International Journal of Foundations of Computer Science
© World Scientific Publishing Company

Time and Energy Optimal List Ranking Algorithms on the k-Channel

Broadcast Communication Model with no Collision Detection *

KOJI NAKANO
School of Information Science, Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa 923-1292, Japan

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

A Broadcast Communication Model (BCM, for short) is a distributed system with
no central arbiter populated by n processing units referred to as stations. The stations
can communicate by broadcasting/receiving a data packet to one of k distinct communi-
cation channels. We assume that the stations run on batteries and expand power while
broadcasting/receiving a data packet. Thus, the most important measure to evaluate
algorithms on the BCM is the number of awake time slots, in which a station is broad-
casting/receiving a data packet. The main contribution of this paper is to present time
and energy optimal list ranking algorithms on the BCM. We first show that the rank of
every node in an n-node linked list can be determined in O(n) time slots with no station
being awake for more than O(1) time slots on the single-channel n-station BCM with no
collision detection. We then extend this algorithm to run on the k-channel BCM. For
any small fixed e > 0, our list ranking algorithm runs in O(%) time slots with no station
being awake for more than O(1) time slots, provided that k < n'~¢. Clearly, (%) time
is necessary to solve the list ranking problem for an n-node linked list on the k-channel
BCM. Therefore, our list ranking algorithm on the k-channel BCM is time and energy
optimal.

1. Introduction

A Broadcast Communication Model (BCM, for short) is a distributed system
with no central arbiter populated by n processing units referred to as stations
S(1),5(2),...,S(n). The fundamental characteristic of the model is the broad-
cast nature of communications. A data packet broadcast on a channel can be
received by every station that has tuned to the channel. The nature of end units
is immaterial: they can well be processors in a parallel computing environment or
radio transceivers in a wireless network. Likewise, the nature of the transmission
channel is immaterial: it could be a global bus in a multiprocessor system or a radio
frequency channel in a radio network. It is important to note that the BCM model
provides a common generalization of bus-based parallel architectures, cluster com-

* Work supported in part by the Telecommunications Advancement Foundations.

puting environment, local area networks, and single-hop radio networks. Although
the BCM is assumed to operate in synchronous mode, we do not prescribe a par-
ticular synchronization mechanism. We feel that this is best left to the particular
application. For example, in radio networks, synchronization may be provided by
an interface to a commercially-available Global Positioning System [17].

We employ the commonly-accepted assumption that when two or more stations
are broadcasting on a channel in the same time slot, the corresponding packets
collide and are lost. The BCMs has two kinds of assumptions in terms of collision
detection (CD) capability [20, 21, 22, 29]. In the BCM with CD, the status of a
radio channel is:

NULL: if no station broadcast on the channel in the current time slot,
SINGLE: if exactly one station broadcast on the channel in the current time slot,

COLLISION: if two or more stations broadcast on the channel in the current time
slot.

The status of a channel can be detected by stations that tune to it. In the BCM
with no collision detection the status of a radio channel is:

NOISE: if either no station broadcasts or two or more stations broadcast on the
channel in the current time slot, and

SINGLE: if exactly one station broadcasts on the channel in the current time slot.

In other words, the BCM with no CD cannot distinguish between no broadcast
on the channel and the result of two or more stations broadcasting on the channel.
Several workers have argued that from a practical standpoint the no CD assumption
makes a lot of sense since in many situations, especially in the presence of noisy
channels, the stations cannot distinguish between the no transmission case and the
collision of several packets that arises when several stations attempt to broadcast at
once [4, 5, 24]. On the other hand, many other radio or cellular networks including
AMPS, GSM, ALOHA-net, as well as the well-known Ethernet are systems where
collision detection is possible [1, 2, 6, 7, 19]. Our algorithms presented in this paper
run on the BCM with no CD.

We assume that broadcasting/receiving data packets in the BCM is very costly.
For example, if the stations run on batteries and, therefore, saving battery power
is exceedingly important, as recharging batteries may not be possible while on mis-
sion. It is well known that a station expends power while its transceiver is active,
that is, while transmitting or receiving a packet [12, 14, 23, 25, 27, 28]. It is perhaps
surprising at first that a station expends power when receiving a packet. Conse-
quently, we are interested in developing algorithms that allow stations to power
their transceiver off (i.e. go to sleep) to the largest extent possible. Accordingly,
we judge the goodness of an algorithm by the following two yardsticks:

running time slots: the overall number of time slots required by the algorithm to
terminate

Figure 1: An example of a linked list

awake time slots: for each individual station the total number of time slots when it
has to be awake in order to broadcast/receive a data packet.

The challenge is to strike a sensible balance between the two, by designing algo-
rithms that take a small number of time slots to terminate while being, at the same
time, as energy-efficient as possible.

A linked list is a basic data structure frequently used in many processing tasks.
A linked list L of n nodes is specified by an array p such that p(i) contains a pointer
to the next node of node i in the list of L. Figure 1 illustrates an example of a
linked list. A node i is the end of the list if p(i) = i. Further, if there exists no node
Jj such that p(i) = j, then node i is the top of the list. Nodes 2 and 8 in Figure 1
are the top and the end nodes of the list, respectively. The list ranking problem
asks to determine the rank of every node i (1 < i < n), which is the distance
to the end of the list. The list ranking has many applications. For example, a
number of algorithms such as computing a preorder/postorder numbering of nodes
in a tree and finding lowest common ancestor of nodes use the list ranking as a key
ingredient [16, 15].

The list ranking problem has been solved in several contexts [10, 11, 15, 26]. It
is well known that the list ranking problem can be solved in O(logn) time using
n processors on the PRAM [13, 16]. This parallel list ranking algorithm uses the
pointer jumping technique [3, 16], which repeatedly changes each pointer such that a
new pointer is the successor of the successor. The pointer jumping is repeated until
all pointer points at the end node of the list. Further, it is known that the number
of processors can be reduced to g without increasing the computing time [11, 16].

Suppose that a pointer p(i) is stored in station S(7) on the BCM. If energy-
efficiency is not an issue, the list ranking problem can be solved on the BCM easily
by traversing the list from the end of the list toward the top as follows: First, a
unique station S(i) satisfying p(i) = ¢ broadcasts ¢ on the channel. Every station
receives i. Clearly, if p(j) = i, then the rank of node j is 1. Next, station S(j)
broadcasts j on the channel, and every station receives it. Again, if p(j') = 7,
then the rank of node j’ is 2. Continuing similarly, the rank of every node can
be determined in n — 1 time slots. However, this algorithm is not energy efficient.
Station S(i#) storing pinter p(i) of the top node i must be awake for n — 1 time slots.

One of the straightforward strategies to design an energy-efficient algorithm on
the BCM is to simulate known PRAM algorithms. It is known that the list ranking
problem can be solved in O(logn) time using n processors on the PRAM [13, 16].
We are going to show that an energy-efficient list raking algorithm on the BCM can

be obtained by simulating a known PRAM list ranking algorithm as follows: first,
it should be clear that any single step communication performed on the n-processor
O(n)-memory-cell PRAM can be simulated by the n-station n-channel BCM in
O(1) time slots. This can be done by assigning O(1) memory cells to each station.
Then, read/write operations on the PRAM can be simulated using communication
channels on the BCM in obvious way. Hence, any algorithm running in O(logn)
time using n processors and O(n) memory cells on the PRAM can be simulated by
the n-station n-channel BCM in O(logn) time slots. Clearly, no station is awake
for more than O(logn) time slots in this simulation. Further, communication using
n channels in a single time slot can be simulated on the k-channel BCM (k < n)
in O(%) time slots. Thus, the list ranking problem can be solved in O(”—l(l’f—n) time
slots with each station being awake for at most O(logn) time slots. However this
algorithm is not time and energy optimal.

The main contribution of this paper is to present time and energy optimal list
ranking algorithms on the BCM with no CD. Surprisingly, stations are awake for
only O(1) time slots in our list ranking algorithms. We first show that the rank of
every node in an n-node linked list can be done in O(n) time slots with no station
being awake for more than O(1) time slots on the single-channel n-station BCM
with no CD. We then extend this algorithm to run on the k-channel BCM. For
every small fixed € > 0, our algorithm runs in O(%) time slots with no station being
awake for more than O(1) time slots, provided that k& < n'=¢. Clearly, every p(i)
must be broadcast at least once. Hence, (%) time is necessary to solve the list
ranking problem for an n-node linked list on the k-channel BCM. Therefore, our
algorithm is time and energy optimal.

This paper is organized as follows: Section 2 shows basic techniques used for our
energy-efficient list ranking and shows a list ranking algorithm on the single-channel
BCM with no CD. This algorithm runs in O(nlogn) time slots with at most 5%
stations (1 < « < logn) being awake for O(a) time slots. In Section 3, we modify
this list ranking algorithm to run in O(n) time slots with each station being awake
for O(1) time slots on the single-channel BCM with no CD. In Section 4, we extend
this list ranking algorithm to run on the k-channel BCM. Section 5 offers concluding
remarks and open problems.

2. List ranking using list shrink

The main purpose of this section is to show fundamental techniques used in our
time and energy optimal list ranking algorithm. We first assume that the BCM
has the collision detection capability. Later, we show how to avoid using the CD
capbablity.

We use a fundamental technique for solving the list ranking problem as follows:
This technique uses two arrays of variables ¢[i] and r[i] for every i (1 < i < n).
Initially, g[é] is storing pointer p(i) for every ¢, and r[i] = 0 if node ¢ is the end of
the list, and r[i] = 1 otherwise. During the execution of list ranking algorithms, r[i]
is always storing the distance from node 4 to ¢[i]. When the list ranking algorithm
terminates, for every 4, g[i] is storing the pointer to the end of the list. Thus, each

r[i] is storing the rank of node i. This technique is used in the pointer jumping [16],
which repeats operations q[i] « ¢[q[i]] and r[i] < r[i] +7[g[i]] for every i (1 <i < n)
in parallel. After logn iterations, every g[i] is storing the pointer to the end of the
list, thus, r[é] is storing the rank of node i. The correctness of the pointer jumping
can be easily seen as follows. Suppose that every r[i] (1 < i < n) is storing the
distance from node i to node g[i]. Then, the distance from node i to node g[g[i]] is
the sum of 7[i] and r[g[i]]. Thus, after executing q[i] + ¢[g[¢]] and r[i] < r[¢] +r[g[¢]]
in parallel, r[i] is storing the distance from node i to g¢[i] in the initial list. After
log n iterations of these operations, every g[i] is storing the index of the end node
and 7[i] is the rank of node i.

Our list ranking algorithm uses two arrays ¢ and r. For a current linked list
stored in array ¢, a left sublist is a sequence (i1,is,...,%i,) of nodes such that
ip > dp > -+ > iy and 4541 = g[ij] for every j (1 < j < m —1). A left sublist is
a mazximal left sublist if no other left sublist contains it. We say that nodes i; and
im are the head and the tail of the maximal left sublist (iy,42,...,%,,). Similarly,
we can define a right sublist, a mazimal right sublist, and their head and tail nodes.
In Figure 1, (9,7, 3,1) is a maximal left sublist, and both (1,4,6,8) and (2, 5,9) are
maximal right sublists. Further, node 1 is the tail node of (9,7,3,1) as well as the
head of (1,4,6,8).

Our list ranking algorithm repeats shrinking maximal left and right sublists.
Further, every leaf node that has no predecessor is eliminated. More precisely, our
algorithm repeats 1ist-shrink described as follows:

list-shrink

Step 1: shrink left sublists by procedure left-shrink.

Step 2: eliminate leaf nodes by procedure leaf-elimination.
Step 3: shrink right sublists by procedure right-shrink.
Step 4: eliminate leaf nodes by procedure leaf-elimination.

Figure 2 illustrates each step of 1list-shrink executed for the linked list in Figure 1.
Somewhat surprisingly, 1ist-shrink can be done in O(n) time slots with no station
being awake for more than O(1) time slots. Further, 1ist-shrink eliminates at least
half of the nodes.

We will show the details of each step of list-shrink. Let ¢ and r be the arrays
storing pointers of a linked list and the distance as explained above. Procedure
left-shrink is described as follows.

left-shrink
fori <~ 1ton do
S(7) broadcasts g[i] and r[i] on the channel.
S(j) satistying q[j] =4 < j receives them and sets ¢[j] < ¢[i] and
rlj] < rlj] +rli]-

Clearly, left-shrink takes n time slots. Further, each S(i) is awake at time slots
i and ¢[i] and is asleep for remaining time slots. Thus, every station is awake for
at most two time slots. Suppose that left-shrink is executed for the linked list in

left-shrink leaf-elimination

"~ .

Q. O~ @ ®

right-shrink leaf-elimination
Figure 2: Each step of 1ist-shrink

Figure 1. Note that r[8] = 0, and r[i] = 1 for all i (4 # 8). In time slot i = 1, station
S(1) broadcasts ¢[1](= 4) and r[1](= 1) on the channel. Station S(3) receives them
because ¢[3] = 1 < 3. It sets ¢[3] < ¢[1](= 4) and r[3] < r[3]+7[1](= 2). No station
receives in time slot 4 = 2. In time slot ¢ = 3, station S(3) broadcasts ¢[3](= 4) and
r[3](= 2) on the channel. Station S(7) receives them and sets ¢[7] < ¢[3](= 4) and
r[7] <= r[7] + r[3](= 3). No station receives in time slots ¢ = 4,5, and 6. In time
slot 4 = 7, station S(7) broadcasts ¢[7](= 4) and r[7](= 3) on the channel. Station
S(7) receives them and sets ¢[9] < ¢[7](= 4) and r[9] « r[9] + r[7](= 4). Finally,
no station receives in time slots ¢ = 8 and 9. It is easy to see that, after executing
left-shrink, g[i1] = ¢[iz] = - -+ = ¢[imm] holds for each left sublist (i1,i2,...,im),
Table 1 illustrates for the values of of ¢ and r after each step of list-shrink. In
the table, the values of ¢ and r are with underlines when the corresponding nodes
are eliminated. Further, they are blank if the corresponding station is asleep.

After left-shrink, the graph may have several leaves, which is a node having
no predecessor. Clearly, we obtain a new shrunk list by removing the leaves. The
following procedure leaf-elimination finds all leaves.

leaf-elimination
fori < 1ton do
S(j) broadcasts j if j = ¢[i].
S(2) monitors the channel.
If the status of the channel is NULL then node 7 is a leaf.

Note that leaf-elimination uses the collision detection capability. Later, we will
modify leaf-elimination to run on the BCM with no CD. In leaf-elimination,
station S(i) is awake at time slots ¢ and ¢[i]. Hence, no station is awake for more
than two time slots.

Table 1: The values of local variables for the list in Figure 1

node 1 2 3 4 5 6 7 8 9

initial input

left-shrink
leaf-elimination
right-shrink
leaf-elimination

NN PN
= ===
lov o o
= ===
[ETN I Y
SN
I~ & © ©ofola
(S I e
loco oo 00 oo ool
[F= = = =] =S
I | ol
Jw w| ==
[N N R)

/1SSy S

left-shrink
leaf-elimination
right-shrink
leaf-elimination

oo 0|00 0 O O |
N R[N N = ===

revind (T = 4)
rewind (T' = 3)
revind (T = 2)

(r=1)

rewind (1’

Q0 0o Co Co|[Co Co Co Co|Co Co Co Co| 0o
O o OoOCQllococo oo o o|los

o oo |00
[CRNEIN
o |0
~ I~
o |co
I L
o |co

loco
Jot

[e>N [}

Procedure right-shrink performs the same operation in the opposite order as
left-shrink. Since each step of list-shrink can be done in n time slots with
every station being awake for two time slots, we have,

Lemma 1 Procedure list-shrink takes 4n time slots with no station being awake
for more than 8 time slots.

We are going to prove that no more than 3 nodes are in the list at the end of
list-shrink. Suppose that a list has s maximal right sublists Lq, Lo, ..., Ls in
this order. For example, in Figure 1, s = 2 and L; = (1,4,6,8) and L, = (2,5,9).
For simplicity, we assume that L; and L contain the top and the end nodes of
the whole list, respectively. We can show the proof similarly when this is not the
case. From the definition, each maximal right sublist L; has at least two nodes.
Further, no node is contained in two or more maximal right sublists. Hence, we
have 2s < n. At the end of Step 2, every node that is not in maximal right sublists
are removed. For example, in Figure 2, nodes 3 and 7 are removed. Further, the
head node (nodes 1 and 2 in Figure 2) of each maximal right sublist is removed.
Clearly, the list obtained after Step 2 has at most s maximal right sublists. Note
that the lists may have less than s maximal right sublists, because two or more
adjacent maximal sublists may be merged into one. Since every left sublist has two
nodes, every reamining nodes is in one of the maximal right sublists at the end of
Step 2. Let Li, L5, ..., L, (s’ < s) denote the maximal sublists obtained at the end
of Step 2. We can evaluate the number of nodes in the list obtained after Step 4
as follows. At the end of Step 4, no more than two nodes in L, remain. The two
nodes are the end of the whole list and the head of L. For example, in Figure 2,
nodes 8 and 4 remain. Further, no node in L (2 < i < s') but its tail remain. All
nodes in L) are eliminated in Step 4. Thus, at the end of Step 4, the list has at
most s’ nodes. Since s’ < s < &, we have the following lemma.

Lemma 2 After executing list-shrink on a list of n nodes, the resulting list has
no more than 2 nodes.

2
Lemma 2 implies that all nodes but the end of the list are eliminated by repeating

list-shrink for logn times. After that, the rank of every node can be computed
by rewinding the 2logn iterations of leaf-elimination as follows. For each node
i, let t(i) denote an integer such that node ¢ has been eliminated in the #(i)-th
(1 <i<2logn) leaf-elimination. For convenience, let t(j) = 2logn for the end
node j of the whole list. Suppose that node ¢[i] is the end of the list and r[i] is
storing the rank of node i. Then, for every node j satisfying ¢[j] = i, its rank is
the sum of r[j] and r[i]. Using this fact, the rank of node i is stored in r[i] by the
following procedure.

rewind
for T < 2logn downto 1 do
for i < 1 ton do
if t(i) < T then S(i) broadcasts q[i] and r[i]
every S(j) satisfying ¢(j) = T and g[j] = i receives ¢[i] and r[i] and
sets q[i] < ¢[j] and r[j] « r[j] + r[i].

Table 1 shows the values of ¢ and r during the execution of rewind. They have
underlines, when the corresponding station is awake and change its ¢ and r.

If ¢[j] = ¢ when rewind starts, t(i) > t(j) holds. Hence, each station S(j)
always succeeds in receiving g¢[i] and ¢[j]. It is easy to see that rewind runs in
2nlogn time slots. When rewind terminates, every g[i] is storing the end of the
list, and thus r[¢] is the rank of node i. Further, each station ¢ is awake for at most
t(i) time slots while rewind is running. Recall that station ¢ is asleep after the
t(i)-th leaf-elimination until it is awake for rewind. Thus, station i is awake for
O(t(7)) time slots for list ranking. From Lemma 2, the number of nodes i satisfying
t(i) > 2a is at most 55 for every 1 < a < logn. Therefore, we have,

Lemma 3 The list ranking problem can be solved in O(nlogn) time slots with at
most 7& (1 < a < logn) station being awake for O(a) time slots on the single-
channel BCM.

Recall that, in the list ranking algorithm for Lemma 3, only leaf-elimination
uses the collision detection capability. In what follows, we are going to show how
we perform leaf-elimination without CD.

For each node i, let ¢ '[i] denote its predecessor in the cunnret linked list. A
node i is eliminated in Step 2 iff the values of ¢[i] and ¢~ '[i] before starting Step 1
satisfy one of the following three conditions:

e ¢ ![i] does not exists (i.e. node i is the top of the whole list),

e g[i] <i < ¢ ![i] (i-e. node i is in a maximal left sublist but it is neither the
head nor the tail), or

e g[i] >i and i < ¢7'[i] (i-e. node i is the tail of a maximal left sublist).

Hence, once every station S(i) learns the value of p~![i], it can determine if node i
is eliminated in Step 2. It is easy to see that every S(i) can learn p~'[i] in n time
slots with each station being awake for two time slots on the single-channel BCM

with no CD. Consequently, procedure leaf-elimination is performed without the
collision detection capability.

3. Time and energy optimal list ranking

Recall that, in each list-shrink, at most half of the nodes remain in the list.
By renumbering the remaining nodes after each leaf-elimination, we can reduce
the running time slots. In other words, we give a unique number in the range [1,n']
to each remaining node, where n' is the number of remaining nodes.

For this purpose, we use an energy optimal prefix-sums algorithm described as
follows: Suppose that we have an array a of n numbers. Each a(i) (1 < i < n)
is stored in S(i). The prefiz-sums problem asks to compute the i-th prefix-sum
prefiz(i) = a(1) + a(2) + - -+ + a(i) for every i. The prefix-sums problem can be
solved in n — 1 time slots with every station being awake for at most two time slots.
The details of the algorithm are spelled out as follows.

prefix-sums
S(1) sets prefiz(1) < a(1).
fori < 1ton—1do
S(i) broadcasts prefiz (i)
S(i + 1) receives prefiz (i) and sets prefiz (i + 1) < prefiz (i) + a(i).

It is easy to see that every S(i) learns prefiz(i) when prefix-sums terminates.
Further each station S(i) is awake for at time slots ¢ and ¢ — 1. Thus, we have
Lemma 4 All the prefiz-sums can be computed in n — 1 time slots with no station
being awake for more than two time slots.

Using prefix-sums, all of the remaining nodes can be renumbered. Suppose
that list-shrink is executed for a list of n nodes. Let a(i) = 1, if node i is
remaining, and a(¢) = 0 if node i is eliminated. By computing the prefix-sums of a,
we assign each remaining node i new ID prefiz(i). Then, every remaining node has
a unique ID in the range [1,n;], where n; is the number of remaining nodes.

After assigning new IDs to the remaining nodes, we first arrange them to stations
S(1),5(2),...5(n1) such that each S(i) (1 < i < np) is storing remaining node
with new ID 4. After that, pointers are changed according to the new ID using
node-transfer as follows:

node-transfer
fori < 1to g do
if node j is remaining and prefiz(j) = i then S(j) broadcasts ¢[j] and r[j].
S(7) receives them. Let ¢'(i) denote the value of ¢[j].
fori <~ 1ton do
S(i) broadcasts prefiz(i).
S(j) such that ¢'(j) = i receives and store it in g[j].

After executing list-shrink on the list in Figure 1, two nodes 4 and 8 remain.
By prefix-sums, nodes 4 and 8 receives new IDs prefiz(4) = 1 and prefiz(8) = 2,

respectively. Thus, after executing node-transfer, S(1) and S(2) are storing new
nodes 1 and 2, respectively. Further, ¢[1] = 2,7[1] = 2 and ¢[2] = 2,7[2] = 0.

From Lemma 2, n; < 5 holds. Thus, node-transfer correctly moves node ¢ to
S(prefiz(i)) and runs in 2n time slots. If S(¢) has remaining node i, it is awake at
time slots prefiz(i) and % + i. Further, for every S(i) (1 <4 < ny), it is awake at
time slots ¢ and n + ¢'(7). Thus no station is awake for more than four time slots.

After node-transfer, we execute 1list-shrink on the new list with n; nodes.
Suppose that we have ny nodes after executing the second list-shrink. We use
prefix-sums and node-transfer to move the ny nodes to ny stations S(§ +
1),S(5 +2),...,5(% +nz). Continuing similarly, the list ranking problem can be
solved. In general, after the i-th list-shrink (1 < i <logn —1), the n; remaining
nodes are moved to n; stations S(n — 5% +1),S(n — 5721 +2),...5(n — 5% +ny).
Using the n; stations, list-shrink is executed on the new list of n; nodes. This
takes O(3r) time slots and stations storing the remaining nodes are awake for O(1)
time slots. From Lemma 2, n; < &+ holds for every i (1 <4 < logn). Hence, no
station is working for two more iterations after the first iteration of list-shrink.
Thus, the logn iterations of list-shrink, prefix-sums, and node-transfer can
be done in O(n + % 4+ 4 4 ---41) = O(n) time slots with each station being awake
for O(1) time slots. We can modify rewind according to new position of nodes.
Finally, we have the following important theorem.

Theorem 1 The list ranking of an n-node linked list given to n stations can be
done in O(n) time slots with no station being awake for more than O(1) time slots
on the single-channel BCM with no CD.

4. List Ranking on the k-channel BCM

This section is devoted to show that the list ranking can be done in O(%) time
slots on the k-channel BCM with no station being awake for O(1) time slots. Our
idea is to simulate the single-channel list ranking algorithm on the k-channel BCM.
We first show a list ranking algorithm on the BCM which has exactly y/n channels.
We then go on to generalize this algorithm to run on the k-channel BCM.

We first demonstrate how we simulate left-shrink on the y/n-channel BCM.
Imagine that nodes are partitioned into y/n groups such that the i-th (1 < i < +/n)
group consists of nodes in the range [(i — 1)v/n + 1,iy/n]. Each maximal sub-
list is partitioned into segments so that a segment consists of nodes in the same
group. Procedure left-shrink is simulated by two subprocedures left-shrink1l
and left-shrink2 that we describe next. In left-shrinkl, each segment is
shrunk. After removing leaf nodes, left-shrink2 shrinks each maximal left sublist.
Figure 3 illustrates left-shrinkl and left-shrink2.

In left-shrinkl, segments consist of nodes in the range [(i — 1)y/n + 1,i/n]
are shrunk using channel ¢ (1 <i < +/n). For any pair i,j (1 <14,j < /n), let ||i, j]|
denote (i — 1)y/n + j. The details of left-shrink1 are spelled out as follows:

left-shrinkl
for i + 1 to v/n do in parallel

10

L e

COOQRO OQLOC—000

q Q O @
leaf-elimination k+‘*————-——""—”// ‘\L-—————”’// A\-__J___________~///

0
SE

O

left-shrink2

leaf-elimination

Figure 3: Left shrink on the k-channel

for j «+ 1 to y/n do
S(||¢, 7|) broadcasts ¢[||¢, 7]|] and r[||Z, j||] on channel i.
S(|l¢, 5'||) satistying q[||é,4'|]] = |17, 71| < ||¢, 4| receives them from channel i
and sets q[llé,j'll] < qlll¢, jll] and r{llé, 5"ll] < r{llé, 5"ll] + r{ll4 5]]-

Clearly, left-shrinkl runs in 4/n time slots with each station being awake for
at most two time slots. After executing left-shrinki, ¢[||¢, j||] is storing a new
pointer, which is the successor of the tail node of the segment. After that, leaves
are eliminated using the \/n channel in a similar way as follows:

leaf-elimination
for i + 1 to y/n do in parallel
for j + 1 to y/n do
S(J|i', 4']]) broadcasts ||i', j'|| on channel 4 if ||4, j|| = q[||¢', 5'||]-
S(J|2, j||) monitors channel 4.
If the status of the channel is NULL then node ||7, || is a leaf.

Clearly, all nodes in the maximal left sublists but the tails of the segments are re-
moved by leaf-elimination. Note that the remaining tails in the same maximal
left sublist are in distinctive groups. Using this fact, left-shrink2 shrinks maxi-

11

mal left sublists. Recall that, in left-shrink1, nodes ||i,1|],|¢,2]|,- -, ||i,v/n]| are
broadcast on channel i in this order. In left-shrink?2, v/n nodes ||1, 75,112, 4ll,- -,
[[\/n, j]] are broadcast on channel j. This broadcast enables us to shrink maximal
left sublists. The details are spelled out as follows:

left-shrink2
for j + 1 to y/n do in parallel
for i + 1 to v/n do
S(||¢, 7|) broadcasts g[||7, 7||] and r[||i, j||] on channel j.
S(|l¢', 711) satistying ¢[||é', j|]] = |7, 71| < ||¢, j|| receives them from channel j
and sets qli’, jll] < qlll, 1] and r{li', 5] 701", 311 + r{li, 5)

Clearly, left-shrink2 runs in /n time slots with each station being awake for at
most two time slots. It is easy to see that, after executing left-elimination again,
all nodes but one in each maximal sublist are removed. Similarly, we can perform
right-shrink on the k-channel BCM.

Again, leaf-elimination on the k-channel BCM uses the collision detection
capability. We avoid using this capbability similarly to the single-channel BCM
case. A node ||i,j|| is a leaf node at the end of left-shrinkl iff the values of
ql|li, 5] and ¢ 1[||4,5||]] before starting left-shrinkl satisfy one of the following
three conditions:

e ¢~ ||4, j]|]] does not exists,

o qfllé, jlll < Ili, jll < ¢~ *[ll4, j]l] and nodes ||i, j|| and ¢~ *[||i, j||] are in the same
group or

o qllli, jll] >[I, 5| and [|é, 5] < ¢~ *{ll4, 5]

Hence, once every station S(||i,j]|) learns the value of p='[||i,||], it can deter-
mine if node |4, j|| is eliminated in leaf-elimination. It is easy to see that every
S(|l,4l]) can learn p=t[||i,4]|]] in O(y/n) time slots with each station being awake
for two time slots on the single-channel BCM with no CD. Consequently, procedure
leaf-elimination executed after left-shrinkl can be done without the colli-
sion detection capability. Procedure leaf-elimination after left-shrink2 can
be done without CD similarly to the single-channel case. Thus, list-shrink run-
ning in O(n) time slots on the single-channel BCM can be simulated in O(y/n) time
on the y/n-channel BCM.

Next, we are going to show how we implement prefix-sums for n numbers
in the y/n-channel BCM. Suppose that the input array a is partitioned into /n
groups of \/n numbers. It is easy to see that, using a single channel the (local)
prefix-sums within each group can be computed in /n time slots. Let A(7) (1 <
i < /n) be the sum of numbers in group i. After that, the (global) prefix-sums of
A(1),A(2),...,A(y/n) is computed using a single channel in y/n time slots. Each
prefix-sum of array a is computed by adding a local prefix-sum and a global prefix-
sum in obvious way. Thus, the prefix-sums of n numbers can be computed using
v/n channels in O(y/n) time slots. It is easy to see that no station being awake for

12

more than O(1) time slots. Further, we can implement node-transfer to run in
\/n time slots with no station being awake more than O(1) time slots in a obvious
way. Consequently, list-shrink, prefix-sums, and node-transfer for an n-node
list can be implemented on the y/n-channel BCM to run in O(y/n) time slots with
no station being awake for more than O(1) time slots.

left-shrinkl
for i + 1 to y/n do in parallel
for j + 1 to y/n do
S(||¢, 7|) broadcasts ¢[||#,7]|] and r[||i, j||] on channel i.
S(|l¢,4']1) satistying g[||3, j'||] = ll¢, §|| < |4, §'|| receives them from channel ¢
and sets q[li, 1] ¢ alli, il and r{lli, 711 < r{li, 5] + i, 11

After executing list-shrink, prefix-sums, and node-transfer on an n-node list,
we obtain the shrunk list with less than n nodes. Let ni,ns, ..., niogn be the number
of nodes such that n; is the number of remaining n nodes after the i-th iteration of
list-shrink and prefix-sums on the k-channel BCM. We use 3 (> n;) processors
and /3% channels to perform the i-th iteration, which takes O(,/3%) time slots.
Hence, logn iterations take at most O(v/n+ /3t + /35 + -+ V1) = O(y/n) time
slots. Thus, the list ranking can be done in O(y/n) time slots with no station being
awake for O(1) time slots on the y/n-channel BCM.

Next, let us consider the case when the BCM has less than /n channels. Let
k (< 4/n) be the number of available channels. Communication using /n channels

can be simulated in \/Tﬁ time slots in obvious way. Thus, the list ranking problem

can be solved in % x O(y/n) = O(%) time slots. Consequently, we have,

Lemma 5 The list ranking of an n-node linked list given to n stations can be done
in O(%) time slots with no station being awake for more than O(1) time slots on
the k-channel BCM with no CD provided that k < \/n.

In what follows, we show a list ranking algorithm on the BCM with more than
\/n channels. Suppose that n? channels are available. We partition the nodes into
n% groups such that the i-th (1 < i < n%) group in the range [(i — 1)n3 + 1,in3].
Each maximal sublist is partitioned into segments so that a segment consists of
nodes in the same group. We assign to each of the n# channels to a group, and
shrink each segment in O(n%) time slots in a similar way to left-shrinkl. We
then remove leaf nodes similarly to leaf-elimination. Clearly, at most one node
remains in each segment.

Next, we repartition nodes into n3 groups such that the i-th (1 < i < n¥) group
consists of nodes in the range [(i — 1)n? +1,in3]. We also repartition each maximal
left sublist into segments based on the repartitioned groups. We assign n% channels
to each group and shrink each segment in a similar way to left-shrink2. This
takes O(n?) time slots. After that, all leaves are removed.

We then go on to shrink each maximal left sublist. For this purpose, every
node i (1 < i < n#) in the 1st group broadcasts g[i] and r[i] on channels. Since
n?% nodes are in the 1st group, this is feasible. All nodes j satisfying qijl =i < j
receive them, and performs g[i] < ¢[j] and r[j] < r[j] + r[i]. Next, every node

13

i (nf +1 < i < 2n%) in the 2nd group broadcasts ¢[i] and [i] on channels. All
nodes j satisfying g[j] =@ > j receive them and change ¢[j] and r[j] in the same
way. Continuing similarly, every maximal left sublist can be shrunk. Using this
technique, the list ranking problem can be solved in O(n%) time on the n3-channel
BCM.

Finally, suppose that n'~<¢ channels available for any fixed ¢ > 2. We gen-

eraize left-shrinkl and left-shrink?2 as follows: Let ||i._1,%.—2,...,io|| denote
an integer satisfying ||[ic—1,%.-2,..., %0 = icflnC;cl +ieonT 4+ ---+ig.
left-shrink(m)
forall 1 <ide 1, yimilsbm_1,---,00 < n® do in parallel
for ip < 1 to n+ do
S(“ic_l, ic_Q, e ,lo”) broadcasts q[||ic_1, ic_Q, e ,lo“]
and r[||ic—1,%c—2,--.,io||]] on channel ||ic—1,...,%m+1,im—1;-- -, b0l
S(lc=1,-+»lmt1,Jsbm—1,---,00||) satisfying
q[”lcfl; e ,im+1,j,im,1, N ,Z()”] = ||Z-c,1,l-c,2, e ,io” <
[ic—1y- s @mt1sdsbm—1,---,00]l
receives them from it and sets
q[”icfl; - ;Z.erl;j;imfl; A ,ZOH] — q[”ic,l,ic,Q, A ,Z()”] and
T'[”Z'c,l, Ce 7im+1;j;im71; . ,Z()H] — + = 7'[”2'6,1,2-6,2, Ce ,Zo||]

Clearly, left-shrink(m) uses (n¢)"! = n'~% channels. Also, left-shrink(1)
and left-shrink(2) correspond to left-shrinkl and left-shrink2 if ¢ = 2.
Thus, the reader should have no difficulty to confirm that, a sequence of proce-
dures, left-shrink (1), leaf-elimination left-shrink(2), leaf-elimination,

.., left-shrink(m), leaf-elimination simulates list-shrink. Further, all
the other procedures including right-shrink, leaf-elimination, prefix-sums,
node-transfer, and rewind can be simulated similarly on the n'~%-channel BCM.
Therefore, we have
Theorem 2 For every ¢ > 2, the list ranking of an n-node linked list given to n
stations can be done in O(cn%) time slots with no station being awake for more than
O(c) time slots on the n'~%-channel BCM with no CD.

Let € = % be a small fixed real number. From above theorem, we have the

following important corollary.
Corollary 1 For any small fized € > 0, the list ranking of an n-node linked list can
be done in O(%) time slots with no station being awake for more than O(1) time
slots on the k-channel n-station BCM with no CD provided that k < n'—¢.

5. Concluding Remarks

We have shown that the rank of every node in an n-node linked list can be
determined in O(n) time slots with no station being awake for more than O(1) time
slots on the single-channel n-station BCM. We have extended this algorithm to run
on the k-channel BCM. For any small fixed € > 0, our list ranking algorithm runs in
O(%) time slots with no station being awake for more than O(1) time slots, provided

14

that £ < n'~¢. Clearly, Q(%) time is necessary to solve the list ranking problem for
an n-node linked list on the k-channel BCM. Therefore, our list ranking algorithm
on the k-channel BCM is time and energy optimal. Since the number of channels

is small in practice, our algorithm is always optimal. However, from a theoretical

point of view, it remains open to show a list ranking algorithm running in O(logn)

time slots with each station being awake for O(1) time slots on the ﬁ—channel
BCM.

References

1.

N. Abramson, Ed., Multiple Access Communications: Foundations for Emerging
Technologies, IEEE Press, New York, 1993.

. N. Abramson, Multiple access in wireless digital networks, Proceedings of the IEEE,

82, (1994), 1360-1370.

3. S. G. AKl, Parallel Computation: Models and Methods Prentice Hall, 1997.
4. R. Bar-Yehuda, O. Goldreich, and A. Itai, Efficient emulation of single-hop radio

network with collision detection on multi-hop radio network with no collision detec-
tion, Distributed Computing, 5, (1991), 67-71.

. R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time-complexity of broadcast in

multi-hop radio networks: An exponential gap between determinism and random-
ization, Journal of Computer and Systems Sciences, 45, (1992), 104-126.

6. D. Bertzekas and R. Gallager, Data Networks, Second Edition, Prentice-Hall, 1992.
7. R. Binder, N. Abramson, F. Kuo, A. Okinaka, and D. Wax, ALOHA packet broad-

10.

11.

12.

13.

14.

15.

16.
17.

18.

casting — a retrospect, AFIPS Conf Proceedings, May 1975, 203-216.

J. L. Bordim, J. Cui, T. Hayashi, K. Nakano, and S. Olariu, Energy-efficient initial-
ization protocols for ad-hoc radio network, IEICE Trans. on Fundamentals, E83-A,
9, pp-1796-1803, 2000.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms, MIT Press,
1994.

R. Cole and U. Vishkin, Deterministic Coin Tossing With Applications to Optimal
Parallel List Ranking, Information and Control, 70,32-56, 1986.

R. Cole and U. Vishkin, Approximate parallel scheduling. Part I: The basic tech-
nique with applications to optimal parallel list ranking in logarithmic time, STAM
J. Computing, 17, 1, 128-142, 1988

K. Feher, Wireless Digital Communications, Prentice-Hall, Upper Saddle River, NJ,
1995.

A. Gibbons and W. Rytter, Efficient parallel algorithms, Cambridte University
Press, 1988.

E. P. Harris and K. W. Warren, Low power technologies: a system perspective, Proc.
3-rd International Workshop on Multimedia Communications, Princeton, 1996.

T. Hayashi, K. Nakano, and S. Olariu, Efficient List Ranking on the Reconfigurable
Mesh, with Applications, Theory of Computing Systems, 31, 593—-611, 1998.

J. J&J4, An introduction to parallel algorithms, Addison-Wesley, 1992.

E. D. Kaplan, Understanding GPS: principles and applications, Artech House,
Boston, 1996.

F. T. Leighton, Introduction to parallel algorithms and architectures, Morgan Kauf-
mann, 1992.

15

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

R. M. Metcalfe and D. R. Boggs, Ethernet: distributed packet switching for local
computer networks, Communications of the ACM, 19, (1976), 395-404.

A. Micic, and I. Stojmenovic, A hybrid randomized Initialization protocol for TDMA
in single-hop wireless networks, Workshop on Advances in Parallel and Distributed
Computational Models, 2002.

K. Nakano and S. Olariu, Randomized initialization protocols for ad-hoc networks,
IEEE Trans. on Parallel and Distributed Systems, 11, 7, 749-759, 2000.

K. Nakano and S. Olariu, Uniform Leader Election Protocols in Radio Networks, to
appear in IEEE Trans. on Parallel and Distributed Systems, 2002

K. Nakano, S. Olariu, A. Y. Zomaya, Energy-Efficient Deterministic Routing Pro-
tocols in Radio Networks, IEEE Trans. on Parallel and Distributed Systems, 12, 6,
544-557, 2001.

K. Nakano, and S. Olariu, Energy-Efficient Initialization Protocols for Single-Hop
Radio Networks with no Collision Detection, IEEE Trans. on Parallel and Dis-
tributed Systems 11, 8, 851-863, 2000.

R.A. Powers, Batteries for low-power electronics, Proc. IEEE, 83, pp.687-693, 1995.

M. Reid-Miller, List Ranking and List Scan on the CRAY C-90, ournal of Computer
and System Sciences”, (1996), 53, 3.

A. K. Salkintzis and C. Chamzas, An in-band power-saving protocol for mobile data
networks, IEEE Transactions on Communications, COM-46, (1998), 1194-1205.

K. Sivalingam, M. B. Srivastava, and P. Agrawal, Low power link and access proto-
cols for vireless multimedia networks, Proc. IEEE Vehicular Technology Conference
VTC’97, Phoenix, AZ, May, 1997.

D. E. Willard, Log-logarithmic selection resolution protocols in a multiple access
channel, STAM Journal on Computing, 15, (1986), 468-477.

16

