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Abstract—The gradient-based Hough transform is an im-
provement of the original Hough transform. It is utilized to
reduce substantially the computation quantity and make the
detection more accurate using gradient information.

The main contribution of this paper is to present an efficient
implementation of the gradient-based Hough transform for
straight lines detection using a Xilinx Virtex-7 FPGA with
embedded DSP slices and block RAMs. We implemented the
circuit using 13 DSP48E1 slices, 180 block RAMs with 36Kbits
and 8 block RAMs with 18Kbits. The experimental results show
that the architecture runs in 260.061MHz and for ann×n gray-
scale image, our circuit can perform inn2 + (

√
2 + 2)n + 232

clock cycles including the computation of gradient information.

Keywords-Image processing, Line detection, Hough trans-
form, FPGA, Embedded DSP slices, Embedded block RAMs

I. I NTRODUCTION

Recent FPGAs (Field Programmable Gate Arrays) have
embedded DSP slices that make a higher performance and a
broader application. The Xilinx Virtex-7 series FPGAs have
DSP48E1 blocks that are equipped with a multiplier, adders,
logic operators, etc [1]. More specifically, the DSP48E1
block has a two-input multiplier followed by multiplex-
ers and a three input adder/subtractor/accumulator. The
DSP48E1 multiplier can perform multiplication of an 18-bit
and a 25-bit two’s complement numbers and produces one
48-bit two’s complement production. Programmable pipelin-
ing of input operands, intermediate products, and accumu-
lator outputs enhances throughput and improves frequency.
The DSP48E1 also has pipeline registers between operators
to reduce the delay. The block RAM in the Virtex-7 FPGA
is an embedded memory supporting synchronized read and
write operations. In the Virtex-7 FPGA, it can be configured
as a 36Kbit dual port block RAMs, FIFOs, or two 18Kbit
dual port RAMs. Since FPGA chips maintain relatively low
price and its programmable features, it is widely used in
those fields which need to update architecture or functions
frequently such as communication and education areas. They
are widely used in consumer and industrial products for
accelerating processor intensive algorithms [2], [3], [4], [5],
[6], [7], [8], [9], [10].

The Hough transform is a technique to find shapes in
images [11]. In particular, it has been utilized to extract lines,
circles, ellipses and arbitrary shapes. The Hough transform
defines a mapping from an image into a parameter space
represented by an accumulate array. The parameter space
is defined by parameterizing detected shapes. Based on
each edge point of the image, the mapping adds a vote
to corresponding elements in the accumulate array. The
elements that are increased represent associated parameters
based on detected shapes. Therefore, the elements that are
voted intensively correspond to the parameters of shapes in
the image space.

The Hough transform can be used to extract straight lines
in a binary image [12]. The idea of this method is to exploit
the duality between points of a line and parameters of that
line. A point in the image is represented by a curve in the
parameter space and lines of collinear points intersect in the
parameter space at one point. These intersections are counted
in an array of accumulators that quantizes the parameter
space appropriately. In the followings, we call this counting
to the accumulatorsvoting. More specifically, for each
edge point(x, y) in a 2-dimensional image, the voting is
performed along a curveρ = x cos θ+y sin θ (0 ≤ θ < 180).
Possible lines can be detected by searching points that are
voted intensively. Figure 1 shows an example of straight line
detection using the Hough transform. For an input image
(Figure 1(a)), the binary edge image (Figure 1(b)) is obtained
by the edge detector such as Sobel filter. We can see that the
normal Hough transform performs well basing on the pure
edge image. The result of voting to the parameter space
is shown in Figure 2(a). In this figure, darker points show
points that are voted intensively, that is, represent probable
lines. According to the result of voting, the principal lines
are detected (Figure 1(c)).

There are many improvements to the Hough transform
for line detection [13]. One of the efficient improvements is
using gradient information [14]. The idea of the method is
to utilize gradient direction and magnitude. It is based on
the fact that if a given point happens to indeed be on a line,

• The local direction of the gradient gives approximately
the same direction of the actual line.

• The gradient magnitude at the pixel is higher than that



(a) Input image (b) Binary edge image by Sobel filter (c) Line detection using the Hough transform

Figure 1. Example of straight lines detection using Hough transform

(a) Conventional (b) Gradient-based

Figure 2. Hough parameter spaces of the conventional Hough transform
and gradient-based Hough transform

of other points not lying on lines.
Using these ideas, we reduce the number of useless votes by
limiting the range of votes with the local gradient direction,
and weight voted values proportional to the local gradient
magnitude to enhance the votes of pixels on lines. In the fol-
lowing, the original Hough transform is calledconventional
Hough transform, and the Hough transform using gradient
information is calledgradient-based Hough transform to
distinguish them easily. In our implementation, we use the
Sobel filter, which is used in edge detection algorithms [15]
to obtain the gradient information. Figure 2 (b) shows the
resulting Hough space based on the above ideas. Compared
with that of the conventional Hough transform, we can see
that votes are limited to the several parts that are darker
points in the figure. Actually, these correspond to real lines
in the image and it is easy to find that useless votes are
reduced.

In this paper, we propose an FPGA implementation of the
gradient-based Hough transform. Our new idea includes:

Voting Space Partitioning:
Polar coordinate voting space(θ, ρ) is partitioned
and arranged into block RAMs. This enables us

to perform voting operations in parallel. Also, the
function of dual-port of block RAMs are fully used
to accumulate the voting value instantly.

Efficient Usage of DSP slices and block RAMs:
DSP slices are used to computex cos θ andy sin θ

in parallel. Also, we avoid the computation of the
values of cos θ and sin θ using block RAMs as
look-up-tables. According to the above, we reduce
the size of the circuit and increase its operating
frequency.

Using these ideas, our new architecture for the Hough
transform uses 13 DSP48E1 slices, 180 block RAMs with
36Kbits and 8 block RAMs with 18Kbits for the Hough
transform. One of the most important key techniques for ac-
celerating computation using FPGAs is an efficient usage of
DSP slices and block RAMs. We have implemented our new
architectures on a Virtex-7 XC7VX485T-2. Our proposed
circuit runs in 260.061MHz, and the voting operations are
performed for ann×n gray-scale image inn2+2n+44 clock
cycles. Also, for the voted results, our circuit outputs the
identified straight lines in

√
2n+188 clock cycles. Therefore,

our circuit can perform inn2+(
√

2+2)n+232 clock cycles,
i.e., n2+(

√
2+2)n+232

260.061 µs. For example, for a gray-scale image
of size 1000 × 1000, our circuit can perform straight lines
detection in 3.859ms.

This paper is organized as follows. In Section II, related
works for FPGA implementation of the Hough transform
for straight lines detection are shown. Section III reviews
the conventional and gradient-based Hough transform al-
gorithms for lines. We describe the FPGA architecture for
the Hough transform in Section IV. Section V shows the
performance evaluation and experimental results. Finally,
Section VI concludes the paper.



II. RELATED WORKS

Many hardware algorithm for FPGA implementations of
the Hough transform for lines have been proposed in past. In
the existing researches, they introduced incremental Hough
transform [16], [17], [18], CORDIC [19], [20], and hybrid-
log arithmetic [21] to the computation in Hough transform.
Since most of recent FPGAs produced by principal vendors
equip embedded DSP slices [22], [23], [24], [25], [26],
one of the most important key techniques for accelerating
computation using FPGAs is an efficient usage of DSP slices
and block RAMs. In our previous works [27], [28], we
proposed two FPGA implementations of the conventional
Hough transform with DSP slices and block RAMs. The
DSP slices and block RAMs work in the fully pipelined
architecture. Both two implementations are based on the
conventional Hough transform. Karabernouet al. proposed
an FPGA implementation of the gradient-based Hough trans-
form [19]. However, they used CORDIC to compute the
complicated calculations such as square roots and trigono-
metrical functions without DSP slices and block RAMs. As
far as we know, our proposed implementation is the first
FPGA implementation of the gradient-based Hough trans-
form using DSP slices and block RAMs. Also, compared
with our previous works, in this work, the number of utilized
DSP slices is reduced considerably.

III. H OUGH TRANSFORM

The main purpose of this section is to review two Hough
transform algorithms, the conventional Hough transform and
the gradient-based Hough transform.

A. Conventional Hough transform

Suppose that we have an image of sizen×n. We assume
that n× n pixels are arranged in two dimensionalxy-space
such that the origin is in the center of the image as illustrated
in Figure 3. Hence, both coordinatesx andy take integers in
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Figure 3. Two dimensional Spacesxy andθρ used in the Hough transform

the range[−n
2 + 1, n

2 ]. A pixel (x, y) (−n
2 + 1 ≤ x, y ≤ n

2 )
in the xy-space is converted to a curve in theθρ-space by
the following formula:

ρ = x cos θ + y sin θ (0 ≤ θ < 180) (1)

Clearly, the double inequality− n√
2

< ρ ≤ n√
2

is satisfied.
The values ofθ and ρ can also be obtained geometrically.
Suppose that we draw a line going through the origin with
angleθ as illustrated in Figure 3. For such line, we can draw
the orthogonal line going through a pixel(x, y). The value
of ρ corresponds to the distance to the line. In other words,
a point(θ, ρ) of θρ-space corresponds to a line ofxy-space.

The key idea of the Hough transform is to vote inθρ-
space only for every edge pixel in thexy-space. Let(x, y)
be the pixel inxy-space, and letp[x][y] be the value of the
pixel. In this paper we process the image in raster scan order,
the Hough transform is spelled out as follows:

[Conventional Hough Transform]
for y ← −n

2 + 1 to n
2

for x← −n
2 + 1 to n

2
if p[x][y] = 1

begin
for θ ← 0 to 179

ρ← x cos θ + y sin θ

v[θ][ρ]← v[θ][ρ] + 1
end

For simplicity, we assume that the value ofρ is automatically
rounded to an integer. In the conventional Hough Transform,
for each point(x, y), the values ofx cos θ and y sin θ are
computed forθ = 0, 1, . . . , 179. If v[θ][ρ] is storing a large
value, many edge pixels in the input pixels lie in the line in
xy-space corresponds to a point(θ, ρ) in θρ-space.

However, in many extreme cases, incremental voting
operations shown in the above may cause poor performance
and some error detections. For example, while the density
of edge points is extremely high shown in Figure 1, some
spurious lines might be detected by the conventional Hough
transform. Thus, for achieving more precise lines detection,
other approaches have been proposed. In the following, we
describe a Hough transform algorithm based on gradient in-
formation proposed in [14]. This algorithm uses the gradient
magnitude to be the weight for accumulation of the voting
operations, and votes only for angles around the gradient
direction.

B. Gradient-based Hough transform

In the gradient-based Hough transform, lines detection is
performed for a gray-scale image, not a binary image. To
obtain the gradient information for a gray-scale image, we
use the Sobel filter. The Sobel filter is applied on the image
for approximating the vertical and horizontal derivatives
using a couple of3× 3 convolutionsGx andGy:

Gx =

[

1 0 −1
2 0 −2
1 0 −1

]

⊗ I, Gy =

[

1 2 1
0 0 0
−1 −2 −1

]

⊗ I, (2)

where I represents the input image and⊗ denotes the 2-
dimensional convolution operation. The two results con-



volved byGx andGy are approximations of the gradient for
horizontal and vertical of the image, respectively. At each
pixel in the image, the resulting gradient approximations
can be combined to obtain the gradient magnitude using the
formula:

G =

√

Gx
2 + Gy

2. (3)

We can also compute the gradient directionθ′ using

θ′ = tan−1(
Gy

Gx

). (4)

Based on the gradient direction obtained by the above,
we vote to the parameter space. However, there is an
error between local gradient direction and the direction of
actual lines due to the quantization error. Therefore, voting
operation is performed not only to the angle obtained by
the gradient direction, but also angles in the vicinity of it.
In our implementation, we introduce weighted valuesw that
depends on the angle as follows:

w(θ − θ′) =

{

2λ−|θ−θ′| |θ − θ′| ≤ λ

0 otherwise.
(5)

To be suitable for the compact FPGA implementation, we
use the weights as power-of-two numbers. Also, the voting
range is limited to[−λ, +λ] instead of the range[0, 179]
in the conventional Hough transform. The gradient-based
Hough transform is spelled out as follows:

[Gradient-based Hough Transform]
for y ← −n

2 + 1 to n
2

for x← −n
2 + 1 to n

2
ComputeG andθ′ for p[x][y]
for θ ← θ′ − λ to θ′ + λ do

begin
if θ < 0 thenθ ← θ + 180
ρ← x cos θ + y sin θ

v[θ][ρ]← v[θ][ρ] + G · w(θ − θ′)
end

Simply speaking, the gradient-based Hough transform votes
for each pixel of the gray-scale image with a weighted value
G·w(θ−θ′) which is proportional to the gradient magnitude.
The parameter space will be sharpened by such voting opera-
tions that make the accuracy higher. Our implementation for
the computation of the gradient direction and magnitude is
a pipelined architecture. In the following section, we show
the efficient implementations of the gradient-based Hough
Transform on the FPGA.

IV. OUR FPGA ARCHITECTURE FOR THEHOUGH

TRANSFORM

This section describes our FPGA architecture for the
gradient-based Hough transform using DSP slices and block
RAMs in Xilinx Virtex-7 Family FPGA XC7VX485T-2 as
the target device [26]. Figure 4 illustrates the outline of our
architecture. The details are described as follows.

A. Structure for the computation of gradient information

In our architecture, we use a3 × 3 Sobel filter to obtain
gradient information. Since we assume that input pixels are
given to the circuit in the raster scan order, we use a two-
lines buffer with block RAMs to provide pixels in each3×3
subimage to the filter. Our circuit computes the horizontal
and vertical derivative approximations using combinational
circuits as shown in Figure 5, wheredout2 , dout1 anddin

represent pixel values in the three lines of the input image,
respectively.

dout2

dout1

din

×1
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(a) Gx (b) Gy

Figure 5. Structure for the computation ofGx andGy

As mentioned before, the algorithm needs the gradient di-
rection and magnitude as shown in Section III. The formulae
include the computation of the square root and the inverse
tangent. Since it is difficult to compute them directly on the
circuit, we use the CORDIC IP provided by Xilinx [29].
The CORDIC IP provides a hardware module that is fully
pipelined architecture and available easily on the FPGA.

B. Structure for the computation of ρ and voting operation

Given the gradient directionθ′ and magnitudeG of each
pixel are obtained with a pipelined architecture, the circuit
computesρ and performs voting operation. Whenever the
gradient magnitudeG and the gradient directionθ′ of each
pixel are given, the two counters forx and y increment
appropriately.

We use DSP slices and block RAMs to computex cos(θ′−
λ), . . . , x cos(θ′+λ). The detail of each circuit that computes
x cos θ is shown in Figure 6. The circuit consists of one
DSP slice and one block RAM. Using the block RAM
as a look-up-table,cos θ is computed and the DSP slice
computes the product ofx and cos θ. We note that in our
implementation, since two circuits can share the two block
RAMs for the look-up-table with the dual port, we use
2λ + 1 DSP slices and⌈ 2λ+1

2 ⌉ block RAMs to compute
x cos(θ′ − λ), . . . , x cos(θ′ + λ). For simplicity, the sharing
is omitted in Figure 4 though it seems that every circuit that
computesx cos θ has one block RAM.

Also, to computey sin θ (1 ≤ θ ≤ 179), we use the fact
that since pixel data are input in raster scan order, the value
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Figure 4. The outline of our FPGA architecture for the gradient-based Hough transform (λ = 4)
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Figure 6. A DSP slice and a block RAM to computex cos θ

of y does not change while processing pixels are in a certain
row. Therefore, when pixels in a rowy are processed, we
pre-compute the values of(y+1) sin θ for (1 ≤ θ ≤ 179) in
the next row and store them into the registers. When pixels
in the next rowy + 1 are processed, the values are used.
Figure 7 illustrates our architecture to computeysinθ. We
utilize a block RAM as a look-up-table to computesinθ, and
one DSP slice to compute a product ofy and sin θ. Also,
we use two series of registers, called banks. One is used
to pre-compute the values ofy sin θ for the next row. The
other is used to output the already computedy sin θ for the



current processing row. To compute the values ofsin θ, we
successively generate the value ofθ = 179, 178, ...2, 1 by a
counter. By inputting them to the look-up-table, the values
of sin θ are obtained. The products ofy sin θ are computed
using a DSP slice. Note that the values ofy sin θ are for
the next row. Therefore, the value ofy is incremented in
advance. The obtained values are successively input to a
bank of registers. In each bank, registers are connected in
cascade as shown in the figure. The values shift one by one
until all the values are input to the bank. When pixels in a
row are finished, the banks are switched.

Figure 8 illustrates the architecture ofVθ using a block
RAM. Given gradient directionθ′ and magnitudeG, the
voted valueG ·w(θ−θ′) is computed, whereθ is a constant
value in eachVθ. Since in our implementation the value of
w(θ − θ′) is power of two shown in Section III, it can be
computed with a subtractor and a bit shifter. A block RAM
in the FPGA is dual port architecture. Xilinx Virtex-7 Family
has 36Kbit dual-port block RAMs, which have two sets of
ports operated independently. Two sets of ports are:

Port Set A ADDRA (ADDRess A),DOA (Data Output
A), DIA (Data Input A), and

Port Set B ADDRB (ADDRess B),DOB (Data Output
B), DIB (Data Input B).

Let M [i] denote a data of addressi of the block RAM. In
read operation of Port Set A,M [ADDRA] is output from
DOA after the rising clock edge. In write operation of Port
Set A, the data given toDIA is written in M [ADDRA] at
the rising clock edge. Read/write operations of Port Set B
are the same as Port Set A. Port Set A and Port Set B work
independently. In the block RAMs in the target device of
this work, read/write operations can be configured as either
RF (Read First) mode or WF (Write First) mode. In the RF
mode, if reading and writing operations are performed to
the same address, reading operation is performed before the
writing operation. Hence the reading data is the data before
writing data. On the other hand, in the WF mode, since the
writing performed before the reading, the reading data is
the updated data. However, when a dual port is used, there
is a restriction that if read and write operation to the same
address are performed for each port, the setting of block
RAMs must be RF [30].

We use the block RAM to store the values ofv[θ][ρ]
(− n√

2
< ρ ≤ n√

2
). Let vθ[i] denote a data of addressi

of the block RAM Vθ. Since ρ is given to its ADDRA,
vθ[ρ] is output from DOA after the rising clock edge as
illustrated in Figure 8. After that,vθ[ρ] + G · w(θ − θ′) is
computed and it is given toDIB. Sinceρ is given toADDB,
vθ[ρ] + G · w(θ − θ′) is written in vθ[ρ]. In other words,
vθ[ρ] ← vθ[ρ] + G · w(θ − θ′) is performed. At that time,
according to the restriction stated in the above, since the
same value ofρ may be input continuously, the setting of
block RAMs must be RF. Namely, when the same value of

ρ is input continuously, the former voted value is not read
from the block RAM. To avoid this situation, we use an
additional register to store the latest voted value and if the
same value ofρ is input continuously, the stored value is
used instead of the value read from the block RAM.

ADDRA

ADDRB

DIB

DOA
vθ[ρ]

ρ

G · w(θ − θ′)

G

ρ

+

<<

θ′

θ

−

Bit shift

=

Figure 8. A block RAMVθ to storev[θ][ρ]

In the following, when all the voting operations are com-
pleted, we utilize a maximum filter to output the final correct
identified straight lines. The maximum filter is defined as
the maximum of all pixels within a local region of an
image. In here, for each value in the voting space, this
filter copies the largest value from a3 × 3 region to it.
Figure 9 illustrates our architecture to perform a3 × 3
maximum filter to the voted results. Since the voted values
in the sameρ can be obtained fromV0, V1, . . . , V179, this
architecture works row by row in a pipeline fashion. To
perform a3 × 3 maximum filter to each value in a certain
row, it is concurrently read fromV0, V1, . . . , V179. After
that using comparators, local maxima of each 3 neighboring
votes in the row are obtained. These local maxima are input
to shift registers. After local maxima in the 3 rows are
computed, local maxima of each3 × 3 votes are obtained
by computing maxima from corresponding 3 values. If the
maximum equals to the original value of the center in the
corresponding3×3 votes, its(θ, ρ) that represents a probable
line is input to the shift registers and output through the
registers.

C. Data representation

The choice of data precision is guided by the implemen-
tation cost in terms of area, simplicity of design, speed
and power consumption. Higher precision will lead to less
quantization error in the final implementation. On the other
hand, lower precision will produce more compaction and
faster designs with less power consumption. A trade-off
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Figure 9. Pipeline architecture of3 maximum filter

choice needs to be made depending on the given application
and available FPGA resources.

In this paper, the data format of inputs are 8-bit integer
of all pixels in the gray-scale image and these values are
input in raster scan order. The coordinates(x, y) which are
necessary to computeρ are appropriately generated by the
counters as shown in Figure 4. In order to minimize chip
space and computation time, short fixed point representation
of numbers is used. Considering the structure of DSP slices
and block RAMs, we choose the data representation in
our implementation, as follows. The data format of inputs
that are values of pixelsp[x][y] is 8-bit integer. The data
format ofcos θ andsin θ is 16-bit fixed point number, which
consists of 1-bit sign, 1-bit integer and 14-bit fraction based
on two’s complement. On the other hand, the data formats
of gradient magnitudeG and gradient directionθ′ are 12-bit
and 8-bit integers, respectively. The data format ofρ is 10-
bit two’s complement integer. Since the range of the value
of θ is 0 to 179, the data format ofθ is 8-bit integer. The
data format of the voted value is 24-bit integer.

V. PERFORMANCEEVALUATION AND EXPERIMENTAL

RESULTS

We have implemented the proposed architecture for the
gradient-based Hough transform and evaluated it on the
Xilinx Virtex-7 FPGA XC7VX485T-2. Table I shows the
experimental results using Xilinx ISE 14.1.

In our implementation, the voted range of the gradient-
based Hough transform shown in Section III is set toλ = 4,
that is for local gradient directionθ′, we perform the voting
operation to the rangeθ′ − 4 ≤ θ ≤ θ′ + 4. The range
was obtained by our experiments. Due to the stringent page
limitation, we omit how to determine the range. However,
the range is enough to extract lines because the error between
the angle of lines obtained by the Sobel filter and the actual
angle is small [31].

Figure 10 shows the result of lines detection for the
conventional Hough transform and the gradient-based Hough
transform. Compared with the result of the conventional
Hough transform, we can see that the gradient-based Hough
transform obtained more correct lines and exclude the inex-
istent lines.

Let us evaluate the performance for ann × n gray-
scale image. In our implementation, the circuit can work
in fully pipelined fashion. Namely, input pixels can be
provided to the circuit clock by clock in raster scan order.
To reduce the delay of the circuit, some pipeline registers
are inserted into between circuit elements. It takes2n + 44
clock cycles to complete voting from the first input pixel
is given to its voting is finished. Since the input image
consists ofn2 pixels, the voting operations are performed in
n2 + 2n + 44 clock cycles, i.e.,n

2+2n+44
260.061 µs. After voting,√

2n + 188 clock cycles, i.e.,
√

2n+188
260.061 µs are necessary

to output identified straight lines with3 × 3 maximum
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Figure 10. Comparison between conventional and gradient-based Hough transform algorithms

filters. Therefore, in total,n2 + (
√

2 + 2)n + 232 clock
cycles, i.e.,n

2+(
√

2+2)n+232
260.061 µs are necessary to perform the

gradient-based Hough transform. If an input image of size
1000× 1000 is given, our circuit can detect straight lines in
3.859ms.

Table I
PERFORMANCE EVALUATION OF THE PROPOSED ARCHITECTURE FOR

THE GRADIENT-BASED HOUGH TRANSFORM

DSP48E1 slices (out of 2800) 13 (1%)
36Kbit block RAMs (out of 1030) 180 (17%)
18Kbit block RAMs (out of 2060) 8 (1%)
Slices (out of 607200) 80181 (13%)
Clock frequency [MHz] 260.061

For the purpose of estimating the speed up of our FPGA
implementation, we have also implemented a software ap-
proach of the gradient-based Hough transform using GNU
C. We have used Intel Xeon X7460 running in 2.66GHz
and 128GB memory to run the sequential algorithm for the
gradient-based Hough transform. For the image shown in
Figure 1(a) whose size is333 × 333, the software imple-
mentation can perform the gradient-based Hough transform
in 133.519ms. On the other hand, our circuit can perform it
in 431.660µs. Therefore, our FPGA implementation attains
a speed-up factor of more than309 over the sequential
implementation on the CPU.

There are a number of literatures reported to implement
Hough transform for lines using the FPGA shown in Sec-
tion I. Algorithms, that is conventional or gradient-based,
and performances such as device, logic blocks, DSP slices,

frequency and throughput are compared in Table II. It is
difficult to directly compare to other works because used
algorithms, utilized FPGAs and supported size of images
differ. Considering the throughput, however, it is clear that
the performance of our FPGA implementation is better than
that of other works.

VI. CONCLUSIONS

We have presented an efficient implementation of the
gradient-based Hough transform for gray-scale images us-
ing DSP slices and block RAMs in the Virtex-7 Family
FPGA. We have implemented the circuit using 13 DSP48E1
slices, 180 block RAMs with 36Kbits and 8 block RAMs
with 18Kbits on the Virtex-7 Family FPGA XC7VX485T-2.
The experimental results show that the architecture runs in
260.061MHz and for ann×n gray-scale image, our circuit
can perform inn2 + (

√
2 + 2)n + 232 clock cycles, i.e.,

n2+(
√

2+2)n+232
260.061 µs, including the computation of gradient

information.

REFERENCES

[1] Xilinx Inc., 7 Series FPGAs DSP48E1 Slice (v1.6), 2013.

[2] J. L. Bordim, Y. Ito, and K. Nakano, “Accelerating the CKY
parsing using FPGAs,”IEICE Transactions on Information
and Systems, vol. E86-D, no. 5, pp. 803–810, May 2003.

[3] ——, “Instance-specific solutions to accelerate the CKY pars-
ing for large context-free grammars,”International Journal on
Foundations of Computer Science, pp. 403–416, 2004.



Table II
COMPARISON WITH RELATED WORKS FORHOUGH TRANSFORM

Deng [20] Lee [21] Previous work [27] Previous work [28] Karabernou [19] This work
Hough transform Conventional Conventional Conventional Conventional Gradient-based Gradient-based
Device XC4010XL Virtex 4 XC6VLX240T-1 XC6VLX240T-1 XC4010EPC84 XC7VX485T-2
Logic blocks 333 CLBs 314 CLBs 14493 Slices 40487 Slices 205 CLBs 82673 Slices
DSP slices — — 178 DSP48E1s 90 DSP48E1s — 13 DSP48E1s
Frequency 40MHz 132MHz 245.519MHz 247.525MHz 23.166MHz 260.061MHz
Throughput 0.623Mpixel/s 32.768Mpixel/s 245.428Mpixel/s 247.430Mpixel/s 10.368Mpixel/s 263.979Mpixel/s

[4] Y. Ito and K. Nakano, “Efficient exhaustive verification of
the Collatz conjecture using DSP blocks of Xilinx FPGAs,”
International Journal of Networking and Computing, vol. 1,
no. 1, pp. 49–62, 2011.

[5] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor
core approach for CRT-based RSA decryption,”International
Journal of Networking and Computing, vol. 2, no. 1, pp. 56–
78, 2012.

[6] K. Nakano and E. Takamichi, “An image retrieval system us-
ing FPGAs,”IEICE Transactions on Information and Systems,
vol. E86-D, no. 5, pp. 811–818, May 2003.

[7] K. Nakano and Y. Yamagishi, “Hardware n choose k counters
with applications to the partial exhaustive search,”IEICE
Trans. on Information & Systems, 2005.

[8] Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation
for neural networks with the FDFM processor core approach,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 28, no. 4, pp. 308–320, 2012.

[9] Y. Ago, K. Nakano, and Y. Ito, “A classification processor
for a support vector machine with embedded DSP slices
and block RAMs in the FPGA,” inProc. of the IEEE
7th International Symposium on Embedded Multicore SoCs,
2013, pp. 91–96.

[10] K. Hashimoto, Y. Ito, and K. Nakano, “Tempate matching
using DSP slices on the FPGA,” inProc. of International
Symposium on Computing and Networking, 2013, pp. 338–
344.

[11] P. V. C. Hough, “Method and means for recognizing complex
patterns,” U.S. Patent 3,069,654, 1962.

[12] R. O. Duda and P. E. Hart, “Use of the Hough transformation
to detect lines and curves in pictures,”Communications of the
ACM, vol. 15, no. 1, pp. 11–15, 1972.

[13] J. Illingworth and J. Kittler, “A survey of the Hough trans-
form,” Computer Vision, Graphics, and Image Processing,
vol. 44, no. 1, pp. 87–116, 1988.

[14] F. O’Gorman and M. Clowes, “Finding picture edges through
collinearity of feature points,”Computers, IEEE Transactions
on, vol. C-25, no. 4, pp. 449–456, 1976.

[15] M. S. Nixon and A. S. Aguado,Feature Extraction and Image
Processing, 2nd ed. Academic Press, 2008.

[16] S. Tagzout, K. Achour, and O. Djekoune, “Hough transform
algorithm for FPGA implementation,”Signal Processing,
vol. 81, no. 6, pp. 1295–1301, 2001.

[17] H. Bessalah, S. Seddiki, F. Alim, and M. Bencherif, “On line
mode incremental Hough transform implementation on Xilinx
fpga’s,” in Proc. of the 8th conference on Signal, Speech and
image processing, 2008, pp. 176–179.

[18] O. Djekoune and K. Achour, “Incremental Hough transform:
an improved algorithm for digital device implementation,”
Real-Time Imaging, vol. 10, no. 6, pp. 351–363, 2004.

[19] S. M. Karabernou and F. Terranti, “Real-time FPGA imple-
mentation of Hough transform using gradient and CORDIC
algorithm,” Image and Vision Computing, vol. 23, no. 11, pp.
1009–1017, 2005.

[20] D. D. S. Deng and H. ElGindy, “High-speed parameterisable
Hough transform using reconfigurable hardware,” inProc.
of the Pan-Sydeny area workshop on Visual information
processing, vol. 11, 2001, pp. 51–57.

[21] P. Lee and A. Evagelos, “An implementation of a multiplier-
less Hough transform on an FPGA platform using hybrid-log
arithmetic,” in Proc. of Real-Time Image Processing 2008,
vol. 6811, 2008, pp. 68 110G–1.

[22] Xilinx Inc., Virtex-4 FPGA User Guide(v2.6), 2008.

[23] ——, Virtex-5 FPGA User Guide(v5.2), 2009.

[24] ——, Virtex-6 Family Overview(v2.4), 2012.

[25] Altera Corp.,Stratix V Device Handbook, 2012.

[26] Xilinx Inc., 7 Series FPGAs Overview (v1.14), 2013.

[27] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, “Implemen-
tations of the Hough transform on the embedded multicore
processors,”International Journal of Networking and Com-
puting, vol. 4, no. 1, pp. 174–188, 2014.

[28] X. Zhou, Y. Ito, and K. Nakano, “An efficient implementation
of the Hough transform using DSP slices and block RAMs
on the FPGA,” in IEEE 7th International Symposium on
Embedded Multicore SoCs, 2013, pp. 85–90.

[29] Xilinx Inc., LogiCORE IP CORDIC v6.0, 2013.

[30] ——, 7 Series FPGAs Memory Resources (v1.10), 2014.

[31] E. R. Davies, “Circularity – a new principle underlyingthe
design of accurate edge orientation operators,”Image and
Vision Computing, vol. 2, no. 3, pp. 134–142, 1984.


