
TinyCSE: Tiny Computer System for Education

Ryosuke Nakamura, Yasuaki Ito, and Koji Nakano
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—TinyCPU is a small processor that can be im-
plemented in various FPGAs that can be used for education
and development of small embedded system. TinyCPU is so
small that it is designed using Verilog HDL and the size of
source code is only 427 lines. However, it does not support
interrupts and peripheral controllers. The main contribution
of this paper is to present TinyCSE (Tiny Computer System
for Education), an extension of TinyCPU supporting interrupts
and peripheral controllers. TinyCSE has controllers for exter-
nal devices including keyboard, mouse, serial communication,
switch, and timer. It also supports hardware interrupts from
these external devices. Quite surprisingly, the code sizes of
the CPU with interrupt controller and the device controllers
are 515 lines and is 1339 lines in Verilog HDL, respectively.
Our processor is portable and easy to understand and the
function expansion is not difficult. As real-life applications,
we have developed a time watch. This applications runs in
73MHz on the Xilinx Spartan-3AN family FPGA XC3S700AN
using 832 out of 5888 slices (14.1%). Therefore, our tiny
processing system benefits computer system education and
small embedded system development.

Keywords-Computer system, CPU, Verilog HDL, Education,
Embedded system, Interrupt

I. INTRODUCTION

Computer architecture is an indispensable subject for
learning computer science and computer technology. To
learn computer architecture, various CPU architectures have
been developed as course materials [1], [2], [3]. However,
it is important to learn not only CPU architecture but also
whole computer system including peripheral devices.

In this study, we present TinyCSE (Tiny Computer System
for Education), an extension of TinyCPU [1], [4], [5] and
device controllers. TinyCPU is a small processor that can be
implemented in various FPGAs. TinyCSE supports hardware
interrupts and peripheral controllers that are not supported
in TinyCPU. In TinyCSE, we added hardware interrupts to
TinyCPU. Also, we designed controllers of external devices
including keyboard, mouse, serial communication, switch,
and timer. We focused on simplifying the designs and their
descriptions of the external devices and the processor so
that students easily can understand the whole architecture.
Also, the proposed system is portable and easy to understand
and the function expansion is not difficult. We confirmed the
workings of our system using Spartan-3AN starter kit with a
Spartan-3AN FPGA [6]. Using TinyCSE as a course material
for education, students easily can learn the whole computer

system including digital design, hardware description lan-
guage, processor architecture, and peripheral devices.

This paper is organized as follows: Section II introduces
the architecture of the original TinyCPU. In Section III,
we show the extension of TinyCPU supporting hardware
interrupts and peripheral devices. Section IV describes the
implementation in the FPGA board and an application.
Section V offers concluding remarks.

II. THE ARCHITECTURE OF TINYCPU

TinyCPU is a simple, compact and portable processor
which can be implemented in various FPGAs [1], [4], [5].
It is a pure stack architecture [7] and does not have an
accumulator or a register set. Instead, it has an operation
stack, which is used for all operations including store/load
operations and arithmetic and logic operations. TinyCPU has
seven components including state machine, 12-bit program
counter, 16-bit output buffer, 16-bit ALU, 16-bit stack, and
16-bit data and 12-bit address memory. It also uses 16-
bit data bus and 12-bit address bus. Every instruction of
TinyCPU is a 16-bit word. TinyCPU supports 9 control
instructions and 19 instructions for arithmetic and logic
operations.

TinyCPU is designed using Verilog HDL. The Ver-
ilog HDL code is written as simple as possible. It consists
of only 427 lines and can be synthesized for various FPGAs.
Also, cross assembler and cross compiler for TinyCPU
are available. However, TinyCPU does not support external
devices and hardware interrupts from them. In this work,
therefore, we propose an extension of TinyCPU to support
hardware interrupts and peripheral controllers.

III. THE ARCHITECTURE OF TINYCSE

This section shows our proposed TinyCSE (Tiny Com-
puter System for Education), an extension of TinyCPU
supporting hardware interrupts and peripheral controllers.
The extended processor can handle hardware interrupts
from external devices, including keyboard, mouse, serial
communication, switch, and timer.

Figure 1 illustrates a block diagram of the architecture of
our proposed CPU. The components and connections with
solid lines show those of the original TinyCPU, and those
with the broken lines indicate a part of the extension of the
processor. The processor has 8 components including state



machine state, interrupt controller, 12-bit return register
rr, 12-bit program counter pc, 16-bit ALU alu, 16-bit
stack stack, 16-bit data and 12-bit address memory ram,
and 16-bit data and 12-bit address I/O space io. It also
uses 16-bit data bus dbus and 12-bit address bus abus. The
inputs and outputs of the external devices are addressable by
the I/O space. Our processor can communicate with external
devices by specifying the address.�����������	
���� ��	���	����
��	
����

���	����
�	�	
� �
��������
	���	������������ � �

�
�

�
�� ����������
	����
��	
����

��� !"#���
���
$% &'(

� ���� ��	
����	���	������
� � ����� )*

Figure 1. A block diagram of the proposed processor, showing internal
architecture, bus connectivity and basic functional blocks. Solid lines show
the components and connections of the original TinyCPU. Broken lines
show those of the extension in this study.

A. I/O space

The original TinyCPU only supports switches and LEDs
as the I/O. To support multiple peripheral devices, we extend
the I/O space as port mapped I/O whose space is separated
from address space. Peripheral devices are assigned to one or
more ports in the I/O space. The I/O space module defines
the assignment and connects the processor and peripheral
devices.

B. Interrupt controller

The interrupt controller provides a software interface to
the interrupt system. In our system, the controller supports
hardware interrupts given by external devices. To make the
controller simple, we designed it as follows.

The interrupt controller consists of an interrupt regis-
ter and the interrupt signal intr. Peripheral devices are
connected to the controller. The interrupt register indicates
which device interrupts and the intr signal is a signal for
starting the interrupt. When an interrupt occurs, the interrupt
controller asserts intr. The controller stores which device
interrupts to the interrupt register. In our interrupt process,
to make the architecture simple, when an interrupt occurs,
the other interrupts are ignored. In other words, multiple
interrupts are not supported.

C. Extension of the state machine and instructions

To support the above I/O space and interrupt controller,
we modified the state machine of the original TinyCPU.

Figure 2 illustrates a state transition diagram of our proposed
processor. When an interrupt occurs, the state of processor
transitions into interrupt states INSTA and INSTB after the
executing instruction is completed. In the interrupt states, the
value of program counter is stored to the return register and
the program branches into the interrupt routine by loading
the address of the routine into the program counter. In the
interrupt routine, interrupt process based on the device is
executed.

����
���

����	

���

����	�
���

���

���

����
���

����

���

�����
���

��������

�����	


�����	

�����	

������	 ������	

Figure 2. Our processor state transition diagram. Solid lines show the
states of the original TinyCPU. Broken lines show those of the extension
for the interrupt process in this study.

Also, we extended two existing instructions IN and OUT,
and added two new instructions RETURN and CALL. The
details of these instructions are listed, as follows.

• IN: push the value of the specified address in I/O space
onto the stack top.

• OUT: pop the value of the stack top to the specified
address in I/O space.

• RETURN: branch to the address stored in the return
register and the interrupt signal is negated.

• CALL: store the value of the program counter in the
return register and branch to the address the operand
specifies.

D. External device controllers

We designed timer, VGA display, keyboard, mouse, and
serial communication controllers as external device con-
trollers. These controllers are connected to the processor
and can be operated by the processor via the I/O space and
the interrupt controller as shown in Figure 1. For the page
limitation, the details of these controllers are omitted.

IV. IMPLEMENTATION IN THE FPGA BOARD

We have implemented our processor in the FPGA board,
Spartan-3AN starter kits (Figure 3). The Spartan-3AN starter
kits FPGA boards are equipped with Spartan-3AN family
FPGA XC3S700AN. The board has various peripheral de-
vices: slide switch, push button switch, rotary switch, LED,
and LCD. It also has VGA, PS/2, and serial ports as I/O
ports. We have implemented our processor in the FPGA
board.

Our processor and device controllers are written in Ver-
ilog HDL. Table I summarizes our processing system. The



Figure 3. Spartan-3AN starter kit

code consists of 515 lines for the processor and 1339 lines
for peripheral device controllers. We note that the code size
of device controllers is quite large. This is because the font
data in the VGA controller to display characters on the
screen. Therefore, readers can find that the code size of each
device is not so large.

Table I
OUR PROCESSING SYSTEM AND ITS CODE SIZE IN VERILOG HDL

module or code size
function (lines)
definitions 58
ALU 39
counter 14
state machine 27

Processor stack 34
memory 27
IO space 90
interrupt controller 82
top module 144
total 515
switch 19
keyboard 102
mouse 121
serial communication 88

Device controller timer 16
LCD 159
VGA (excluding font data) 88
VGA (font data) 702
top module 44
total 1339

total 1854

We have used XST in ISE Foundation 13.1 for logic
synthesis and analysis. According to the result, our system
runs in 73MHz and uses 832 out of 5888 slices (14%), 1
out of 20 18-bit multiplier (5%), 4 out of 20 BRAMs (20%),
and 42 out of 372 I/O pins (11%). Therefore, our system is
simple and compact.

As real-life applications, we have developed a time watch
(Figure 4). In this application, a value of a counter increases
per second by the interruption from the timer controller. In
addition, the button switches are used to control the behavior

of the counter: start, stop, and reset counting. The value
of the counter is displayed on the monitor using the VGA
controller. This implementation of the real-life application
result proves that our system can be used for developing a
small embedded system.

Figure 4. An example of the application (time watch)

V. CONCLUSION

We have presented TinyCSE that is an extension of
TinyCPU supporting interrupts and controllers for peripheral
devices. Our processor is intended to be used as a course
material for computer architecture education. Our system
is designed by Verilog HDL and the code consists of 515
lines for the processor and 1339 lines for controllers of
peripheral devices. We have demonstrated our system using
the Spartan-3AN starter kit. In the future, we plan to develop
the operating system on this system.

REFERENCES

[1] K. Nakano and Y. Ito, “Processor, assembler, and compiler
design education using an FPGA,” in Proc. of International
Conference on Parallel and Distributed Systems, December
2008, pp. 723–728.

[2] Y. Li and W. Chu, “Aizup – a pipelined processor design and
implementation on XILINX FPGA chip,” in Proc. of IEEE
Symposium on FPGAs for Custom Computing Machine, April
1996, pp. 98–106.

[3] N. Fujieda, T. Miyoshi, and K. Kise, “A MIPS system
simulator,” in Proc. of Workshop on Computer Architecture
Education, December 2009, pp. 32–39.

[4] K. Nakano, K. Kawakami, K. Shigemoto, Y. Kamada, and
Y. Ito, “A tiny processing system for education and small
embedded systems on the FPGAs,” in Proc. of Embedded
Software Optimization, December 2008, pp. 472–479.

[5] I. McLoughlin, Computer Architecture: An Embedded Ap-
proach. McGraw Hill Higher Education, 2011.

[6] Spartan-3AN FPGA Family: Data Sheet, Xilinx Inc., 2011.

[7] P. J. Koopman, Jr., Stack Computers: the new wave. Ellis
Horwood, Ltd, 1989.


