
Thorough Evaluation of GPU Shared Memory Load and Store Instructions

Satoshi Okamoto, Yasuaki Ito, Koji Nakano

Department of Information Engineering,
Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 Japan
Email: {okamoto, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Jacir L. Bordim

Department of Computer Science
University of Brasilia

70910-900, Brasilia - DF - Brazil
Email: bordim@unb.br

Abstract—This work focuses on measuring the number of
GPU clock cycles necessary to execute load/store instructions
in both bank conflict and bank conflict-free shared memory
access patterns. To this end, a varying number of parameters
have been considered in the experiments, including the number
of warps (w), the number of memory bank conflicts (k) as
well as the number of load/store instructions (l) per warp.
From the analysis of the experimental results, it was possible
to obtain an estimate (E) on the number of the clock cycles
necessary to execute l load/store instructions. The estimate is
given by E = w · l · k · c1 + c2, where c1 and c2 are constants
assuming values 1.047 and 337.7, respectively. From the above
results, we believe that obtained estimated can be used as
an approximation on the number of clock cycles necessary
to execute load and store instructions.

Keywords-bank conflict; shared memory; GPU; clock cycle
measurement.

I. INTRODUCTION

Owing to its programmability and highly parallel pro-

cessing features, GPUs (Graphics Processing Units) have

captured the attention of many application developers. When

the application software uses a large number of parallel

threads, GPUs are usually more efficient than multicore

processors since they have hundreds of processor cores and

very high memory bandwidth [1].

The CUDA (Compute Unified Device Architecture), in-

troduced by NVIDIA, allows the developer to gain access

to the virtual instruction set and memory of the parallel

computational elements of an NVIDIA GPU [2]. CUDA

architecture allows the access to two types of memories: (1)

the shared memory; and (2) the global memory. The shared

memory is an extremely fast, on-chip memory, with lower

capacity (usually between 16 to 64 Kbytes). The global

memory, on the other hand, is implemented as an off-chip

DRAM with much higher capacity (currently around 1.5

to 6 Gbytes). Despite that, access latency is much higher

than that of shared memory. Efficient usage of the shared

memory and the global memory is mandatory to accelerate

applications using GPUs [1]. This work focuses on shared

memory access patterns and its impact on performance.

The GPU is built around an array of Streaming Multipro-

cessors (SMs), where a multithreaded program is executed

in SIMT (Single-Instruction, Multiple-Thread) fashion [2].

A thread block is assigned to a single SM. Each SM is

comprised of a shared memory that can be accessed by

the threads in the block assigned to it. The threads are

connected to shared memory banks (MBs) through the

memory management unit. A single address space of the

memory is mapped to the MBs in an interleaved way such

that the word of data of address i is stored in the (i mod

m)-th MB, where m is the number of the MBs [3]. The

multiprocessor creates, manages, schedules, and executes

threads in groups of parallel threads, called warps. In this

work we assume that number of threads in a warp is the same

as the number m of memory banks. The best performance is

achieved when all threads in a warp access different memory

banks. Figure 1(a) depicts a number of threads (T) accessing

different memory banks (MB).

When a number of threads in a warp attempt to access

different addresses of the same memory bank, a conflict
occurs [4]. In this case, the shared memory access requests

are processed sequentially. The development of efficient

algorithms should avoid conflicts as much as possible. In

this work we are interested in measuring the number of GPU

clock cycles necessary to execute load/store instructions,

in bank conflict and bank conflict-free situations. Let k
denote the maximum number of threads in a given clock

cycle that attempt to access different addresses of memory

bank MB(i), (0 ≤ i ≤ 31). Whenever k > 1, we say

that there is a k-congestion access, while a 1-congestion
denotes a conflict-free access. The number k of congestion

takes values in the interval [1,m]. Figure 1 shows three con-

gestion examples, with 1, 4, and 2-congestion, respectively.

The figure illustrates the cases where a number of threads

attempt to access memory location on the same memory

banks, resulting in 4 and 2-congestion scenarios (Figure 1(b)

and (c), respectively). Recall that 1-congestion is the most

favorable access pattern, as it has no memory conflicts.

II. SHARED MEMORY CLOCK CYCLE MEASUREMENT

The NVIDIA GeForce GTX780Ti GPU has been used

to measure the shared memory clock cycles while executing

load/store instructions. The GTX780Ti has 3GB of memory,

2880 processing cores (15 Streaming Multiprocessors, each

having 192 processing cores) running at 928MHz. In this

2014 Second International Symposium on Computing and Networking

978-1-4799-4152-0/14 $31.00 © 2014 IEEE

DOI 10.1109/CANDAR.2014.42

614

�

�

�

��

�

�

�

�	

�

��

��

	

�

��

��

� � � �

�

�

�

��

�

�

�

�	

�

��

��

	

�

��

��

� � � �

�

�

�

��

�

�

�

�	

�

��

��

	

�

��

��

� � � �

�������	
��� �������	
��� ������	
���

����� ����� ���� ���������� ����� ���� ���������� ����� ���� �����

�� ����

Figure 1: Shared memory congestion examples with m = 4.

Inline PTX Assembly Code Snippet
1. asm volatile
2. (...
3. "bar.sync 0;\n\t"
4. "mov.u32 %0, %%clock;\n\t"

5. shared memory load/store instructions

7. "mov.u32 %1, %%clock;\n\t"
8.);

Figure 2: Assembly code snippet for measuring clock cycles

for instructions load/store.

work we have restricted the kernel execution to a single

block.

To obtain the number of clock cycles, the “inline PTX

assembly language” for NVIDIA GPUs has been used [5].

Figure 2 shows a snippet of the inline PTX assembly code.

Lines 4 and 7 of the snippet are used to record the number

of clock cycles taken by a load/store instruction (shown

in line 5). Note that a barrier synchronization is used to

ensure that all threads are synchronized before the first

clock instruction. Let X denote the number of clock cycles

to execute a load/store instruction as well as the clock

measuring instructions, as depicted in Figure 3. Note that

two consecutive clock instructions take exact 16 clock cycles

in the GTX780Ti GPU. Thus, by computing X − 16, it is

possible to obtain the number of clock cycles to execute

load/store instructions in line 5. The aforementioned inline

PTX code has been inserted into the CUDA C program, thus

allowing to measure the number of clock cycles to execute

shared memory load/store instructions.

�����

������
����������	��
�

����	��

������

���������
��

������

��������������	��
����������	��
�

Figure 3: Obtaining the number of clock cycles to execute

load/store instructions.

III. EXPERIMENTS

This section presents the experimental setting used to

measure the number of clock cycles to execute load/store

instructions in the shared memory of the GeForce GTX780Ti

GPU. The following parameters have been considered in the

experiments:

- the number w of warps;

- the number k of congestion; and

- the number l of load/store instructions per warp.

The number of warps and the number of instructions take

values in the interval [1, 32]. As there are 32 threads in a

warp, k can be at most 32. The results are taken from the

average of 100 executions. Note that the GPU may store

data into local registers to speed up computations. As this

could interfere with the measurements, volatile instructions

were used to avoid data of being kept into the shared

615

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000

w·l·k

1.047wlk+337.7

Figure 4: Number of clock cycles and best fit line for load instructions with w · l · k.

memory registers [2]. The shared memory has been set to

work in 64-bit mode in the experiments. Furthermore, all

load/store instructions in the experiments manipulate 64-bits

floating numbers. In the GeForce GTX780Ti, each SM has

32K registers capable of storing 64-bits floating numbers.

Hence, the number of instructions and the number of warps

considered in this work are bounded by this limit. Due to

space limitation, only the clock cycle measurement results

for load instructions will be shown. We note, however, that

store instructions have shown similar results.

As mentioned in [3], it is supposed that modern GPU

architecture employs multistage interconnection networks to

route memory access requests. However, memory access

becomes serialized in the event of memory bank conflict.

In such cases, it is presumable that the benefits of a fast

memory access to be significantly reduced. Furthermore,

the number of warps usually implies an increase on the

number of instructions to be executed. Thus, it is expected

that the number of clock cycles to increase significantly with

the number of warps and load/store instructions. Given the

above facts, we conjecture that:

1) an increase on the number of bank conflicts would

produce a similar increase in the number of clock

cycles necessary to complete the execution of the

load/store instructions; and

2) increasing the number of warps and instructions would

yield an equivalent increase in the number of clock

cycles.

To verify the above, we have conduced a number of ex-

periments with a varying number of warps, instructions and

congestions. As these variables are not independent, we have

combined the averaged results so that a trend line could

be obtained. To this end, the linear regression method has

been used. The resulting best fit line is shown in Figure 4.

The abscissa shows the averaged product of w · l · k, while

the ordinate shows the number of clock cycles necessary to

complete the execution. As can be observed in the figure,

the best fit line for the estimated number of clock cycles can

be expressed by E = w · l · k · c1 + c2, where c1 and c2 are

constants assuming values 1.047 and 337.7, respectively. For

instance, the obtained experimental results for w = l = 32
and k = 8 was 8524.46 clock cycles. Using the above

estimate, the number of clock cycles is E = 8914.72,

a difference of less than 5%. With twice as much bank

conflicts, that is k = 16 with w = l = 32, the estimated

the number of clock cycles raises to E = 17491.75. From

the above results, we believe that the presented estimate can

be used to obtain an approximation on the number of clock

cycles necessary to execute load and store instructions.

REFERENCES

[1] D. B. Kirk and W.-m. W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2010.

[2] NVIDIA Corporation, CUDA C Programming Guide, 6.5 ed.,
August 2014.

[3] K. Nakano, “Simple memory machine models for GPUs,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 29, no. 1, pp. 17–37, 2014.

[4] K. Nakano, S. Matsumae, and Y. Ito, “The random address
shift to reduce the memory access congestion on the discrete
memory machine,” in International Symposium on Computing
and Networking (CANDAR), pp. 95–103, Dec 2013.

[5] NVIDIA Corporation, Inline PTX Assembly in CUDA, 6.5 ed.,
August 2014.

616

