the pointer to the end of the list. Thus, ea
h4



r[i℄ is storing the rank of node i. This te
hnique is used in the pointer jumping [16℄,whi
h repeats operations q[i℄ q[q[i℄℄ and r[i℄ r[i℄+r[q[i℄℄ for every i (1 � i � n)in parallel. After logn iterations, every q[i℄ is storing the pointer to the end of thelist, thus, r[i℄ is storing the rank of node i. The 
orre
tness of the pointer jumping
an be easily seen as follows. Suppose that every r[i℄ (1 � i � n) is storing thedistan
e from node i to node q[i℄. Then, the distan
e from node i to node q[q[i℄℄ isthe sum of r[i℄ and r[q[i℄℄. Thus, after exe
uting q[i℄ q[q[i℄℄ and r[i℄ r[i℄+r[q[i℄℄in parallel, r[i℄ is storing the distan
e from node i to q[i℄ in the initial list. Afterlogn iterations of these operations, every q[i℄ is storing the index of the end nodeand r[i℄ is the rank of node i.Our list ranking algorithm uses two arrays q and r. For a 
urrent linked liststored in array q, a left sublist is a sequen
e hi1; i2; : : : ; imi of nodes su
h thati1 > i2 > � � � > im and ij+1 = q[ij ℄ for every j (1 � j � m � 1). A left sublist isa maximal left sublist if no other left sublist 
ontains it. We say that nodes i1 andim are the head and the tail of the maximal left sublist hi1; i2; : : : ; imi. Similarly,we 
an de�ne a right sublist, a maximal right sublist, and their head and tail nodes.In Figure 1, h9; 7; 3; 1i is a maximal left sublist, and both h1; 4; 6; 8i and h2; 5; 9i aremaximal right sublists. Further, node 1 is the tail node of h9; 7; 3; 1i as well as thehead of h1; 4; 6; 8i.Our list ranking algorithm repeats shrinking maximal left and right sublists.Further, every leaf node that has no prede
essor is eliminated. More pre
isely, ouralgorithm repeats list-shrink des
ribed as follows:list-shrinkStep 1: shrink left sublists by pro
edure left-shrink.Step 2: eliminate leaf nodes by pro
edure leaf-elimination.Step 3: shrink right sublists by pro
edure right-shrink.Step 4: eliminate leaf nodes by pro
edure leaf-elimination.Figure 2 illustrates ea
h step of list-shrink exe
uted for the linked list in Figure 1.Somewhat surprisingly, list-shrink 
an be done in O(n) time slots with no stationbeing awake for more thanO(1) time slots. Further, list-shrink eliminates at leasthalf of the nodes.We will show the details of ea
h step of list-shrink. Let q and r be the arraysstoring pointers of a linked list and the distan
e as explained above. Pro
edureleft-shrink is des
ribed as follows.left-shrinkfor i 1 to n doS(i) broad
asts q[i℄ and r[i℄ on the 
hannel.S(j) satisfying q[j℄ = i < j re
eives them and sets q[j℄ q[i℄ andr[j℄ r[j℄ + r[i℄.Clearly, left-shrink takes n time slots. Further, ea
h S(i) is awake at time slotsi and q[i℄ and is asleep for remaining time slots. Thus, every station is awake forat most two time slots. Suppose that left-shrink is exe
uted for the linked list in5



1 2 3 4 5 6 7 8 9 4 5 6 8 9
4 5 6 8 9 4 8left-shrink leaf-elimination

leaf-eliminationright-shrinkFigure 2: Ea
h step of list-shrinkFigure 1. Note that r[8℄ = 0, and r[i℄ = 1 for all i (i 6= 8). In time slot i = 1, stationS(1) broad
asts q[1℄(= 4) and r[1℄(= 1) on the 
hannel. Station S(3) re
eives thembe
ause q[3℄ = 1 < 3. It sets q[3℄ q[1℄(= 4) and r[3℄ r[3℄+r[1℄(= 2). No stationre
eives in time slot i = 2. In time slot i = 3, station S(3) broad
asts q[3℄(= 4) andr[3℄(= 2) on the 
hannel. Station S(7) re
eives them and sets q[7℄ q[3℄(= 4) andr[7℄  r[7℄ + r[3℄(= 3). No station re
eives in time slots i = 4; 5, and 6. In timeslot i = 7, station S(7) broad
asts q[7℄(= 4) and r[7℄(= 3) on the 
hannel. StationS(7) re
eives them and sets q[9℄  q[7℄(= 4) and r[9℄  r[9℄ + r[7℄(= 4). Finally,no station re
eives in time slots i = 8 and 9. It is easy to see that, after exe
utingleft-shrink, q[i1℄ = q[i2℄ = � � � = q[im℄ holds for ea
h left sublist hi1; i2; : : : ; imi,Table 1 illustrates for the values of of q and r after ea
h step of list-shrink. Inthe table, the values of q and r are with underlines when the 
orresponding nodesare eliminated. Further, they are blank if the 
orresponding station is asleep.After left-shrink, the graph may have several leaves, whi
h is a node havingno prede
essor. Clearly, we obtain a new shrunk list by removing the leaves. Thefollowing pro
edure leaf-elimination �nds all leaves.leaf-eliminationfor i 1 to n doS(j) broad
asts j if j = q[i℄.S(i) monitors the 
hannel.If the status of the 
hannel is NULL then node i is a leaf.Note that leaf-elimination uses the 
ollision dete
tion 
apability. Later, we willmodify leaf-elimination to run on the BCM with no CD. In leaf-elimination,station S(i) is awake at time slots i and q[i℄. Hen
e, no station is awake for morethan two time slots. 6



Table 1: The values of lo
al variables for the list in Figure 1node 1 2 3 4 5 6 7 8 9q r q r q r q r q r q r q r q r q rinitial input 4 1 5 1 1 1 6 1 9 1 8 1 3 1 8 0 7 1left-shrink 4 1 5 1 4 2 6 1 9 1 8 1 4 3 8 0 4 4leaf-elimination 4 1 5 1 4 2 6 1 9 1 8 1 4 3 8 0 4 4right-shrink 8 2 4 5 8 1 8 0 4 4leaf-elimination 8 2 4 5 8 1 8 0 4 4left-shrink 8 2 8 0leaf-elimination 8 2 8 0right-shrink 8 0leaf-elimination 8 0rewind (T = 4) 8 0rewind (T = 3) 8 2 8 0rewind (T = 2) 8 2 8 7 8 1 8 0 8 6rewind (T = 1) 8 3 8 8 8 4 8 2 8 7 8 1 8 5 8 0 8 6Pro
edure right-shrink performs the same operation in the opposite order asleft-shrink. Sin
e ea
h step of list-shrink 
an be done in n time slots withevery station being awake for two time slots, we have,Lemma 1 Pro
edure list-shrink takes 4n time slots with no station being awakefor more than 8 time slots.We are going to prove that no more than n2 nodes are in the list at the end oflist-shrink. Suppose that a list has s maximal right sublists L1; L2; : : : ; Ls inthis order. For example, in Figure 1, s = 2 and L1 = h1; 4; 6; 8i and L2 = h2; 5; 9i.For simpli
ity, we assume that L1 and Ls 
ontain the top and the end nodes ofthe whole list, respe
tively. We 
an show the proof similarly when this is not the
ase. From the de�nition, ea
h maximal right sublist Li has at least two nodes.Further, no node is 
ontained in two or more maximal right sublists. Hen
e, wehave 2s � n. At the end of Step 2, every node that is not in maximal right sublistsare removed. For example, in Figure 2, nodes 3 and 7 are removed. Further, thehead node (nodes 1 and 2 in Figure 2) of ea
h maximal right sublist is removed.Clearly, the list obtained after Step 2 has at most s maximal right sublists. Notethat the lists may have less than s maximal right sublists, be
ause two or moreadja
ent maximal sublists may be merged into one. Sin
e every left sublist has twonodes, every reamining nodes is in one of the maximal right sublists at the end ofStep 2. Let L01; L02; : : : ; L0s0 (s0 � s) denote the maximal sublists obtained at the endof Step 2. We 
an evaluate the number of nodes in the list obtained after Step 4as follows. At the end of Step 4, no more than two nodes in L0s remain. The twonodes are the end of the whole list and the head of L0s. For example, in Figure 2,nodes 8 and 4 remain. Further, no node in L0i (2 � i � s0) but its tail remain. Allnodes in L01 are eliminated in Step 4. Thus, at the end of Step 4, the list has atmost s0 nodes. Sin
e s0 � s � n2 , we have the following lemma.Lemma 2 After exe
uting list-shrink on a list of n nodes, the resulting list hasno more than n2 nodes.Lemma 2 implies that all nodes but the end of the list are eliminated by repeating7



list-shrink for logn times. After that, the rank of every node 
an be 
omputedby rewinding the 2 logn iterations of leaf-elimination as follows. For ea
h nodei, let t(i) denote an integer su
h that node i has been eliminated in the t(i)-th(1 � i � 2 logn) leaf-elimination. For 
onvenien
e, let t(j) = 2 logn for the endnode j of the whole list. Suppose that node q[i℄ is the end of the list and r[i℄ isstoring the rank of node i. Then, for every node j satisfying q[j℄ = i, its rank isthe sum of r[j℄ and r[i℄. Using this fa
t, the rank of node i is stored in r[i℄ by thefollowing pro
edure.rewindfor T  2 logn downto 1 dofor i 1 to n doif t(i) � T then S(i) broad
asts q[i℄ and r[i℄every S(j) satisfying t(j) = T and q[j℄ = i re
eives q[i℄ and r[i℄ andsets q[i℄ q[j℄ and r[j℄ r[j℄ + r[i℄.Table 1 shows the values of q and r during the exe
ution of rewind. They haveunderlines, when the 
orresponding station is awake and 
hange its q and r.If q[j℄ = i when rewind starts, t(i) > t(j) holds. Hen
e, ea
h station S(j)always su

eeds in re
eiving q[i℄ and q[j℄. It is easy to see that rewind runs in2n logn time slots. When rewind terminates, every q[i℄ is storing the end of thelist, and thus r[i℄ is the rank of node i. Further, ea
h station i is awake for at mostt(i) time slots while rewind is running. Re
all that station i is asleep after thet(i)-th leaf-elimination until it is awake for rewind. Thus, station i is awake forO(t(i)) time slots for list ranking. From Lemma 2, the number of nodes i satisfyingt(i) � 2� is at most n2� for every 1 � � � logn. Therefore, we have,Lemma 3 The list ranking problem 
an be solved in O(n logn) time slots with atmost n2� (1 � � � logn) station being awake for O(�) time slots on the single-
hannel BCM.Re
all that, in the list ranking algorithm for Lemma 3, only leaf-eliminationuses the 
ollision dete
tion 
apability. In what follows, we are going to show howwe perform leaf-elimination without CD.For ea
h node i, let q�1[i℄ denote its prede
essor in the 
unnret linked list. Anode i is eliminated in Step 2 i� the values of q[i℄ and q�1[i℄ before starting Step 1satisfy one of the following three 
onditions:� q�1[i℄ does not exists (i.e. node i is the top of the whole list),� q[i℄ < i < q�1[i℄ (i.e. node i is in a maximal left sublist but it is neither thehead nor the tail), or� q[i℄ > i and i < q�1[i℄ (i.e. node i is the tail of a maximal left sublist).Hen
e, on
e every station S(i) learns the value of p�1[i℄, it 
an determine if node iis eliminated in Step 2. It is easy to see that every S(i) 
an learn p�1[i℄ in n timeslots with ea
h station being awake for two time slots on the single-
hannel BCM8



with no CD. Consequently, pro
edure leaf-elimination is performed without the
ollision dete
tion 
apability.3. Time and energy optimal list rankingRe
all that, in ea
h list-shrink, at most half of the nodes remain in the list.By renumbering the remaining nodes after ea
h leaf-elimination, we 
an redu
ethe running time slots. In other words, we give a unique number in the range [1; n0℄to ea
h remaining node, where n0 is the number of remaining nodes.For this purpose, we use an energy optimal pre�x-sums algorithm des
ribed asfollows: Suppose that we have an array a of n numbers. Ea
h a(i) (1 � i � n)is stored in S(i). The pre�x-sums problem asks to 
ompute the i-th pre�x-sumpre�x (i) = a(1) + a(2) + � � � + a(i) for every i. The pre�x-sums problem 
an besolved in n�1 time slots with every station being awake for at most two time slots.The details of the algorithm are spelled out as follows.prefix-sumsS(1) sets pre�x (1) a(1).for i 1 to n� 1 doS(i) broad
asts pre�x (i)S(i+ 1) re
eives pre�x (i) and sets pre�x(i+ 1) pre�x(i) + a(i).It is easy to see that every S(i) learns pre�x(i) when prefix-sums terminates.Further ea
h station S(i) is awake for at time slots i and i� 1. Thus, we haveLemma 4 All the pre�x-sums 
an be 
omputed in n� 1 time slots with no stationbeing awake for more than two time slots.Using prefix-sums, all of the remaining nodes 
an be renumbered. Supposethat list-shrink is exe
uted for a list of n nodes. Let a(i) = 1, if node i isremaining, and a(i) = 0 if node i is eliminated. By 
omputing the pre�x-sums of a,we assign ea
h remaining node i new ID pre�x (i). Then, every remaining node hasa unique ID in the range [1; n1℄, where n1 is the number of remaining nodes.After assigning new IDs to the remaining nodes, we �rst arrange them to stationsS(1); S(2); : : : S(n1) su
h that ea
h S(i) (1 � i � n1) is storing remaining nodewith new ID i. After that, pointers are 
hanged a

ording to the new ID usingnode-transfer as follows:node-transferfor i 1 to n2 doif node j is remaining and pre�x(j) = i then S(j) broad
asts q[j℄ and r[j℄.S(i) re
eives them. Let q0(i) denote the value of q[j℄.for i 1 to n doS(i) broad
asts pre�x (i).S(j) su
h that q0(j) = i re
eives and store it in q[j℄.After exe
uting list-shrink on the list in Figure 1, two nodes 4 and 8 remain.By prefix-sums, nodes 4 and 8 re
eives new IDs pre�x(4) = 1 and pre�x(8) = 2,9



respe
tively. Thus, after exe
uting node-transfer, S(1) and S(2) are storing newnodes 1 and 2, respe
tively. Further, q[1℄ = 2; r[1℄ = 2 and q[2℄ = 2; r[2℄ = 0.From Lemma 2, n1 � n2 holds. Thus, node-transfer 
orre
tly moves node i toS(pre�x (i)) and runs in 32n time slots. If S(i) has remaining node i, it is awake attime slots pre�x (i) and n2 + i. Further, for every S(i) (1 � i � n1), it is awake attime slots i and n+ q0(i). Thus no station is awake for more than four time slots.After node-transfer, we exe
ute list-shrink on the new list with n1 nodes.Suppose that we have n2 nodes after exe
uting the se
ond list-shrink. We useprefix-sums and node-transfer to move the n2 nodes to n2 stations S(n2 +1); S(n2 + 2); : : : ; S(n2 + n2). Continuing similarly, the list ranking problem 
an besolved. In general, after the i-th list-shrink (1 � i � logn� 1), the ni remainingnodes are moved to ni stations S(n� n2i�1 +1); S(n� n2i�1 +2); : : : S(n� n2i�1 +ni).Using the ni stations, list-shrink is exe
uted on the new list of ni nodes. Thistakes O( n2i ) time slots and stations storing the remaining nodes are awake for O(1)time slots. From Lemma 2, ni � n2i holds for every i (1 � i � logn). Hen
e, nostation is working for two more iterations after the �rst iteration of list-shrink.Thus, the logn iterations of list-shrink, prefix-sums, and node-transfer 
anbe done in O(n+ n2 + n4 + � � �+1) = O(n) time slots with ea
h station being awakefor O(1) time slots. We 
an modify rewind a

ording to new position of nodes.Finally, we have the following important theorem.Theorem 1 The list ranking of an n-node linked list given to n stations 
an bedone in O(n) time slots with no station being awake for more than O(1) time slotson the single-
hannel BCM with no CD.4. List Ranking on the k-
hannel BCMThis se
tion is devoted to show that the list ranking 
an be done in O(nk ) timeslots on the k-
hannel BCM with no station being awake for O(1) time slots. Ouridea is to simulate the single-
hannel list ranking algorithm on the k-
hannel BCM.We �rst show a list ranking algorithm on the BCM whi
h has exa
tly pn 
hannels.We then go on to generalize this algorithm to run on the k-
hannel BCM.We �rst demonstrate how we simulate left-shrink on the pn-
hannel BCM.Imagine that nodes are partitioned into pn groups su
h that the i-th (1 � i � pn)group 
onsists of nodes in the range [(i � 1)pn + 1; ipn℄. Ea
h maximal sub-list is partitioned into segments so that a segment 
onsists of nodes in the samegroup. Pro
edure left-shrink is simulated by two subpro
edures left-shrink1and left-shrink2 that we des
ribe next. In left-shrink1, ea
h segment isshrunk. After removing leaf nodes, left-shrink2 shrinks ea
h maximal left sublist.Figure 3 illustrates left-shrink1 and left-shrink2.In left-shrink1, segments 
onsist of nodes in the range [(i � 1)pn + 1; ipn℄are shrunk using 
hannel i (1 � i � pn). For any pair i; j (1 � i; j � pn), let ki; jkdenote (i� 1)pn+ j. The details of left-shrink1 are spelled out as follows:left-shrink1for i 1 to pn do in parallel 10



left-shrink1leaf-eliminationleft-shrink2leaf-elimination

input list

Figure 3: Left shrink on the k-
hannelfor j  1 to pn doS(ki; jk) broad
asts q[ki; jk℄ and r[ki; jk℄ on 
hannel i.S(ki; j0k) satisfying q[ki; j0k℄ = ki; jk < ki; j0k re
eives them from 
hannel iand sets q[ki; j0k℄ q[ki; jk℄ and r[ki; j0k℄ r[ki; j0k℄ + r[ki; jk℄.Clearly, left-shrink1 runs in pn time slots with ea
h station being awake forat most two time slots. After exe
uting left-shrink1, q[ki; jk℄ is storing a newpointer, whi
h is the su

essor of the tail node of the segment. After that, leavesare eliminated using the pn 
hannel in a similar way as follows:leaf-eliminationfor i 1 to pn do in parallelfor j  1 to pn doS(ki0; j0k) broad
asts ki0; j0k on 
hannel i if ki; jk = q[ki0; j0k℄.S(ki; jk) monitors 
hannel i.If the status of the 
hannel is NULL then node ki; jk is a leaf.Clearly, all nodes in the maximal left sublists but the tails of the segments are re-moved by leaf-elimination. Note that the remaining tails in the same maximalleft sublist are in distin
tive groups. Using this fa
t, left-shrink2 shrinks maxi-11



mal left sublists. Re
all that, in left-shrink1, nodes ki; 1k; ki; 2k; : : : ; ki;pnk arebroad
ast on 
hannel i in this order. In left-shrink2,pn nodes k1; jk; k2; jk; : : : ;kpn; jk are broad
ast on 
hannel j. This broad
ast enables us to shrink maximalleft sublists. The details are spelled out as follows:left-shrink2for j  1 to pn do in parallelfor i 1 to pn doS(ki; jk) broad
asts q[ki; jk℄ and r[ki; jk℄ on 
hannel j.S(ki0; jk) satisfying q[ki0; jk℄ = ki; jk < ki0; jk re
eives them from 
hannel jand sets q[ki0; jk℄ q[ki; jk℄ and r[ki0; jk℄ r[ki0; jk℄ + r[ki; jk℄.Clearly, left-shrink2 runs in pn time slots with ea
h station being awake for atmost two time slots. It is easy to see that, after exe
uting left-elimination again,all nodes but one in ea
h maximal sublist are removed. Similarly, we 
an performright-shrink on the k-
hannel BCM.Again, leaf-elimination on the k-
hannel BCM uses the 
ollision dete
tion
apability. We avoid using this 
apbability similarly to the single-
hannel BCM
ase. A node ki; jk is a leaf node at the end of left-shrink1 i� the values ofq[ki; jk℄ and q�1[ki; jk℄ before starting left-shrink1 satisfy one of the followingthree 
onditions:� q�1[ki; jk℄℄ does not exists,� q[ki; jk℄ < ki; jk < q�1[ki; jk℄ and nodes ki; jk and q�1[ki; jk℄ are in the samegroup or� q[ki; jk℄ > ki; jk and ki; jk < q�1[ki; jk℄Hen
e, on
e every station S(ki; jk) learns the value of p�1[ki; jk℄, it 
an deter-mine if node ki; jk is eliminated in leaf-elimination. It is easy to see that everyS(ki; jk) 
an learn p�1[ki; jk℄ in O(pn) time slots with ea
h station being awakefor two time slots on the single-
hannel BCM with no CD. Consequently, pro
edureleaf-elimination exe
uted after left-shrink1 
an be done without the 
olli-sion dete
tion 
apability. Pro
edure leaf-elimination after left-shrink2 
anbe done without CD similarly to the single-
hannel 
ase. Thus, list-shrink run-ning in O(n) time slots on the single-
hannel BCM 
an be simulated in O(pn) timeon the pn-
hannel BCM.Next, we are going to show how we implement prefix-sums for n numbersin the pn-
hannel BCM. Suppose that the input array a is partitioned into pngroups of pn numbers. It is easy to see that, using a single 
hannel the (lo
al)pre�x-sums within ea
h group 
an be 
omputed in pn time slots. Let A(i) (1 �i � pn) be the sum of numbers in group i. After that, the (global) pre�x-sums ofA(1); A(2); : : : ; A(pn) is 
omputed using a single 
hannel in pn time slots. Ea
hpre�x-sum of array a is 
omputed by adding a lo
al pre�x-sum and a global pre�x-sum in obvious way. Thus, the prefix-sums of n numbers 
an be 
omputed usingpn 
hannels in O(pn) time slots. It is easy to see that no station being awake for12



more than O(1) time slots. Further, we 
an implement node-transfer to run inpn time slots with no station being awake more than O(1) time slots in a obviousway. Consequently, list-shrink, prefix-sums, and node-transfer for an n-nodelist 
an be implemented on the pn-
hannel BCM to run in O(pn) time slots withno station being awake for more than O(1) time slots.left-shrink1for i 1 to pn do in parallelfor j  1 to pn doS(ki; jk) broad
asts q[ki; jk℄ and r[ki; jk℄ on 
hannel i.S(ki; j0k) satisfying q[ki; j0k℄ = ki; jk < ki; j0k re
eives them from 
hannel iand sets q[ki; j0k℄ q[ki; jk℄ and r[ki; j0k℄ r[ki; j0k℄ + r[ki; jk℄.After exe
uting list-shrink, prefix-sums, and node-transfer on an n-node list,we obtain the shrunk list with less than n nodes. Let n1; n2; : : : ; nlogn be the numberof nodes su
h that ni is the number of remaining n nodes after the i-th iteration oflist-shrink and prefix-sums on the k-
hannel BCM. We use n2i (� ni) pro
essorsand p n2i 
hannels to perform the i-th iteration, whi
h takes O(p n2i ) time slots.Hen
e, logn iterations take at most O(pn+p n21 +p n22 + � � �+p1) = O(pn) timeslots. Thus, the list ranking 
an be done in O(pn) time slots with no station beingawake for O(1) time slots on the pn-
hannel BCM.Next, let us 
onsider the 
ase when the BCM has less than pn 
hannels. Letk (� pn) be the number of available 
hannels. Communi
ation using pn 
hannels
an be simulated in pnk time slots in obvious way. Thus, the list ranking problem
an be solved in pnk �O(pn) = O(nk ) time slots. Consequently, we have,Lemma 5 The list ranking of an n-node linked list given to n stations 
an be donein O(nk ) time slots with no station being awake for more than O(1) time slots onthe k-
hannel BCM with no CD provided that k � pn.In what follows, we show a list ranking algorithm on the BCM with more thanpn 
hannels. Suppose that n 23 
hannels are available. We partition the nodes inton 23 groups su
h that the i-th (1 � i � n 23 ) group in the range [(i� 1)n 13 + 1; in 13 ℄.Ea
h maximal sublist is partitioned into segments so that a segment 
onsists ofnodes in the same group. We assign to ea
h of the n 23 
hannels to a group, andshrink ea
h segment in O(n 13 ) time slots in a similar way to left-shrink1. Wethen remove leaf nodes similarly to leaf-elimination. Clearly, at most one noderemains in ea
h segment.Next, we repartition nodes into n 13 groups su
h that the i-th (1 � i � n 13 ) group
onsists of nodes in the range [(i�1)n 23 +1; in 23 ℄. We also repartition ea
h maximalleft sublist into segments based on the repartitioned groups. We assign n 13 
hannelsto ea
h group and shrink ea
h segment in a similar way to left-shrink2. Thistakes O(n 13 ) time slots. After that, all leaves are removed.We then go on to shrink ea
h maximal left sublist. For this purpose, everynode i (1 � i � n 23 ) in the 1st group broad
asts q[i℄ and r[i℄ on 
hannels. Sin
en 23 nodes are in the 1st group, this is feasible. All nodes j satisfying q[j℄ = i < jre
eive them, and performs q[i℄  q[j℄ and r[j℄  r[j℄ + r[i℄. Next, every node13



i (n 23 + 1 � i � 2n 23 ) in the 2nd group broad
asts q[i℄ and r[i℄ on 
hannels. Allnodes j satisfying q[j℄ = i > j re
eive them and 
hange q[j℄ and r[j℄ in the sameway. Continuing similarly, every maximal left sublist 
an be shrunk. Using thiste
hnique, the list ranking problem 
an be solved in O(n 13 ) time on the n 23 -
hannelBCM.Finally, suppose that n1� 1
 
hannels available for any �xed 
 � 2. We gen-eraize left-shrink1 and left-shrink2 as follows: Let ki
�1; i
�2; : : : ; i0k denotean integer satisfying ki
�1; i
�2; : : : ; i0k = i
�1n 
�1
 + i
�2n 
�2
 + � � �+ i0.left-shrink(m)for all 1 � i
�1; : : : ; im+1; im�1; : : : ; i0 � n 1
 do in parallelfor im  1 to n 1
 doS(ki
�1; i
�2; : : : ; i0k) broad
asts q[ki
�1; i
�2; : : : ; i0k℄and r[ki
�1; i
�2; : : : ; i0k℄ on 
hannel ki
�1; : : : ; im+1; im�1; : : : ; i0k.S(ki
�1; : : : ; im+1; j; im�1; : : : ; i0k) satisfyingq[k�
�1; : : : ; im+1; j; im�1; : : : ; i0k℄ = ki
�1; i
�2; : : : ; i0k <ki
�1; : : : ; im+1; j; im�1; : : : ; i0kre
eives them from it and setsq[ki
�1; : : : ; im+1; j; im�1; : : : ; i0k℄ q[ki
�1; i
�2; : : : ; i0k℄ andr[ki
�1; : : : ; im+1; j; im�1; : : : ; i0k℄ + = r[ki
�1; i
�2; : : : ; i0k℄.Clearly, left-shrink(m) uses (n 1
 )
�1 = n1� 1
 
hannels. Also, left-shrink(1)and left-shrink(2) 
orrespond to left-shrink1 and left-shrink2 if 
 = 2.Thus, the reader should have no diÆ
ulty to 
on�rm that, a sequen
e of pro
e-dures, left-shrink(1), leaf-elimination left-shrink(2), leaf-elimination,: : :, left-shrink(m), leaf-elimination simulates list-shrink. Further, allthe other pro
edures in
luding right-shrink, leaf-elimination, prefix-sums,node-transfer, and rewind 
an be simulated similarly on the n1� 1
 -
hannel BCM.Therefore, we haveTheorem 2 For every 
 � 2, the list ranking of an n-node linked list given to nstations 
an be done in O(
n 1
 ) time slots with no station being awake for more thanO(
) time slots on the n1� 1
 -
hannel BCM with no CD.Let � = 1
 be a small �xed real number. From above theorem, we have thefollowing important 
orollary.Corollary 1 For any small �xed � > 0, the list ranking of an n-node linked list 
anbe done in O(nk ) time slots with no station being awake for more than O(1) timeslots on the k-
hannel n-station BCM with no CD provided that k � n1��.5. Con
luding RemarksWe have shown that the rank of every node in an n-node linked list 
an bedetermined in O(n) time slots with no station being awake for more than O(1) timeslots on the single-
hannel n-station BCM. We have extended this algorithm to runon the k-
hannel BCM. For any small �xed � > 0, our list ranking algorithm runs inO(nk ) time slots with no station being awake for more than O(1) time slots, provided14



that k � n1��. Clearly, 
(nk ) time is ne
essary to solve the list ranking problem foran n-node linked list on the k-
hannel BCM. Therefore, our list ranking algorithmon the k-
hannel BCM is time and energy optimal. Sin
e the number of 
hannelsis small in pra
ti
e, our algorithm is always optimal. However, from a theoreti
alpoint of view, it remains open to show a list ranking algorithm running in O(log n)time slots with ea
h station being awake for O(1) time slots on the nlogn -
hannelBCM.Referen
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