
A Tiny Processing System for Education and Small Embedded

Systems on the FPGAs

Koji Nakano, Kensuke Kawakami, Koji Shigemoto, Yuki Kamada, Yasuaki Ito
Department of Information Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, JAPAN

Abstract

The main contribution of this paper is to present
a simple, scalable, and portable tiny processing system
which can be implemented in various FPGAs. Our pro-
cessing system includes a 16-bit processor, a cross as-
sembler, and a cross compiler. The 16-bit processor
runs in 89MHz on the Xilinx Spartan-3A family FPGA
XC3S700A using 336 out of 5888 slices (5.7%) and in
76MHz on the Altera Cyclon III family EP3C25F324
using 569 out of 24624 logic elements (2.3%). Every
instruction can be executed in only one clock cycle, that
is, CPI=1. Using a cross assembler and a cross com-
piler that we have developed, a C-based language pro-
gram can be translated into a machine language object
code, which can be executed on the 16-bit processor.
The source codes of our processing system are very sim-
ple and compact. The 16-bit processor is designed by
Verilog HDL using 268 lines, and the cross assembler
is written in 38 lines using Perl language. The cross
compiler has 23 lines of Flex grammar file for lexical
analysis, and 90 lines of Bison grammar file for context
analysis and code generation. Hence, our tiny process-
ing system is portable and easy to understand and the
function expansion is not difficult. Actually, the tiny
processing system has been used for the embedded sys-
tem course of graduate students as a course material.
As real-life applications, we have developed a PONG-
like mini game and an RSA encryption/decryption sys-
tem based on the tiny processing system. Therefore, our
tiny processing system benefits computer system educa-
tion and small embedded system development.

1 Introduction

An FPGA (Field Programmable Gate Array) is a
programmable VLSI in which a hardware designed by
users can be embedded instantly. Typical FPGAs con-
sist of an array of programmable logic blocks (slices

or logic elements), memory blocks, and programmable
interconnect between them. The logic block usually
contains four-input logic functions and/or several reg-
isters. The memory block is usually a dual-port RAM
which can be read/written a word of data for distinct
addresses in the same time. Using design tools pro-
vided by FPGA vendors or third party companies, a
hardware logic designed by users using hardware de-
scription languages can be embedded in FPGAs. Thus,
the FPGAs are widely used for platform of embed-
ded system as well as computer system education.
Also, it has been shown that a lot of computation
can be accelerated using a circuit implemented in FP-
GAs [4, 5, 11, 12, 13, 14].

The main contribution of this paper is to present a
simple, scalable, and portable tiny processing system
which can be implemented in various FPGAs. The
processing system includes an N -bit processor TINY-
CPU, a cross assembler TINYASM, and a cross com-
piler TINYC. Using TINYC and TINYASM, C-based
language programs can be translated into a machine
language object code, which can be executed in TINY-
CPU. Table 1 summarizes our tiny processing system.
In this table, the code sizes in lines include blank lines.

Our tiny processing system has a lot of advantages
as follows:

Simple and compact The source codes of our pro-
cessing system are very simple and compact.
TINYCPU has 268 lines with Verilog HDL,
TINYASM is described in 38 lines using Perl lan-
guage. TINYC has 23 lines of Flex grammar file
for lexical analysis, and 90 lines of Bison grammar
file for context analysis. Thus, our tiny process-
ing system is easy to understand and the function
expansion is very easy.

Low CPI Every instruction of TINYCPU can be ex-
ecuted in only one clock cycle, that is, CPI (Clock
Per Instruction)=1. Thus, the performance our
16-bit version of TINYCPU is 89MIPS(Million

Table 1. Our tiny processing system and its code size
language module or code size

function (lines)
TINYCPU N -bit Processor Verilog HDL definitions 36

Verilog HDL ALU 39
Verilog HDL state machine 20
Verilog HDL stack 34
Verilog HDL memory 29
Verilog HDL top module 110
total 268

TINYASM Cross Assembler Perl 38
TINYC Cross Compiler Flex lexical analysis 23

Bison context analysis
code generation 90

total 113
total 419

Instructions Per Second) on XC3S700A, and
76MIPS on EP3C25F324.

Minimum usage of block RAMs Altera and Xil-
inx FPGAs have dual-port block RAMs as build-
ing blocks. For example, Altera Cyclon III family
FPGA EP3C25F324 and Xilinx Spartan III Fam-
ily FPGA XC3S700A have 66 9k-bit block RAMs
and 20 18k-bit block RAMs, respectively. Read-
/Write operations for two distinct addresses can be
performed in the same time for a dual-port block
RAM. We use this function of dual-port to fetch an
instruction code and execute a read/write opera-
tion in the same time. Thus, instruction codes and
data can be in the same block RAM, and TINY-
CPU uses only one block RAM as a memory to
store both instruction codes and data for the min-
imum configuration. Also, the size of memory can
be extended easily.

Scalable The word size of TINYCPU can be changed.
In other words, for arbitrary integer N ≥ 8, TINY-
CPU can take an N -bit architecture. Any N -bit
architecture can be generated by just setting pa-
rameter N in the top Verilog HDL module of our
source code.

Portable Our Verilog HDL code for TINYCPU fol-
lows Verilog-95 standard, and thus it can be syn-
thesized by tools supporting Verilog-95 as well as
Verilog 2001. Therefore, most of logic design tools
can synthesize our Verilog HDL code for the pro-
cessor and generate its net list. Actually, Xil-
inx ISE Foundation, Altera Quartus II, and third
party logic synthesis tool Synplify Pro can synthe-

size it, and Icarus Verilog [9] can perform the sim-
ulation correctly. Also, Perl, Flex, and Bison tools
that we have used are standard UNIX tools. They
can also be executed on Microsoft Windows-based
PCs using Cygwin [7], which provides a Linux-like
environment on them.

Benchmark TINYCPU has a lot of fundamental logic
components including, registers, counters, mem-
ories, combinational circuits for arithmetic and
logic operations, state machines, multiplexers, tri-
state buses, etc. The arithmetic and logic oper-
ations include addition, subtraction, multiplica-
tion, negation, shift, comparison, and so on. Fur-
ther, since the Verilog HDL code for TINYCPU is
portable, it can be a standard benchmark to mea-
sure the performance of FPGAs and logic design
tools. Therefore, TINYCPU can be a standard
benchmark circuit design to measure the goodness
of logic design and synthesis tools as well as the
performance of FPGAs.

Education Since our processing system including a
processor, a cross assembler, and a cross compiler
is simple, they are easy to understand for students.
Thus it can be used as course materials for learning
basics of computer and embedded systems from
various aspects.

Since our main target is to design a processor, a cross
assembler, and a cross compiler as simple as possible,
The efficiency including used hardware resources and
the clock frequency is of secondary importance. Never-
theless, the performance of our TINYCPU is 89MIPS
for XC3S700A and 76MIPS for EP3C25F324.

Several processors designed for embedding in FP-
GAs have been presented. Xilinx Inc. offers 8-bit CPU,
Picoblaze [23] and 32-bit CPU Microblaze [25]. Altera
Corp. provides 32-bit Nios II processor [3]. They are
optimized for their FPGAs and porting to the other
FPGAs is not possible. Embedded processors for exe-
cuting Java Virtual Machine codes on the FPGA have
been presented [16, 18], but they are too complicated.

We have also developed a PONG-like mini game [17]
and an RSA encryption/decryption system using our
tiny processing system. The RSA encryption/decryp-
tion system was submitted to the Design Wave Maga-
zine Design Contest 2008 and won vice-champion [6].

2 The Architecture of TINYCPU

TINYCPU is a scalable processor that we have de-
veloped. This processor is a pure stack architecture [10]
and does not have an accumulator or a register set. In-
stead, it has an operation stack, which is used for all
operations including store/load operations and arith-
metic and logic operations. In the standard configura-
tion, the word size of TINYCPU is 16 bits. In other
words, the width of the data bus and the stack is 16
bits. As we will explain later, the word size can be
changed to any integer N ≥ 8.

TINYCPU is designed using Verilog HDL. The Ver-
ilog HDL code is written as simple as possible. Fig-
ure 1 illustrate the block diagram of TINYCPU. It has
six components including state machine state, 12-bit
program counter pc, 16-bit output buffer obuf, 16-bit
ALU alu, 16-bit stack stack, 16-bit data and 12-bit
address memory ram. It also uses 16-bit data bus dbus
and 12-bit address bus abus.

Every instruction of TINYCPU is a 16-bit word. Ta-
ble 2 shows the list of all instructions of TINYCPU.
It has 11 control instructions and 19 instructions for
arithmetic and logic operations. In the table, operands
I and A show immediate and address values, respec-
tively, and f is a 5-bit code to specify an operation.
Also, top and next denote the top and the second el-
ements of the stack. Hence, the binary operations are
performed for next and top and the resulting value is
stored in top. The unary operations are performed for
top. The readers may think that TINYCPU has too
few instructions. However, these instructions are suf-
ficient to execute machine codes generated by C-based
language programs that we will explain later.

Quite surprisingly, every instruction in Table 2 can
be performed in one clock cycle. The function of a
dual-port block RAM is used to fetch an instruction
and read/write data in the same time. Thus, during
the execution of an instruction, TINYCPU fetches next

instruction.
We will show how TINYCPU is designed by the Ver-

ilog HDL using an example. List 1 shows the Ver-
ilog HDL source code alu.v for ALU (Arithmetic and
Logic Unit). In the first line, Verilog HDL source code
defs.v, which has miscellaneous mappings of binary
constant numbers to instruction codes and states, is in-
cluded. The word size N can be changed by specifying
the parameter value. This module has N -bit integers a
and b as inputs and N -bit integer s as output. It also
has 5-bit input f which is used to select a function out
of 19 functions. We assume that a, b and s are signed
and 2’s complements if they are treated as integers.

List 1. The Verilog HDL source code alu.v for
ALU (Arithmetic and Logic Unit)

1 ‘include "defs.v"
2
3 module alu(a, b, f, s);
4 parameter N = 16;
5
6 input [N-1:0] a, b;
7 input [4:0] f;
8 output [N-1:0] s;
9 reg [N-1:0] s;

10 wire [N-1:0] x,y;
11
12 assign x = {~a[N-1],a[N-2:0]};
13 assign y = {~b[N-1],b[N-2:0]};
14
15 always @(a or b or x or y or f)
16 case(f)
17 ‘ADD : s = b + a;
18 ‘SUB : s = b - a;
19 ‘MUL : s = b * a;
20 ‘SHL : s = b << a;
21 ‘SHR : s = b >> a;
22 ‘BAND: s = b & a;
23 ‘BOR : s = b | a;
24 ‘BXOR: s = b ^ a;
25 ‘AND : s = b && a;
26 ‘OR : s = b || a;
27 ‘EQ : s = b == a;
28 ‘NE : s = b != a;
29 ‘GE : s = y >= x;
30 ‘LE : s = y <= x;
31 ‘GT : s = y > x;
32 ‘LT : s = y < x;
33 ‘NEG : s = -a;
34 ‘BNOT : s = ~a;
35 ‘NOT : s = !a;
36 default : s = {N{1’bx}};
37 endcase
38
39 endmodule

We use two nets x and y for the technical reasons to
follow Verilog-95 standard. In Verilog-95, a bit vector
are treated as an unsigned integer. Thus, we use two
nets x and y to obtain correct results of comparisons

�����
��

���

	

�

� 	

���

���

��

�����

� ���

	
��

��
��

�

��

Figure 1. TINYCPU architecture

Table 2. Instruction set of TINYCPU: Mnemonic names and instruction codes
Mnemonic Machine Operation

Code (HEX)
1 HALT 0000 Stop
2 PUSHI I 1000+I I→ top
3 PUSH A 2000+A mem[A]→ top
4 POP A 3000+A top → mem[A]
5 JMP A 4000+A A→pc
6 JZ A 5000+A A→pc if top=0
7 JNZ A 6000+A A→pc if top!=0
8 LD 7000 mem[top]→top
9 ST 8000 top→ mem[next]
10 IN D000 in→top
11 OUT E000 top→out
12 OP f F000+f Perform operation f

ADD F000 next + top → top
SUB F001 next - top → top
MUL F002 next * top → top
SHL F003 next >> top → top
SHR F004 next << top → top
BAND F005 next & top → top
BOR F006 next | top → top
BXOR F007 next ^ top → top
AND F008 next && top → top
OR F009 next || top → top
EQ F00A next == top → top
NE F00B next != top → top
GE F00C next >= top → top
LE F00D next <= top → top
GT F00E next > top → top
LT F00F next < top → top
NEG F010 - top → top
BNOT F011 ~ top → top
NOT F012 ! top → top

>=, <=, >, and < for signed integers a and b. It should
be clear that x = a +215 and y = b +215 hold for 16-bit
signed integers a and b and 16-bit unsigned integers x
and y. Also, the results of comparisons for unsigned
integers x and y is equal to those for signed integers a
and b. If we used Verilog 2001 [20] or later, which sup-
ports signed integers, we did not have to use two nets
x and y. However, since we want to design TINYCPU
by Verilog-95 [19] for portability, we use such techni-
cal conversion technique. Actually, some logic design,
synthesis, and simulation tools give wrong results for
comparison of signed integers. For example, Icarus Ver-
ilog [9] does not return correct results for comparisons
of “signed” nets.

3 Cross Assembler and Cross Compiler

We have designed a cross assembler and a cross com-
piler for TINYCPU. The Assembler, TINYASM, trans-
lates an assembly language program into a machine
code, which is a list of pairs of a 12-bit address and a
16-bit instruction. The compiler, TINYC, translates a
C-based language program into an assembly language
program for TINYASM. TINYC language supports 16-
bit signed integers and its 1-dimensional array, and if,
if-else, while, do, and goto statements. Also, it has ba-
sic arithmetic and logic operations including addition
(+), subtraction (−), multiplication (∗), negation (−),
bit shifts (<<, >>), bitwise logic operations (&, |, ^,
~), logic operations (&&, ||, !), and comparisons (==,
! =, >, >=, <, <=).

List 2 shows an example of TINYC language
program collatz.c. Using TINYC compiler and
TINYASM assembler, collatz.c is translated into a
TINYASM assembly language program and a TINY-
CPU machine code in List 3. The C-language pro-
gram in List 2 computes the formula in Collatz conjec-
ture [1, 22] as follows. Consider the following operation
on an arbitrary positive integer n:

• If the number is odd, triple it and add one, that
is, n← 3n + 1.

• If the number is even, divide it by two, that is,
n← n/2.

The Collatz conjecture asks if iterating this operation
returns 1 for any initial value n. For example, if n = 3
then, we have the following sequence by iterating the
operation.

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1

It remains open if the Collatz conjecture is true.
The readers should have no difficulty to confirm that

TINYC program collatz.c correctly repeats the op-
eration of Collatz conjecture until n becomes 1.

List 3 shows the TINYASM assembly language pro-
gram and TINYC machine code obtained using our
TINYC compiler and TINYASM assembler. It con-
tains a list of labels with their address values, and a
machine code, which is a list of 16-bit instructions and
initial values of variables.

List 2. C-based language program collatz.c
for Collatz conjecture

n=in;
while(n>1){
out(n);
if(n&1){
n= n*3+1;

} else {
n = n>>1;

}
}
out(n);
halt;
int n;

Surprisingly, the source programs for TINYASM
and TINYC are very simple and compact. TINYASM
that we have developed has 38 lines using Perl lan-
guage [21]. We have developed compiler TINYC using
the lexical scanner generating tool Flex [15] and the
parser generating tool Bison [8]. The source code of
TINYC consists of two files: a Flex grammar file that
defines how an input C-based language program is con-
verted into a sequence of tokens, and a Bison grammar
file that defines how the token sequence are parsed and
machine code are generated. Our Flex grammar file
has 23 lines, and Bison grammar file has 90 lines (Fig-
ure 1).

List 3. The translated assembly language pro-
gram and machine program of collatz.c for
Collatz conjecture

*** LABEL LIST ***
_001F 018
_001T 002
_002F 013
_002T 017
n 01B

*** MACHINE PROGRAM ***
000:D000 IN
001:301B POP n

_001T:
002:201B PUSH n
003:1001 PUSHI 1
004:F00E GT
005:5018 JZ _001F
006:201B PUSH n

007:E000 OUT
008:201B PUSH n
009:1001 PUSHI 1
00A:F005 BAND
00B:5013 JZ _002F
00C:201B PUSH n
00D:1003 PUSHI 3
00E:F002 MUL
00F:1001 PUSHI 1
010:F000 ADD
011:301B POP n
012:4017 JMP _002T

_002F:
013:201B PUSH n
014:1001 PUSHI 1
015:F004 SHR
016:301B POP n

_002T:
017:4002 JMP _001T

_001F:
018:201B PUSH n
019:E000 OUT
01A:0000 HALT
01B:0000 n: 0

4 Scalability of TINYCPU and the
Performance Evaluation

The word size of TINYCPU is 16 bits width in its
standard configuration, and the data bus and the stack
has 16-bit width. The word size of our TINYCPU can
be N bits for any integer N ≥ 8. Users can change
the word size by specifying the value of parameter N
in the top module of Verilog HDL for TINYCPU.

Table 3 shows the performance of TINYCPU for
each word size N . It includes clock frequency, used
slices, and 18-bit multipliers in the Xilinx Sparta-3A
family FPGA XC3S700A-5, which has 5888 slices and
20 18-bit multipliers. It also shows clock frequency,
used logic elements, and 9-bit multipliers in the Altera
Cyclon III family FPGA EP3C25F324C6, which has
24624 logic cells and 132 9-bit multipliers. We have
used ISE Foundation 9.2i for XC3S700A, and Quar-
tus II 7.2 for EP3C25F324 for logic synthesis and tim-
ing analysis. XC3S700A is used in Spartan-3A starter
kit [28], which is sold for 189USD, and EP3C25F324 is
used in Cyclon III FPGA starter kit [2], which is sold
for 199USD. So these FPGAs are in the same price
range. We can see that the clock frequencies of these
FPGA devises are almost the same. Further, we can
compare the hardware resources for these two FPGAs.
A slice of Sparta-3A family FPGA has two four-input
LUTs (Look Up Table), two storage elements, and
two multiplexers. A logic element of Cyclon III fam-
ily FPGA contains a four-input LUT, a programmable
register, a carry chain connection, and a register chain
connection. Thus, a slice of Spartan-3A family FPGA
has larger capacity than a logic element of Cyclon III

family FPGA. From Table 3, we can confirm that the
number of used slices is 60-90% of the number of used
logic elements. TINYCPU is portable, and has a lot
of fundamental logic components including, registers,
counters, memories, combinational circuits for arith-
metic and logic operations, state machines, multiplex-
ers, tri-state buses, etc, it can be used as a benchmark
circuit design to measure the goodness of logic design
and synthesis tools as well as the performance of FP-
GAs.

5 Implementation in the FPGA board

We have implemented our TINYCPU system in the
FPGA boards, Spartan-3E starter kit [24] (Figure 2)
and Spartan-3A starter kit [26]. The Spartan-3E and
Spartan-3A starter kits FPGA boards are equipped
with Spartan-3E family FPGA XC3S500E [27, 29] and
Spartan-3A family FPGA XC3S700A [27, 28], respec-
tively. Both FPGA boards have various switches (slide
switches, button switches and rotary switches), LEDs,
and LCD. They also has ports for VGA, PS/2, and
Ethernet.

Figure 2. Spartan-3E Starter Kit

We have implemented our TINYCPU system in
these FPGA board to confirm that it works properly.
In our implementation, various values including pro-
gram counter, data bus, address bus, output buffer,
etc, are displayed in the LCD display.

We have also developed VGA display, keyboard, and
mouse controllers for the FPGA boards of Spartan-3E
and Spartan-3A Starter kits. These controllers are con-
nected to TINYCPU and can be operated by TINY-

Table 3. Performance of scalable TINYCPU for various word sizes.
Xilinx XC3S700A-5 Altera EP3C25F324C6

bits clock slices 18-bit multiplier clock logic elements 9-bit multiplier
(MHz) (out of 5888) (out of 20) (MHz) (out of 24624) (out of 132)

8 111 181 (3.0%) 1 (5%) 85 191 (0.8%) 1(0.8%)
16 89 336 (5.7%) 1 (5%) 76 569 (2.3%) 2(1.5%)
24 63 480 (8.2%) 3 (15%) 62 849 (3.4%) 6 (4.5%)
32 60 650 (11%) 3 (15%) 60 1096 (4.5%) 6 (4.5%)
40 52 809 (14%) 6 (30%) 48 1404 (5.7%) 12 (9.1%)
48 50 1002 (17%) 6 (30%) 51 1716 (7.0%) 12 (9.1%)
56 44 1202 (20%) 10 (50%) 47 1995 (8.1%) 20 (15%)
64 43 1394 (24%) 10 (50%) 45 2313(9.4%) 20 (15%)

CPU using input/output instructions. We have devel-
oped two applications using our tiny processing system
including TINYCPU and controllers. The first appli-
cation is a PONG-like [17] mini game (Figure 3), which
is a two-player computer game based on the sport ping
pong. This game uses two mice connected to a PS/2
port through a PS/2 splitter. Each player control a
racket in the display using a mouse. The second appli-
cation is an RSA encryption/decryption system (Fig-
ure 3), which is a given task for Design Wave Magazine
Design Contest [6]. In our RSA encryption/decryption
system, plain text is given using a keyboard connected
to the FPGA board. The results of the encryption/de-
cryption are exhibited as plain text and hexadecimal
in the display. Our system won vice-champion of the
contest [6]. These two actual implementation results
prove that our tiny processing system can be used for
developing a small embedded system.

6 Course Material for Education

We have used degenerated version of our tiny pro-
cessing system as course materials for embedded sys-
tem design class of graduate students. This class is
organized in 8 weeks of 5 hours each. We have used
Spartan-3E Starter Kit (Figure 2) and Spartan-3AN
Starter Kit and students implement the tiny process-
ing system in the FPGA board and confirm it works
correctly by operating it. The contents of each of the
eight weeks as follows: (1) Full Adders, N -bit Adders
and ALU, (2) Flip-Flops, Counters, State Machines,
and Stacks, (3) Buses and Memories, (4) TINYCPU
design, (5) Assembler TINYASM design using Perl lan-
guage, (6) Flex and Bison, (7) Compiler TINYC design,
and (8) TINYC programming. Also, students are re-
quired to extend the function of TINYC, TINYASM,
and TINYC.

Using this course material, students can learn digital

circuit design using HDL, processor architectures, as-
sembler design, assembly language programming, and
compiler design. Thus, our processing system can be
used as a good course material to learn basics of com-
puter and embedded system by experiment.

7 Concluding Remarks

We have presented a tiny processing system which
can be implemented in various FPGAs. This tiny pro-
cessing system has a lot of advantages and merits in-
cluding simplicity, scalability, portability, low CPI, and
minimum usage of block RAMs. We have implemented
processor of the system in Altera and Xilinx FPGAs
and evaluate the performance. Also, two applications,
PONG-like mini game and RSA encryption/decryption
system implemented in the Xilinx FPGA board. We
have used the tiny processing system as a course ma-
terial of embedded system class for graduate students.

We have a lot of future works that we plan to do.
First, we extend instructions of TINYCPU to support
signal and image processing. We also plan to embed
two or more TINYCPU in a FPGA for parallel compu-
tation. Since the 16-bit version of TINYCPU uses only
2.3% logic elements of EP3C24F324, it may be possible
to embed 40 TINYCPUs into a single FPGA. Further,
developing a tiny operating system for TINYCPU is
also an interesting research theme.

References

[1] E. Akin. Why is the 3x+1 problem hard ? Contem-
porary Mathematics, 356:1–20, 2002.

[2] Altera Corp. Cyclon III FPGA Starter kit User Guide,
2007.

[3] Altera Corp. Nios II Processor Reference Handbook,
2008.

Figure 3. PONG-like mini game and RSA encryption/decryption system

[4] J. L. Bordim, Y. Ito, and K. Nakano. Accelerating
the CKY parsing using FPGAs. IEICE Transactions
on Information and Systems, E86-D(5):803–810, May
2003.

[5] J. L. Bordim, Y. Ito, and K. Nakano. Instance-
specific solutions to accelerate the CKY parsing for
large context-free grammars. International Journal
on Foundations of Computer Science, pages 403–416,
2004.

[6] The results of design wave design contest 2008. Desgin
Wave, 5:124–125, May 2008.

[7] Cygwin. http://www.cygwin.com/.

[8] C. Donnelly and R. Stallman. Bison: The YACC-
compatible Parser Generator. Free Software Founda-
tion, 1995.

[9] Icarus verilog. http://icarus.com/eda/verilog/.

[10] P. Koopman. Stack Computers: the new wave. Ellis
Horwood, 1989.

[11] R. Lin, K. Nakano, S. Olariu, M. C. Pinotti, J. L.
Schwing, and A. Y. Zomaya. Scalable hardware-
algorithms for binary prefix sums. IEEE Trans. on
Parallel and Distributed Systems, 11(8):838–850, Au-
gust 2000.

[12] K. Nakano and E. Takamichi. An image retrieval sys-
tem using FPGAs. IEICE Transactions on Informa-
tion and Systems, E86-D(5):811–818, May 2003.

[13] K. Nakano and K. Wada. Integer summing algorithms
on reconfigurable meshes. Theoretical Computer Sci-
ence, 197:57–77, 1998.

[14] K. Nakano and Y. Yamagishi. Hardware n choose
k counters with applications to the partial exhaus-
tive search. IEICE Trans. on Information & Systems,
2005.

[15] G. T. Nicol. Flex: The Lexical Scanner Generator.
Free Software Foundation, 1993.

[16] C. Pitter and M. Schoeberl. Towards a Java multipro-
cessor. In Proceedings of the 5th international work-
shop on Java technologies for real-time and embedded
systems (JTRES 2007), pages 144–151, Vienna, Aus-
tria, September 2007. ACM Press.

[17] Pong story. http://www.pong-story.com/.
[18] W. Puffitsch and M. Schoeberl. picoJava-II in an

fpga. In Proceedings of the 5th international workshop
on Java technologies for real-time and embedded sys-
tems (JTRES 2007), pages 213–221, Vienna, Austria,
September 2007. ACM Press.

[19] D. E. Thomas and P. R. Moorby. The Verilog Hard-
ware Description Language, Fourth Edition. Kluwer
Academic, 1998.

[20] D. E. Thomas and P. R. Moorby. The Verilog Hard-
ware Description Language, Fifth Edition. Kluwer
Academic, 2002.

[21] L. Wall, T. Christiansen, and J. Orwant. Programming
Perl. O’Reilly, 2000.

[22] E. W. Weisstein. Collatz problem. From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CollatzProblem.html.

[23] Xilix Inc. Picoblaze: Embedded Micro Controller User
Guide, 2005.

[24] Xilix Inc. Spartan-3E Starter Kit Board Users Guide,
2006.

[25] Xilix Inc. Microblaze Processor Reference Guide, 2007.
[26] Xilix Inc. Spartan-3A/3AN Starter Kit Board Users

Guide, 2007.
[27] Xilix Inc. Spartan-3 Generation FPGA User Guide,

2008.
[28] Xilix Inc. Spartan-3A FPGA Family: Data Sheet,

2008.
[29] Xilix Inc. Spartan-3E FPGA Family: Complete Data

Sheet, 2008.

