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Abstract—The Discrete Memory Machine (DMM) and the
Unified Memory Machine (UMM) are theoretical parallel
computing models that capture the essence of the shared
memory access and the global memory access of GPUs. The
main contribution of this paper is to introduce the Hierarchical
Memory Machine (HMM), which consists of multiple DMMs
and a single UMM. The HMM is a more practical parallel
computing model which reflects the architecture of current
GPUs. We present several fundamental algorithms on the
HMM. First, we show that the sum of � numbers can be
computed in �� �

�
� ��

�
� �� ��� �� time units using � threads

on the HMM with width � and latency �, and prove that
this computing time is optimal. We also show that the direct
convolution of � and � � � � � numbers can be done in
�� �

�
� ��

��
� ��

�
� � � ����� time units using � threads on

the HMM with � DMMs, width �, and latency �. Finally, we
prove that our implementation of the direct convolution is time
optimal.

Keywords-parallel computing models, memory machine mod-
els, convolution, GPU, CUDA

I. INTRODUCTION

A. Background

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3]. Latest GPUs are de-
signed for general purpose computing and can perform
computation in applications traditionally handled by the
CPU. Hence, GPUs have recently attracted the attention of
many application developers [1], [4], [5]. NVIDIA provides
a parallel computing architecture called CUDA (Compute
Unified Device Architecture) [6], the computing engine for
NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are
more efficient than multicore processors [7], since they
have hundreds of processor cores and very high memory
bandwidth.

CUDA uses two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [6]. The
shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-64 Kbytes. The global memory is
implemented as an off-chip DRAM, and has large capacity,
say, 1.5-6 Gbytes, but its access latency is very long. The
efficient usage of the shared memory and the global memory

is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank
conflict of the shared memory access and the coalescing
of the global memory access [2], [5], [7], [8]. The address
space of the shared memory is mapped into several physical
memory banks. If two or more threads access the same
memory banks at the same time, the access requests are
processed in turn. Hence, to maximize the memory ac-
cess performance, threads of CUDA should access distinct
memory banks to avoid the bank conflicts of the memory
accesses. To maximize the bandwidth between the GPU and
the DRAM chips, the consecutive addresses of the global
memory must be accessed at the same time. Thus, CUDA
threads should perform coalesced access when they access
the global memory.

There are several previously published works that aim to
present theoretical practical parallel computing models cap-
turing the essence of parallel computers. Many researchers
have been devoted to developing efficient parallel algorithms
to find algorithmic techniques on such parallel computing
models. For example, processors connected by interconnec-
tion networks such as hypercubes, meshes, trees, among
others [9], bulk synchronous models [10], LogP models [11],
reconfigurable models [12], among others. As far as we
know, no sophisticated and simple parallel computing model
for GPUs has been presented. Since GPUs are attractive
parallel computing devices for many developers, it is chal-
lenging work to introduce a theoretical parallel computing
model for GPUs.

B. Memory Machine Models

In our previous paper [13], we have introduced two
models, the Discrete Memory Machine (DMM) and the
Unified Memory Machine (UMM), which reflect the essential
features of the shared memory and the global memory of
NVIDIA GPUs. The outline of the architectures of the DMM
and the UMM is illustrated in Figure 1. In both architectures,
a sea of threads (Ts) are connected to the memory banks
(MBs) through the memory management unit (MMU). Each
thread is a Random Access Machine (RAM) [14], which
can execute fundamental operations in a time unit. We
do not discuss the architecture to implement the sea of
threads, but we can imagine that it consists of a set of



multi-core processors which can execute multiple threads
in parallel. Threads are executed in SIMD [15] fashion, and
the processors run on the same program and work on the
different data.

MBs constitute a single address space of the memory. A
single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
� is stored in the �� ��� ��-th bank, where � is the number
of MBs. The main difference of the two architectures is the
connection of the address line between the MMU and the
MBs, which can transfer an address value. In the DMM, the
address lines connect the MBs and the MMU separately,
while a single address line from the MMU is connected to
the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of the
MBs can be accessed in each time unit. On the other hand,
different addresses of the MBs can be accessed in the DMM.
Since the memory access of the UMM is more restricted than
that of the DMM, the UMM is less powerful than the DMM.
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Figure 1. The architectures of the DMM and the UMM

The performance of algorithms of the PRAM is usually
evaluated using two parameters: the size � of the input and
the number � of processors. For example, it is well known
that the sum of � numbers can be computed in �� �

�
������

time on the PRAM [16]. We will use four parameters, the
size � of the input, the number � of threads, the width
� and the latency � of the memory when we evaluate the
performance of algorithms on the DMM and on the UMM.
The width � is the number of memory banks and the latency
� is the number of time units to complete the memory
access. These parameters are used when we evaluate the
performance of algorithms on the DMM and the UMM. For
example, we have shown in [17] that the prefix-sums of
� numbers can be computed in �� �

�
� ��

�
� � ����� time

units. In NVIDIA GPUs, the width � of global and shared
memory is 32. Also, the latency � of the shared memory is 1
or 2 clock cycles while that of the global memory is several

hundred clock cycles. In CUDA, a grid can have at most
65535 blocks with at most 1024 threads each [6].

Since the memory machines are promising as computing
models for GPUs, we have published several efficient algo-
rithms on the DMM and the UMM [17], [18], [19]. For ex-
ample, in our previous paper [13], we have presented offline
permutation algorithms on the DMM and the UMM. We also
implemented the offline permutation algorithm on the DMM
and showed that theoretical analysis of the performance on
the DMM provides very good approximation of the CUDA C
implementation of offline permutation algorithm [19]. This
fact implies that the DMM is a good theoretical model for
computation using the shared memory on GPUs.

C. Our Contribution: The Hierarchical Memory Machine
Model and Fundamental Parallel Algorithms

The DMM and the UMM are good theoretical model of
computation performed by a single streaming multiprocessor
(SM) on the GPU. Algorithms on the DMM and the UMM
correspond to the computation using the shared memory
and the global memory of GPUs, respectively. However,
since GPUs have multiple SMs, we need to develop a new
parallel computing model that supports multiple SMs on the
GPUs. The main contribution of this paper is to introduce
the Hierarchical Memory Machine (HMM), which consists
of multiple DMMs and a single UMM. The HMM is a
more practical parallel computing model that reflects the
architecture of GPUs. Figure 2 illustrates the architecture
of the HMM. The HMM consists of � DMMs and a single
UMM. Each DMM has � memory banks and the UMM
also has � memory banks. We call the memory banks of
each DMM the shared memory and those of the UMM the
global memory. Each DMM can work independently and can
perform the computation using its shared memory. Also, all
threads of DMMs work as a single UMM and can access to
the global memory. Since the shared memory and the global
memory of NVIDIA GPUs have latency 1-2 clock cycles
and several hundred clock cycles, we assume that those of
the HMM is 1 and �. In other words, we use parameter �
to represent the global memory access latency. Hence, the
performance of algorithms on the HMM can be evaluated
as a function of � (the size of a problem), � (the number of
DMMs), � (the total number of threads), � (the width (i.e
the number of memory banks) of the global memory and
the shared memory), and � (the latency of a memory).

Although current GPUs have many features, the HMM
mainly focuses on the memory access. It may be possible
to incorporate all other features of GPUs and to introduce a
more exact parallel computing model for GPUs. However,
if all features of GPUs are incorporated in theoretical
parallel models, they will be too complicated and need
more parameters. The development of algorithms on such
complicated models may have too much non-essential and
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Figure 2. The architecture of Hierarchical Memory Machine Model(HMM)

tedious optimizations. Thus, we focus on just memory access
on the current GPUs, and introduce the HMM.

The second contribution of this paper is to evaluate the
performance of fundamental algorithms on the HMM and
prove their time optimality. We show parallel implementa-
tions of two problems, the sum and the convolution. The sum
is a problem to compute the sum �	
���	��� � � ���	����
for a given array � of size �. In the convolution problem
two arrays 	 of length 
 and � of length 
 � � � � are
given. It requires to compute an array � of length � such that
�	�� 
 		
� ��	���		�� ��	����� � � ��		
��� ��	��
���
for all � (
 � � � �� �). From the practical point of view,
we assume that 
� �. Clearly, naive sequential algorithms
can compute the sum in ���� time and the convolution in
��
�� time. Although an FFT-based convolution algorithm
can compute the convolution in 
�
�� time, we focus on
the direct convolution algorithm that compute each �	��
independently, for the purpose of clarifying the computing
power of the HMM.

It is well known that the sum of � numbers can be
computed in �� �

�
� ����� time using � processors on the

PRAM [16]. Also, using this algorithm, it is not difficult to
show that the direct convolution of 
 and 
���� numbers
can be done in ����

�
� ���
� time using � processors

on the PRAM. We can see the time optimality of these
algorithms. Clearly, the sum involves �� � additions. Since
� processors can perform � additions in a time unit, �� �

�
�

time is necessary to compute the sum using � processors.
Also, any rooted binary tree of � leaves has a path from
the root to a leaf with at least ���� internal nodes. Since
the computation of the sum is represented by a rooted
binary tree of � leaves, it takes at least ������� time to
compute the sum on the PRAM. Thus, the computation

of the sum has two lower bounds: �� �
�
�-time speed-up

limitation, and �������-time reduction limitation. Since
the direct convolution involves 
� multiplications and �

processors can perform � multiplications in a time unit, it
has ����

�
�-time speed-up limitation. Also, the computation

of each �	�� needs 
�� additions and thus, it has �����
�-
time reduction limitation.

Our second contribution is to show that the sum can
be computed in �� �

�
� ��

�
� � � ����� time units on the

HMM. We also show that the direct convolution can be
done in �� �

�
� ��

��
� ��

�
� � � ���
� time units on the

HMM. Although optimal parallel algorithms for the sum
and the direct convolution on the PRAM are trivial, those
for the HMM are complicated and not trivial. We also prove
that these implementations are time optimal. More specifi-
cally, the sum computation on the HMM has �� �

�
�-time

bandwidth limitation, �� ��
�
� ��-time latency limitation, and

�����
�-time reduction limitation. The direct convolution
has �� �

�
�-time bandwidth limitation, ����

��
�-time speed-up

limitation, ����
�
� ��-time latency limitation, and �����
�-

time reduction limitation. Table I summarizes the computing
time of the sum and the direct convolution on each models.

Table II summarizes the lower bound of the computing
time for the sum and the direct convolution on each model.
Each lower bound is the sum of the speed-up limitation,
the bandwidth limitation, the latency limitation, and the
bandwidth limitation. From this table, we can confirm that
the computing time shown in Table I is time optimal.

This paper is organized as follows. In Section II, we
review the DMM and the UMM presented in our previous
papers [13], [20], that capture the essence of the shared
memory access and the global memory access of GPUs. Sec-
tion III introduces the HMM, which reflects the architecture



Table I
THE COMPUTING TIME OF THE SUM AND THE DIRECT CONVOLUTION ON EACH MODEL

Sequential PRAM DMM and UMM HMM
Sum ���� ���

�
� ��� �� �� �

�
� ��

�
� � ��� �� �� �

�
� ��

�
� �� ��� ��

Direct convolution ����� ����
�

� ����� ����
�

� ���
�

� � ����� �� �
�

� ��
��

� ��
�

� �� �����

�: #processors or #threads, �: width, �: latency, �: #DMMs

Table II
THE LOWER BOUND OF THE COMPUTING TIME FOR THE SUM AND THE DIRECT CONVOLUTION ON EACH MODEL

PRAM DMM and UMM HMM
Speed-up limitation ���

�
� ���

�
� ���

�
�

Sum Bandwidth limitation ���
�
� �� �

�
� �� �

�
�

Latency limitation - ����
�

� �� ����
�

� ��

Reduction limitation ����� �� ��� ��� �� ����� ��
Speed-up limitation ����

�
� ����

�
� ����

��
�

Direct Bandwidth limitation ���
�
� �� �

�
� �� �

�
�

convolution Latency limitation - �����
�

� �� ����
�

� ��

Reduction limitation ������� ��� ����� �������

of current GPUs. In Section IV, we evaluate the performance
of contiguous memory access on the memory machine
models, which is a key ingredients of parallel algorithms on
the memory machine models. Section V reviews sequential
algorithms and PRAM algorithms for the sum and the direct
convolution. In Sections VI and VII, we present parallel
summing algorithms on the DMM/UMM, and the HMM,
respectively. They also prove the time optimality of parallel
summing algorithms. Sections VIII and IX show parallel
convolution algorithms on the DMM/UMM, and the HMM,
respectively and prove their optimality. Section X concludes
our work.

II. PARALLEL MEMORY MACHINES: DMM AND UMM

The main purpose of this section is to define the Discrete
Memory Machine (DMM) and the Unified Memory Machine
(UMM) introduced in our previous paper [13]. The reader
should refer to [13], [17] for the details of the DMM and
the UMM.

We first define the Discrete Memory Machine (DMM) of
width � and latency �. Let 
	�� (� � 
) denote a memory
cell of address � in the memory. Let �	�� 
 �
	���
	� �
���
	� � ����
	� � ���� � � �� (
 � � � � � �) denote the
�-th bank of the memory. Clearly, a memory cell 
	�� is in
the �� ��� ��-th memory bank. We assume that memory
cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in
a time unit. Also, we assume that � time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU. Thus,
it takes � � � � � time units to complete memory access
requests to � memory cells in a particular bank. However, we
assume that multiple memory access requests destined for

the same address in the same bank have no extra overhead.
For example, if two or more threads read from the same
address, it can be read at the same time. Also, if two or more
threads write in the same address, one of them is arbitrary
selected and succeeds in writing.
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Figure 3. Banks and address groups for � � 	

We assume that � threads are partitioned into �
�

groups
of � threads called warps. More specifically, � threads
� �
�, � ���, � � �, � �� � �� are partitioned into �

�
warps

� �
��� ���, � � �, � � �
�
� �� such that � ��� 
 �� �� �

���� �� � � � ��� � � � �� ���� �� � � � ��� (
 � � � �
�
� �).

Warps are dispatched for memory access in turn, and �

threads in a warp try to access the memory at the same time.
In other words, � �
��� ���� � � � �� � �

�
� �� are dispatched

in a round-robin manner if at least one thread in a warp
requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access. When � ��� is dispatched, � threads in � ��� send
memory access requests, at most one request per thread, to
the memory. We also assume that a thread cannot send a new



memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory
access request, it must wait at least � time units to send a
new memory access request.

We next define the Unified Memory Machine (UMM for
short) of width � as follows. Let �	�� 
 �
	� � ���
	� �
� � ��� � � � �
	�� � �� � � � ��� denote the �-th address
group. We assume that memory cells in the same address
group are processed at the same time. However, if they are
in the different groups, one time unit is necessary for each
of the groups. Also, similarly to the DMM, � threads are
partitioned into warps and each warp accesses the memory
in turn.

III. THE HIERARCHICAL MEMORY MACHINE MODEL

(HMM)

This section is devoted to present the Hierarchical Mem-
ory Machine Model (HMM), a more realistic parallel ma-
chine model that capture the architecture of GPUs.

The HMM consists of � DMMs and a single UMM as
illustrated in Figure 2. Each DMM has � memory banks and
the UMM also has � memory banks. We call the memory
banks of each DMM the shared memory and those of the
UMM the global memory.

Each DMM works independently. Threads are partitioned
into warps of � threads, and each warp are dispatched for
the memory access in turn. We also assume that threads
can access the global memory of the UMM. A warp of �
threads in a DMM can send memory access requests to the
global memory. Figure 2 illustrates the architecture of the
HMM with � 
 � DMMs. Each DMM and the UMM has
� 
 � memory banks. The shared memory of each DMM
and the global memory of the UMM correspond to “the
shared memory” of each streaming multiprocessor and “the
global memory” of GPUs. Since “the shared memory” of
existing GPUs has latency 1 or 2 clock cycles and [6], it is
reasonable to assume that the memory access latency of the
shared memory of the DMM is 1. Also, since the latency of
“the global memory” in the GPUs is several hundred clock
cycles [6], it makes sense to use parameter � for the global
memory access of the HMM.

The global memory can handle memory access requests
by warps in turn. The memory access requests by warps
are processed by a pipeline fashion. Since memory access
latency is �, it takes � time units to complete the memory
access if all memory access requests by the warp is in
the same address group. If they are separated in the �

address groups, the memory access takes � � � � � time
units. Figure 4 illustrates how memory access requests to
the global memory with latency � 
 � and � 
 �. In the
figure, two warps � ��� and � ��� are trying to access
the global memory. These two warps can be in the same
DMM or different DMMs. We can consider that we have
an imaginary �-stage pipeline with � registers each to store
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Figure 4. An example of global memory access of the HMM

memory access requests. Note that the �-stage pipeline is
imaginary, actual implementation should use NoC (Network-
on-Chip) technologies. One of the warps is dispatched for
the global memory access and the memory access requests
are queued. If the memory access requests by a warp are
separated in � address groups, they occupy � pipeline stages.
For example, the memory access requests of � ��� are
separated in 3 address groups, they use 3 stages. Those of
� ��� are in the same address group, they occupy 1 stage.
Thus, the memory access requests by � ��� and � ��� in
the Figure are completed in ������ � 
 � clock cycles.

Recall that algorithms on the DMM and the UMM
are evaluated using four parameters, the size � of the
input, the total number � of threads over all DMMs, the
width � and the latency � of the memory. In addition,
we the number � of DMMs when we evaluate the perfor-
mance of algorithms on the HMM. For later reference, let
����
��������� � � � ������� �� denote � DMM’s in
the HMM and �	��� denote the �-th (
 � � � �	) thread of
������, where �	 is the number of threads running on the
������. Also, let � 
 �� � �� � � � �� ����.

For the reader’s benefit, we will show how large the values
of �, �, � and � of a typical existing GPU are. NVIDIA
GeForce GTX580 [21] with CUDA compute capability
2.X [6] has � 
 �� streaming multiprocessors with 32
cores each, and thus, it has 512 cores totally. Each warp
has � 
 �� threads and each streaming multiprocessor
has the shared memory of size up to 48KB arranged in



� 
 �� memory banks. Each streaming processor can load
and run up to 48 (resident) warps with up to � 	 � ����
threads although it can run more (logical) warps by a time
sharing manner. Hence, all streaming processors can run
up to 768 warps with � � ����� threads. Further, the
latency � of the global memory is several hundred clock
cycles and the size of the shared memory is up to 48KB
while that of the global memory is 2GB. Therefore, GeForce
GTX580 corresponds to the HMM with � 
 �� DMMs
with warp � 
 ��. Also, � can be up to 24576. Note
that, parameters �, �, and � are fixed values of the HMM.
However, each �	 and � are variable such that �	 � ����
and � � �����. However, since a warp of � threads are
executed at the same time in a streaming multiprocessors,
it makes sense to assume �	 � �. Thus, when we use all
streaming multiprocessors (i.e. DMMs), it is reasonable to
assume that � 
 �� � �� � � � �� ���� � ��.

IV. CONTIGUOUS MEMORY ACCESS ON THE DMM AND

THE UMM

The main purpose of this section is to review the con-
tiguous memory access on the DMM and the UMM shown
in [13], [17].

The contiguous memory access is a key technique for
accelerating the computation. Suppose that an array � of size
� (� �) is given. We use � threads to access all of � memory
cells in � such that each thread accesses �

�
memory cells.

Note that “accessing” can be “reading from” or “writing in.”
Let �	�� (
 � � � � � �) denote the �-th memory cells in
�. When � � �, the contiguous access can be performed as
follows:

[Contiguous memory access]
for �� 
 to �

�
� � do

for �� 
 to �� � do in parallel
� ��� access �	� � �� ��

Let us evaluate the computing time. First, we assume that
� � � � �. For each � (
 � � � �

�
� �), � threads access

� memory cells �	���� �	�� � ��� � � � � �	��� � �� � ��. This
memory access is performed by �

�
warps in turn. More

specifically, first, � threads in � �
� access �	���� �	�� �
��� � � � � �	��� � � ��. After that, � threads in � ��� access
�	��� ��� �	��� � � ��� � � � � �	��� �� � ��, and the same
operation is repeatedly performed. In general, � threads in
� ��� (
 � � � �

�
� �) access �	�� � ���� �	�� � �� �

��� � � � � �	������������. Since � memory cells accessed
by a warp are in different banks, the access can be completed
in � time units on the DMM. Also, these � memory cells
are in the same address group, and thus, the access can
be completed in � time units on the UMM. Recall that the
memory access are processed in pipeline fashion such that
� threads in each � ��� send � memory access requests
in one time unit. Hence, � threads in �

�
warps send �

memory access requests in �
�

time units. After that, the last

memory access requests by � � �
�
� �� are completed in

� � � time units. Thus, � threads access � memory cells
�	���� �	�� � ��� � � � � �	��� � �� � �� in �

�
� � � � time

units. Since this memory access is repeated �
�

times, the
contiguous access can be done in �

�
�� �
�
����� 
 �� �

�
� ��

�
�

time units.
Next, let us consider the case that � � �. If this is the case

� threads is in a single warp. This warp performs memory
access �

�
times each of which takes � time units. Thus, the

contiguous access can be done in �
�
� � 
 ����

�
� time.

Finally, let us consider the case that � � �. If this is the
case � threads out of � threads are used. Since we have �

�

warps, the memory access takes �
�
� � � � time units.

Therefore, we have,
Lemma 1: The contiguous memory access to an array of

size � can be done in �� �
�
� ��

�
� �� time using � threads

on the DMM and the UMM with width � and latency �.
We can generalize the contiguous memory access such

that memory access are performed for several arrays. Let
��� ��� � � � � �
�� be � arrays of size ��� ��� � � � � �
�� each.
Suppose that � threads access each of ��� ��� � � � � �
�� in
turn. The readers should not have difficulty to confirm that
if � � �

�
, the contiguous memory access to all � arrays can

be done in �� �
�
� ��

�
� �� time units. Thus, we have,

Theorem 2: The contiguous memory access to at most �
�

arrays of total size � can be done in �� �
�
� ��

�
� �� time

using � threads on the DMM and the UMM with width �

and latency �.

V. SEQUENTIAL AND PARALLEL ALGORITHMS FOR THE

SUM AND THE DIRECT CONVOLUTION

The main purpose of this section is to define the sum and
the direct convolution and to show optimal sequential and
parallel algorithms.

Let � be an array of size �. The sum problem is a problem
to compute the sum �	
� � �	�� � � � � � �	� � ��. It should
be clear that a sequential algorithm can compute the sum in
���� time.

Let 	 and � be two arrays of size 
 and ��
��. Also,
let � be an array of size �. The convolution of 	 and � is a
problem to compute � such that �	�� 
 		
� ��	���		�� ��	��
�� � � � �� 		
� �� � �	��
� �� for all � (
 � � � �� �).
In this paper, we assume that 
� �. The convolution can
be computed by evaluating each �	�� independently. We call
such convolution the direct convolution, which takes ��
��
time. From theoretical point of view, the convolution can
be done faster using an FFT based technique. However, it
has a large constant factor in computing time, especially
for small 
. Also, the main goal of this paper is to clarify
the computing power of the HMM. Thus, we focus on the
direct convolution, which is much simpler than the FFT-
based convolution.

For the readers benefit, we will review that the PRAM can
compute the sum of � numbers in �� �

�
� ����� time using



� processors. Please see [22], [23] for the details. We first
show that the sum can be computed in ����� �� time using
�
� processors. The sum can be computed by repeating the
computation of pair-wise sums as illustrated in Figure 5. Let
� be an array of � 
 �� numbers. The details are spelled
out as follows:

[Parallel summing algorithm]
for �� 
� � downto 0 do
for �� 
 to �� � � do in parallel
�	��� �	�� � �	�� ���

The reader should have no difficulty to confirm that the sum
can be computed in ������� time.

Figure 5. Illustrating the summing algorithm for � numbers

Suppose that we have � (� �) processors. If this is the
case, we partition the input into � groups of �

�
numbers

each and compute the sum of each group in �� �
�
� time.

After that, the sum of the sums can be computed using the
parallel algorithm illustrated in Figure 5 in ����� �� time.
Thus, from �� �

�
� ��� �� 
 ���

�
� �����, we have,

Lemma 3: The sum of � numbers can be computed in
���

�
� ����� time using � processors on the PRAM.

Next, we will show that the direct convolution can be
done in ����

�
� time using � processors on the PRAM.

First, assume that � � �. We partition � processors into
� groups of �

�
processors each. Each �	�� (
 � � � � � �)

is computed using �
�

processors. The computation of �	��
involves 
 multiplications. This can be done in �

�

�


 ��
�

time. After that the sum of 
 numbers can be computed in
����

�

� ���
� 
 ����
�

� ���
� time using �
�

processors.
Thus, the direct convolution can be done in �� ��

�
����
�

time.
If � � �, then we partition array � into � groups of �

�

elements in �. The values of �
�

elements are computed using
a single processor. Since each � can be computed in ��
�
time using a single processor, �

�
elements can be computed

in ����
�
� time. Thus, we have,

Lemma 4: The direct convolution of 
 and 
 � � � �
numbers can be done in ����

�
� ���
� time using �

processors on the PRAM.

As we have discussed, we can prove that algorithm for
Lemmas 3 and 4 are time optimal. The sum algorithm on
the PRAM has ���

�
�-time speed-up limitation and �������-

time reduction limitation. Also, the direct convolution has
����

�
�-time speed-up limitation and �����
�-time reduc-

tion limitation.

VI. AN OPTIMAL PARALLEL ALGORITHM FOR

COMPUTING THE SUM ON THE DMM AND THE UMM

The main purpose of this section is to review an optimal
parallel algorithm for computing the sum on the memory
machine models [17].

The sum can be computed by the PRAM algorithms
shown for Lemma 3. We assume that � threads is used to
compute the sum. For each � (
 � � � 
��), �� operations
“�	�� � �	�� � �	� � ���” are performed. These operation
involve the following memory access operations:

� reading from �	
�� �	��� � � � � �	�� � ��,
� reading from �	���� �	�� � ��� � � � � �	� � �� � ��, and
� writing in �	
�� �	��� � � � � �	�� � ��,

Since these memory access operations are contiguous, they
can be done in �� �

�

�
� ���

�
� �� time using � threads both on

the DMM and on the UMM with width � and latency � from
Theorem 2. Thus, the total computing time is

����
��� �� �

�

�
�

���
�
� �� 
 �� �

�

�
� ���

�
� �
� 
 �� �

�
� ��

�
� � ����� and

we have,
Lemma 5: The sum of � numbers can be computed in

�� �
�
� ��

�
� � ����� time units using � threads on the DMM

and on the UMM with width � and latency �.
As we have shown in our previous paper [17], the sum-

ming algorithm for Lemma 5 is optimal. The computing
time is the sum of the three lower bounds, �� �

�
�-time

bandwidth limitation, �� ��
�
�-time latency limitation, and

��� �����-time reduction limitation. Let us briefly explain
these limitations. Since � numbers in � memory banks must
be read at least once, �� �

�
� time is necessary. Also, each

thread can read at most one number in � time units. Thus, �
threads can read ��

�
numbers in � time units. Since ��

�
� �

must be satisfied, we have � � ��
�

. We use similar discussion
for �������-time reduction limitation on the PRAM. Since
each internal node of the rooted tree takes � time units to
compute the sum, at least ��� ����� time is necessary to
compute the sum.

VII. AN OPTIMAL PARALLEL ALGORITHM FOR

COMPUTING THE SUM ON THE HMM

This section is devoted to show an optimal summing
algorithm on the HMM. We assume that an input array � of
� numbers are stored in the global memory.

The summing algorithm for Lemma 5 can be used to
compute the sum using the global memory on the HMM.
In other words, the sum of � numbers can be computed
in �� �

�
� ��

�
� � ����� time units using � threads on the

HMM width � and latency �. We first show a straightforward



algorithm that uses only �� threads on ����
� of the
HMM. The resulting algorithm runs in �� �

�
� ��

��
� �����

time units. Thus, the computing time is improved when
� 
 ��.

We can think that the input array � is a 2-dimensional
array with �� columns and �

��
rows. First, each of the ��

threads in the ����
� is assigned to a column of � and
computes the column-wise sum. Let �	
�� �	��� � � � � �	�� � ��
denote the � column-sums thus obtained. After that, the sum
of � is computed by the algorithm for Lemma 5 on the
����
�. The details of the algorithm are spelled out as
follows:

[Straightforward Summing algorithm on the HMM]
for �� 
 to �

��
� � do

for �� 
 to �� � � do in parallel
�	��� �	�� � �	��	��

����
� computes the sum �	
� � �	�� � � � �� �	�� � ��

Let us evaluate the computing time. The readers should
have no difficulty to confirm that the computation of the
column-wise sums performs the contiguous read. Thus, the
column-wise sums can be computed in �� �

�
� ��

��
� time

units from Theorem 2. After that, the sum of them can be
computed in �� ��

�
� ����

��
�� � ��� ��� 
 ����

�
���� ��� time

units from Lemma 5. Therefore, the total computing time is
�� �

�
� ��

��
� �������

�
���� ��� 
 �� �

�
� ��

��
� ����� ��� 


�� �
�
� ��

��
� � � �����, and we have,

Lemma 6: The sum of � numbers can be computed in
�� �

�
� ��

��
� � � ����� time units using �� threads in the

����
� on the UMM with width � and latency �.
If �� � �� then the latency limitation ��

��
can be hidden

by the bandwidth limitation �
�

. However, from the practical
point of view, �� � ��

�
must be satisfied. To minimize the

latency overhead, we set �� 
 ��
�

. If this is the case, the
computing time is �� �

�
� ��

��
�

�������� 
 ����
�
��������.

In other words, the computing time has �� ��
�
� latency over-

head, which is much larger than �� �
�
� bandwidth limitation.

We need to use all DMMs to hide the latency overhead.
We will show a summing algorithm using all DMMs. Let �
be the total number of threads and each DMM has �

�
threads.

Recall that we assumed that � � ��, that is, each DMM
has at least one warp. Again, suppose that a 2-dimensional
array � with � columns and �

�
rows is storing the � input

numbers. We assign one thread to each column and compute
the column-wise sum. After that, the sum of the column-wise
sums are computed in each DMM. Finally, the sum in each
DMM is copied to the global memory and the sum of the
sums are computed using ����
�.

Let �		�� (
 � � � � � �� 
 � � � �
�
� �) be the local

register of �	��� to store the column-wise sum. Also, let �
be an array of size � in the global memory used to store the
sum computed by every DMM. The details of the summing
algorithm are spelled out as follows.

[Summing algorithm on the HMM]
for �� 
 to �

�
� � do

for �� 
 to �� � do in parallel
for � � 
 to �

�
� � do in parallel

�		��� �		�� � �	��	� � �
�
� ��

Each ������ computes the sum �		
� � �		�� � � � �
��		

�
�
� �� and store it in �	��.

����
� compute the sum �	
� � �	�� � � � �� �	�� ��.

Let us evaluate the computing time. We assume that � is
large enough such that � � ��. Also, we assume � � �.
Since the computation of the column-wise sum performs
the contiguous memory access, it takes �� �

�
� ��

�
� �� time

units from Theorem 2. After that, each sum � 		
� � �		�� �
� � �� �		

�
�
��� is computed by using �

�
threads the summing

algorithm for Lemma 5 on ������. Since the latency is 1,
it takes �� �

��
� ��� �

�
� � �� �

�
� ����� time units. Finally,

the sum �	
���	��� � � ���	���� is computed using �� 

�
�

threads by the algorithm for Lemma 6 in �� �
�
� ��

�

�

� � �

��� �� 
 �� �
�
� ���

�
� � � ��� �� � �� �

�
� ��

�
� � � �����.

Thus, we have,
Theorem 7: The sum of � numbers can be computed in

�� �
�
� ��

�
� � � ����� time units using � threads on the

HMM with width � and latency � whenever � � �� and
� � �.
we can remove the condition � � �� by computing the sum
�	
� � �	�� � � � � � �	� � �� by a recursive manner. Due to
the stringent page limitation we omit the explanation.

VIII. OPTIMAL CONVOLUTION ON THE DMM AND THE

UMM

The main purpose of this section is to evaluate the
performance of the convolution on the DMM and the UMM.

Let us start with a straightforward algorithm. We use � 


� threads and each thread is used to compute 		����	�� ��
(
 � � � �� �� 
 � � � 
). For this purpose, 
� threads
performs read operations in ����

�
����

��
� 
 ����

�
��� time

units. After that, every �	�� (
 � � � � � �) is computed
using 
 threads using the algorithm for Lemma 5. Since the
sums �	
�� �	��� � � � � �	�� �� can be computed at the same
time, we can reduce the latency overhead. Let us evaluate the
computing time necessary to compute all �	��’s at the same
time. When we execute the algorithm for Lemma 5 using 


threads to compute �	��, the algorithm has ���
 stages. In
other words, the optimal algorithm for computing the sum
is executed for � 
 ���
� �� ���
� �� � � � � 
. The reader
should no difficulty to confirm that the contiguous memory
access for ������ numbers are performed in each Stage �.
Thus, Stage � takes ����

�

�
�����

��
��� 
 ����

�

�
��� time units.

Therefore, all �	��’s can be computed in
��	
���

��� ����
�

�
�

�� 
 ����
�

� � ���
� time units.
Next, suppose that we have � 
 � threads and each thread

� ��� is used to compute �	�� as follows.



[Convolution on the DMM/UMM using � threads]
for �� 
 to 
� � do
for �� 
 to �� � do in parallel
� ��� performs �	��� �	�� � 		�� � �	�� ��

Let us evaluate the computing time. In each �, ev-
ery thread read 		��. Also, � �
�� � ���� � � � � � �� � �� read
�	��� �	�� ��� � � � � �	�� �� ��. Thus, the contiguous access
is performed. Each � takes �� �

�
� ��

�
� �� 
 �� �

�
� �� time

units from Theorem 2. Hence, the total computing time is
���� �

�
� �� �
 
 ����

�
� �
� time.

Suppose that we have � threads such that � � � � �
.
We partition � threads into � groups, each of which is used
to compute �	��. In other words, we partition the computation
of �	�� into � 
 �

�
blocks �	�� 
�� �	�� ��� � � � � �	�� � � ��

such that �	�� �� 
 		� � �
�
� � �	�� � � �

�
� � 		� � �

�
� �� �

�	�� � � �
�
� ��� � � ��		����� ��

�
��� ��	��������

�
���.

After computing every �	�� �� using � threads, we compute
�	�� 
 �	�� 
���	�� ��� � � ���	�� �� �� using �

�
thread each.

The details of the computation of each �	�� �� are as follows.

[Convolution on the DMM/UMM using � threads]
for �� 
 to �

�
� � do

for �� 
 to �� � do in parallel
for � � 
 to �� � do in parallel
�	�� ��� �	�� �� � 		� � �

�
� �� � �	�� � � �

�
� ��

As before, for each �, the consecutive access for �� 
 �

numbers is performed. It takes �� �
�
� ��

�
� �� 
 �� �

�
� ��

time units. Thus, the total computing time is �� �
�
� �� ��

�



����
��

� ��
�
� 
 ����

�
� ���

�
� time units.

Theorem 8: The direct convolution of 
 and 
� �� �
numbers can be done in ����

�
� ���

�
� � ���
� time units

using � threads on the DMM and on the UMM with width
� and latency �.

Let us discuss the lower bound of the computing time. The
multiplication 		�� � �	�� �� must be computed by a thread.
Since a warp of � threads is activated in turn, at most �
multiplications are performed in a time unit. Hence, it takes
at least ����

�
� time units (speed-up limitation). Also, �

thread can read ��
�

numbers in � time units, ��
�
� 
� must

be satisfied. Thus, we have � � ���
�

(latency limitation).
Also, since the sum of 
 numbers must be computed for
each �	��, we have ��� ���
� time lower bound (reduction
limitation). Thus, the algorithm for Theorem 8 is optimal.

IX. OPTIMAL CONVOLUTION ON THE HMM

This section is devoted to show optimal direct convolution
on the HMM. We assume that two arrays 	 and � are
stored in the global memory of the HMM. The goal of the
convolution on the HMM is to compute � and store it in the
global memory.

Let us design an algorithm for computing � using the
HMM. The algorithm consists of three steps.
Step 1: Copy 	 and � from the global memory to the shared

memory.
Step 2: Compute � in the shared memory.
Step 3: Copy � from the shared memory to the global
memory.

We first show an implementation of the algorithm us-
ing � threads on � DMMs. We partition the input �

into � groups ��� ��� � � � � ���� of length �
�

each such that
�	 
 	�	� � �

�
�� �	� � �

�
� ��� �	��� �� � �

�
� ��
. We use each

������ with �
�

threads to compute �
�
�’s in �	. We assume

that �
�
� � to ensure that each DMM has at least one warp

of � threads.
For simplicity, we show how �

�
threads ���
�, �����,

� � �, ���
�
�
� �� on ����
� compute ��. For the purpose

of computing ��, the values of 		
�� 		��� � � � � 		
� �� and
�	
�� �	�� ��� � � � � �	
� �

�
� �� are necessary. In Step 1,

�
�

threads in ����
� copy these values to the shared
memory. In Step 2, �

�
threads compute the convolution of

		
�� 		��� � � � � 		
� �� and �	
�� �	��� � � � � �	
� �
�
� �� on

the shared memory. Finally, Step 3 copies the resulting
values of �� to the global memory.

Let us evaluate the computing time. In Step 1, each DMM
read 
 numbers in 	 and 
� �

�
� � numbers in �. Thus,

totally, all � DMMs read �
�
� �
�
� �� � � � �
�� �

numbers from the global memory. Since the memory access
are contiguous, Step 1 takes �� �����

�
� ������

�
� �� 


������
�

� �����
�
�

� �� time units from Theorem 2.
In Step2, the convolution of 
 numbers and 
� �

�
� �

numbers are performed on ����
�. Recall that DMMs on
the HMM have memory access latency � 
 �. Thus, from
theorem 8 and from �

�
� �, the convolution can be done in

��
��

�

�
�

��
�

�
����
� 
 ����

��
����
� time units. Finally,

Step 3 performs the copy of � to the global memory. It just
copies � numbers from the shared memory to the global
memory, the computing time is no more than Step 1. Hence,
the total computing time is ������

�
� �����
�

�
��������

��
�

���
� 
 ������
�

� ��
��

� �����
�
�

� �� ���
�. Thus, we
have,

Theorem 9: The convolution of two sequences of length

 and � � 
 � � can be computed in ������

�
� ��

��
�

�����
�
�

������
� time units using � threads on the HMM
with � DMMs, width �, and latency �.

From Theorem 9, we have the following corollary when-
ever 
� �:

Corollary 10: The convolution of two sequences of
length 
 and ��
� � can be computed in �� �

�
� ��

��
�

��
�
� �����
� time units using � threads on the HMM with

� DMMs, width �, and latency � whenever 
 � �
�

.
Let us discuss the optimality of Corollary 10. The multi-

plication 		�� � �	�� �� must be computed by a thread. Since
array 	 of size 
���� in the � memory banks must be read
at least once Hence, it takes at least �������

�
� 
 �� �

�
�

time units (bandwidth limitation). Also, � thread can read
��
�

numbers in � time units, ��
�
� � must be satisfied. Thus,



we have � � ��
�

. Further, since each 		�� is read at least once,
we need � time units. Hence, we have �� ��

�
� �� time lower

bound (latency limitation). The HMM has � DMMs, each of
which can perform � multiplications. Thus, the HMM can
perform at most �� multiplications in a time unit. Since
we need 
� multiplications, it takes at least ����

��
� time

units (speed-up limitation). Similarly to the PRAM reduction
limitation, we have �����
� time lower bound (Reduction
limitation). Thus, the algorithm for Corollary 10 is optimal.

X. CONCLUSION

The main contribution of this paper is to introduce the
Hierarchical Memory Machine (HMM), which consists of
multiple DMMs and a single UMM. The HMM is a more
practical parallel computing model which reflects the ar-
chitecture of GPUs. First, we presented that the sum of �
numbers can be computed in �� �

�
� ��

�
� � � ����� time

units using � threads on the HMM with width � and latency
�, and proved that this computing time is optimal. We also
showed that the direct convolution of 
 and 
 � � � �
numbers can be done in �� �

�
� ��

��
� ��

�
� �� ���
� time

units using � threads on the HMM with � DMMs, width �

and latency �. Finally, we proved that our implementation of
the direct convolution is time optimal.
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