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Abstract—The main contribution of this paper is to present
an efficient implementation of the Hough transform algorithm
that uses only one-dimensional parameter spaces for circles
detection on a Xilinx Virtex-7 FPGA. We implemented the
circuit using 398 DSP48E1 slices and 309 block RAMs with
18Kbits. The experimental results show that the architecture
runs in 181.812MHz. For an edge image of size 400 × 400,
our circuit can perform in at most 970434 clock cycles, i.e.,
5337.568μs. Our implementation attains a speed-up factor of
approximately 189 over the sequential implementation on the
CPU.
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I. INTRODUCTION

The Hough transform is a technique to find shapes in

images [1]. The Hough transform defines a mapping from an

image into a parameter space represented by an accumulate

array. Let us consider circle detection using the Hough

transform. A circle can be defined by the three parameters,

its center coordinate (xc, yc) and the radius r. Therefore,

O(N3) space is necessary to store the parameter space,

where N is the size of each dimension of the parameter

space. Moreover, it takes O(N3)-time to vote for each edge

point and search intensive elements in the accumulate array.

Recent FPGAs (Field Programmable Gate Arrays) have

embedded DSP48E1 slices and block RAMs. The DSP

slices are equipped with a multiplier, adders, logic operators,

etc [2]. The block RAM is an embedded memory supporting

synchronized read and write operations, and can be con-

figured as a 36Kbit or two 18Kbit dual port RAMs [3].

The key technique for accelerating the algorithm is an

efficient usage of DSP slices and block RAMs. However,

in the conventional Hough transform algorithm for circles

detection, even the state-of-the-art FPGA such as the Xilinx

Virtex-7 series FPGAs cannot handle the O(N3) space

without off-chip memories.

The parameter space decomposition is used to reduce the

parameter space. Many of methods based on the Hough

transform that use two-dimensional parameter spaces [4],

[5] and one-dimensional parameter spaces [6] have been

proposed. Specifically, in the one-dimensional Hough trans-

form algorithm [6], the x-coordinate of center, y-coordinate

of center, and radius are detected in series. In each detec-

tion, one-dimensional parameter spaces is used in the same

way as the Hough transform. Moreover, various hardware

algorithms for circle detection have been proposed. These

existing researches use the template matching [7], [8] and

the Hough transform algorithms [9], [10], [11]. Shafer et
al. proposed an FPGA implementation to detect the iris

position [7]. However, it detects only one circle in an image.

Jen et al. proposed an FPGA implementation to detect

circles using any three nonlinear pixels to form a circle [9].

However, because of the huge size of parameter spaces, this

method uses off-chip memories. Elhossini et al. proposed

a pipelined FPGA architecture for circles detection [11].

Four specific radii are fixed due to the limitations of on-

chip memories on the FPGA.

The main contribution of this paper is to present an effi-

cient FPGA implementation of the one-dimensional Hough

transform algorithm for circles detection [6]. Our ideas

include:

One-Dimensional Parameter Spaces: Since the circle de-

tection algorithm of our implementation requires only one-

dimensional parameter spaces, the memory storage for the

parameter space can be implemented only with block RAMs,

Therefore, any additional off-chip memory is not necessary.

Voting Space Partitioning: The parameter spaces for x-

and y-coordinates of center candidates are partitioned into

multiple block RAMs that are voted in parallel. Also, the

voting operations of radius for each center candidate is also

concurrently performed using multiple block RAMs.

Efficient Usage of DSP slices: DSP slices are used to merge

the partitioned voting spaces for x- and y-coordinates of

center candidates in a pipelined fashion. Furthermore, DSP

slices are used to compute the Euclidean distance between

each center candidate and edge points.

The one-dimensional Hough transform algorithm consists

of the following four steps: (1) x-coordinates of center can-

didates of circles are detected by voting midpoints of every

two edge points in each row. (2) y-coordinates of center

candidates of circles are detected by voting midpoints of

every two edge points in each column. (3) Center candidates

are listed from x- and y-coordinates of center candidates. (4)

For each center candidate, radii of the circles are detected.

Also, detected circle candidates are checked whether the

candidate is a true circle by voting the Euclidean distances
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Input edge image

(1) Voting for x-coordinates of center candidates

(2) Voting for y-coordinates of center candidates

Detected(3) Center candidates

(4) Voting for radii
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Figure 2. The outline of the one-dimensional Hough transform algorithm for circle detection

(a) Input image (b) Binary edge image (c) Detected circles

Figure 1. Example of circles detection using the one-dimensional Hough
transform algorithm

between each center candidate and every edge point.

Figure 1 shows an example of circles detection using

this method. For an input image (Figure 1(a)), its edge im-

age (Figure 1(b)) is obtained using the edge detector such as

Canny edge detector [12]. Figure 1(c) draws detected circles

using the one-dimensional Hough transform algorithm.

We have implemented the one-dimensional Hough trans-

form algorithm on a Xilinx Virtex-7 XC7VX485T-2.

Our new architecture uses 398 DSP48E1 slices and 309

block RAMs with 18Kbits. Our proposed circuit runs in

181.812MHz. For a binary image of size 400 × 400, our

circuit performs the circles detection in at most 970434

clock cycles, i.e., 5337.568μs. Our implementation attains

a speed-up factor of approximately 189 over the sequential

implementation on the CPU.

This paper is organized as follows. Section II reviews

the conventional three-dimensional Hough transform algo-

rithm and introduces our proposed one-dimensional Hough

transform algorithm. We show the FPGA architecture for

the proposed algorithm in Section III. Section IV shows the

experimental results. Finally, Section V concludes the paper.

II. ONE-DIMENSIONAL HOUGH TRANSFORM

ALGORITHM FOR CIRCLE DETECTION

The main purpose of this section is to show the one-

dimensional Hough transform algorithm for circles detec-

tion. Figure 2 illustrates an outline of this algorithm. The

detail of this algorithm is shown as follows.

Step 1: We compute midpoints of every two edge points

on each row. After that, the x-coordinates are voted to

a one-dimensional accumulate array. Namely, the element

that corresponds to the x-coordinate of each midpoint is

incremented by one. This operation is performed for every

row in the input image. If there is a circle, the voting to

the x-coordinate of its center is concentrated since a circle
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Figure 4. A block RAM to store the voted values

is symmetrical to the vertical bisector through its center.

To cope with quantization error, after voting, we use a

maximum filter for the voted values. In here, for each value

in the accumulate array, this filter copies the value if it is the

maximum within a local range, otherwise, the filter outputs

zero. After that, the top λ largest elements are extracted as x-

coordinates of center candidates of circles to detect multiple

circles.

Step 2: In the same way as Step 1, we compute midpoints

of every two edge points on each column. After that, the

y-coordinates are voted to a one-dimensional accumulate

array for every column. If there is a circle, the voting

to the y-coordinate of its center is concentrated since a

circle is symmetrical to the horizontal bisector through its

center. The voted values are filtered by the maximum filter.

After filtering, the top λ largest elements are obtained as

y-coordinates of center candidates of circles.

In the following FPGA implementation, we perform

Steps 1 and 2 in parallel since these steps can be executed

independently.

Step 3: We list center candidates that are all combinations

from x- and y-coordinates obtained in the above steps. Since

each step obtains λ coordinates, λ2 center candidates are

listed in total.

Step 4: For each center candidate, the Euclidean dis-

tances between the center candidate and all edge points are

computed and the distances are voted to a one-dimensional

accumulate array as radii of circles. If a center candidate

is a center of true circle in the image, an element that

corresponds to the radius is intensely voted. Therefore, we

verify whether the center candidate and each radius represent

a true circle using the voted value. In digital images, it is

known that the number of pixels on the circumference of

circles with radius r is 4
√
2r [13]. However, practical circles

may be broken or disturbed. Therefore, for each radius,

we determine whether the center candidate and its radius

represent a true circle using the threshold f×4
√
2r, where f

is a threshold factor that is a constant value within the range

(0, 1]. If the voted value of radius is larger than the threshold,

the circle is verified as a true circle. The validation for each

radius, circles with the center candidate are extracted.

For each center candidate, the above operation is per-

formed. In our FPGA implementation, this operation is

performed in parallel and circles are detected.
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III. OUR FPGA ARCHITECTURE FOR THE

ONE-DIMENSIONAL HOUGH TRANSFORM

This section describes our FPGA architecture of the one-

dimensional Hough transform algorithm. The input data for

our implementation is given as two edge lists consisting

of coordinates of edge pixels in row- and column-major

order, respectively. These edge lists can be obtained by edge

detection easily, and each list is stored into a block RAM.

A. Structure for voting operation of center candidates

Figure 3 shows our architecture for the voting operation of

x-coordinates of center candidates, where p is the number

of voting modules. Namely, up to p voting operations are

concurrently performed. We utilize one series of p shift-

registers that transfer data in the left-to-right direction. In

order to compute the midpoints of any two edge points

on each row, we read them from the block RAM that

stores the edge list in row-major order. To give all pairs

of x-coordinates of which y-coordinates are identical for

each row, we input x-coordinates which have the same y-

coordinate to the register and transferred them with shift-

registers one by one. If all or p x-coordinates which have

the same y-coordinate are transferred to the registers, then

all x-coordinates which have the same y-coordinate are

continuously read out from the block RAM and broadcast to

pair with the x-coordinates in the registers. If the number of

edge points whose y-coordinates are identical is larger than

p, the above operation is repeated. For each given pair of

x-coordinates, the coordinate of the midpoint is computed

using an adder and a 1-bit right-shifter that divides by two.

After that, the x-coordinates of midpoints are voted to the

block RAM. Namely, an element that corresponds to the x-

coordinate in the block RAM is incremented by one. We use

p block RAMs Vk (0 ≤ k ≤ p−1) to store the voted values

and at most p midpoints are concurrently voted. Figure 4

illustrates the architecture of Vk using a block RAM. The

block RAM is utilized in dual port mode, where port set A

and B are operated for read and write operation, respectively.

In the block RAMs on the target device of this work,

read/write operations can be configured as either RF (Read

First) mode or WF (Write First) mode. In the dual port mode,

there is a restriction that if read and write operation to the

same address are performed for each port, the setting of

block RAMs must be RF [3]. In the RF mode, if reading

and writing operations are performed to the same address,

reading operation is performed before the writing operation.

We use the block RAM to store the values of vk[x] (0 ≤
x < n), where the size of image is n × n and x is an x-

coordinate of midpoints. Let vk[x] denote a data of address

x in the block RAM Vk. Since x is given to its ADDRA,

vk[x] is output from DOA after the rising clock edge as

illustrated before. After that, vk[x] + 1 is computed and it

is given to DOB . Since x is given to ADDRB , vk[x] + 1
is written in vk[x]. According to the restriction stated in the

above, since the same value of x may be input continuously,

we used an additional register to store the latest voted value

and if the same value of x is input continuously, the stored

value is used instead of the value read from the block RAM.

After the voting operations, we combine the voted values

stored in p block RAMs. We read every element in each

block RAM one by one. These values are added and trans-

ferred left-to-right for each clock cycle to compute the sum

of each element with p − 1 registers and p − 1 adders. To

optimize the circuit resources, we use a cascaded DSP slice

for each pair of register and adder.

B. Structure for finding the center candidates of circles

A maximum filter is used to cope with the quantization

error for the voted values above. After filtering, the x-

coordinates to which the λ largest values correspond are

obtained as x-coordinates of center candidates of circles.

Each voted value is input to maximum filter for each clock

cycle. For each value, the filter verifies whether it is the

maximum comparing with its neighboring 2 values. If it is

the maximum in the local range, the filter copies the largest

value, otherwise, the filter outputs it as zero. Therefore,

the largest value in the local range and zero are alternately

output after filtering.

Figure 5 illustrates the structure that finds the x-

coordinates of center candidates. An array of registers and

comparators are used to obtain the largest λ values. Every

register is initialized to zero. The filtered values are contin-

uously input to the left-most register for each clock cycle.

Each register of ci (0 ≤ i < λ) compares the value with

its left register. If this register has smaller value, the value

of its left register is then transferred to it. If this register

has larger value, it will compare the value with its right

register, and if the register has larger value, this value is

transferred to its right neighboring register. All the values

of registers are transferred in parallel. Since input values

are obtained through the maximum filter, the input values

are given at more than one clock cycle intervals. Hence, the

larger values will be gradually transferred to the right side

through the registers. Finally, the top λ largest values are

stored in the registers. Namely, the x-coordinates that have

the top λ largest values are chosen to be the x-coordinates

of center candidates of circles.

Similarly, using another circuit whose structure is the

same as the above, the voting operation for y-coordinates

of center candidates are performed with edge lists stored

in column-major order as input. Also, y-coordinates with

the top λ largest values are obtained as the y-coordinates

of center candidates. Every x- and y-coordinates of centers

candidates are combined to construct λ2 center candidates.

C. Structure for the voting operation of radius

The voting operation of radius is performed for each

center candidate in parallel (Figure 6). Since λ2 center
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candidates are obtained, we use λ2 voting spaces to store

the voted values. For each center candidate, the Euclidean

distances between the center candidate and all edge points

are computed. The circuit runs in a pipeline fashion for

coordinates of edge points that are given for each clock

cycle. The computation of the Euclidean distances include

the computation of the square root. Since it is difficult to

compute them directly on the circuit, we use the CORDIC

IP provided by Xilinx that provides a hardware module that

is fully pipelined architecture [14]. Since the computed dis-

tances are voted to a block RAM for each center candidate,

totally, λ2 block RAMs Mk (0 ≤ k < λ2) are used. The

architecture of Mk is the same as shown in Figure 4.

D. Structure for verifying true circles

Finally, we verify whether the center candidates are true

circles. If a center candidate is that of true circle in the

image, an element of the block RAM that corresponds to

the radius is intensely voted. A maximum filter is also used

to cope with the quantization error for the voted values. If

the value is the maximum in a local range, the filter copies

the largest value, otherwise, the filter output it as zero. After

filtering, each radius is verified whether it is the radius of a

true circle by comparing its voted value with the threshold

f × 4
√
2r (Section II). All the values of f × 4

√
2r are

precomputed to store in a block RAM that is used as a

Look-up-table. If it is larger than the threshold, the center

candidate and the radius that represent a circle is input to

the shift registers and output through the registers.

IV. PERFORMANCE EVALUATION AND EXPERIMENTAL

RESULTS

We have implemented the proposed architecture for circles

detection and evaluated it on the Xilinx Virtex-7 FPGA

XC7VX485T-2 [15]. For our implementation, 398 DSP48E1

slices, 309 block RAMs with 18Kbit and 20452 slices of the

FPGA are used. The FPGA with the architecture proposed

in this paper works in 181.812MHz.

In our implementation, the x- and y-coordinates of edge

list stored in row- or column-major are 9-bit integer. The

voted values of x- and y-coordinate of center candidates are

set to be 17-bit integer. The number p of voting modules for

x- and y-coordinates of center candidates is set to be 100.

The number λ of x- or y-coordinates of center candidates is

set to be 10, therefore, 100 center candidates are constructed.

The data format of the voted values for radius is 13-bit

integer.

Since the latency of our architecture depends on the input

image, we suppose that all pixels of input image of size n×n
are edge points. Let p be the number of voting modules for

x- or y-coordinates of center candidates and λ be the number

of x- or y-coordinates of center candidates. For simplicity,

we assume that n is a multiple of p. For a certain row or

column i, it takes n
p (p + n + 6) clock cycles to complete

the voting operations of row or column i. Therefore, it takes
n2

p (p+n+6) clock cycles to complete the voting operations

for all rows or columns. After that, it takes p + n + λ + 4
clock cycles to find x- or y-coordinate of center candidates.

The combination of every x- and y-coordinates of center

candidates takes 1 clock cycle. The voting operation for

radius takes n2 + 11 clock cycles, and it takes n
2 + λ2 + 8

clock cycles to output all detected true circles. Finally, our

circuit totally takes n3

p + (2p+6)n2

p + 3
2n+p+λ2+λ+24 clock

cycles to implement the one-dimensional Hough transform.
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For estimating the speed up of our FPGA implementation,

we have also implemented a software approach of the one-

dimensional Hough transform using GNU C. We have used

Intel Xeon X7460 running in 2.66GHz and 128GB memory

to run the sequential one-dimensional Hough transform

algorithm. For the image above, the software implemen-

tation can perform the one-dimensional Hough transform

for circles detection in 1008.658ms. On the other hand,

our circuit can perform it in 970434 clock cycles, i.e.,

5337.568μs. Therefore, our FPGA implementation attains

a speed-up factor of approximately 189 over the sequential

implementation on the CPU.

There are a number of literatures reported to implement

circles detection using the FPGA shown in Table I, where

Int. means internal (on-chip) and Ext. means external (off-

chip). It is difficult to directly compare to other works

because utilized FPGAs and supported size of images differ.

Considering the throughput, our implementation compares

favorably with other works. The deficiencies of these ex-

isting researches such as detecting only one circle or using

off-chip memories are not existing in our implementation.

Our implementation detects multiple circles with variable

radii using only the block RAMs on the FPGA.

Table I
COMPARISON WITH RELATED WORKS FOR HOUGH TRANSFORM

Shafer [7] Tokunaga [8] Jen [9]
Base

algorithm
Template
matching

Template
matching

Hough
transform

Device
Altera

EP4SGX530
Xilinx

XC4025E
Altera

Stratix 1S25
Memory Int. 6.75Mbit — Int. 1.6Mbit & Ext
Frequency 159MHz — —
Throughput 9.362Mpixel/s 0.0512Mpixel/s 0.01524Mpixel/s

Geninatti [10] Elhossini [11] This work
Base

algorithm
Hough

transform
Template
matching

Hough
transform

Device
Xilinx

Spartan 3
Xilinx

Virtex-4
Xlinix

XC7VX485T-2
Memory Ext. 1Mbit Int. 256Kbit Int. 5.4Mbit
Frequency — 27MHz 181.812MHz
Throughput 12.32Mpixel/s 14.4Mpixel/s 29.976Mpixel/s

V. CONCLUSIONS

We have presented an efficient implementation of the one-

dimensional Hough transform using 398 DSP slices, 309

block RAMs with 18Kbits on the Virtex-7 Family FPGA

XC7VX485T-2. The architecture runs in 181.812MHz and

for an image of size 400×400 that all pixels are edge points,

our circuit performs the one-dimensional Hough transform

in 970434 clock cycles, i.e., 5337.568μs which theoretically

attains a speed-up factor of approximately 189 over the

sequential implementation on the CPU.
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