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Abstract. The main contribution of this paper is to present a new hard-
ware architecture for accelerating LZW compression using an FPGA.
In the proposed architecture, we efficiently use dual-port block RAMs
embedded in the FPGA to implement a hash table that is used as a
dictionary. Using independent two ports of the block RAM, reading and
writing operations for the hash table are performed simultaneously. Ad-
ditionally, we can read eight values in the hash table in one clock cycle by
partitioning the hash table into eight tables. Since the proposed hard-
ware implementation of LZW compression is compactly designed, we
have succeeded in implementing 24 identical circuits in an FPGA, where
the clock frequency of FPGA is 163.35MHz. Our implementation of 24
proposed circuits attains a speed up factor of 23.51 times faster than a
sequential LZW compression on a single CPU.
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1 Introduction

Data compression is one of the most important tasks in the area of computer
engineering. It is always used to improve the efficiency of data transmission and
save the storage of data. In this paper, we focus on LZW compression [11]. LZW
compression is included in TIFF standard [1], which is widely used in the area of
commercial digital printing. The LZW compression algorithm converts an input
string of characters into a series of codes using a dictionary that maps strings
into codes. Since dictionary tables are created by reading input data one by
one, LZW compression is hard to parallelize. The main goal of this paper is to
develop an efficient hardware architecture of LZW compression and implement
it in an FPGA (Field Programmable Gate Array).

An FPGA is an integrated circuit designed to be configured by a designer
after manufacturing. It contains an array of programmable logic blocks, and
the reconfigurable interconnects allow the blocks to be inter-wired in different
configurations. Since any logic circuits can be embedded in an FPGA, it can
be used for general-purpose parallel computing. Recent FPGAs have embedded
block RAMs. A block RAM is an embedded dual-port memory supporting syn-
chronized read and write operations, and can be configured as a 36k-bit or two
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18k-bit dual port RAMs [13]. Since FPGA chips maintain relatively low price
and its programmable features, it is suitable for a hardware implementation of
image processing method to a great extent.

Numerous implementations of variety of LZW compression on FPGAs or
VLSIs [3, 5, 6, 8, 9], GPUs [2, 10], multiprocessor [4] and cluster systems [7] have
been proposed to accelerate the computation. However, as far as we know, there
is no hardware implementation of the original LZW compression algorithm since
it is not easy to implement it.

The main contribution of this paper is to present an efficient hardware archi-
tecture for LZW compression algorithm and to implement it in an FPGA. In the
proposed architecture, we efficiently use dual-port block RAMs embedded in the
FPGA to implement a hash table that is used as the dictionary. According to the
experimental results, the throughput of the proposed circuit is 118.73MBytes/s
when the compression ratio (original image size : compressed image size) is
1.43:1. On the other hand, the throughput is 86.79MBytes/s when the compres-
sion ratio is 36.72:1. Furthermore, since the proposed circuit of LZW compres-
sion uses a few FPGA resources, we have succeeded in implementing 24 identical
circuits in an FPGA, where the frequency is 163.35MHz and each circuit has in-
dependent input/output ports that work in parallel. Hence, the implementation
of 24 proposed circuits attains a speed up factor that surpasses 23.51 times over
a sequential implementation on a CPU.

2 LZW Compression Algorithm

The main purpose of this section is to review LZW compression algorithm. The
LZW (Lempei-Ziv-Welch) [11] lossless data compression algorithm converts an
input string of characters into a series of codes using a dictionary table that maps
strings into codes. If the input is an image, characters may be 8-bit unsigned
integers. It reads characters in an input image string one by one and adds an
entry in a dictionary table. At the same time, it writes an output series of codes
by looking up the dictionary table. Let X = x0x1 · · ·xn−1 be an input string of
characters and Y = y0y1 · · · ym−1 be an output string of codes. For simplicity,
we assume that an input string is a string of 4 characters a, b, c and d. Let C
be a dictionary table, which determines a mapping of a code to a string, where
codes are non-negative integers. Initially, C(0) = a, C(1) = b, C(2) = c and
C(3) = d. By operation AddTable, a new code is assigned to a string.

The LZW compression algorithm finds the longest prefix Ω of the current
input that is already added in the dictionary table, and outputs the code of Ω .
Let x be the following character of Ω . Since Ω ·x is not in the dictionary table, it is
added to the dictionary, where “·” denotes the concatenation of string/character.
The same procedure is repeated from x. Let C−1(Ω) denote the index of C where
Ω is stored. The LZW compression algorithm is described in Algorithm 1 and
Table 1 shows the compression flow of an input string “cbcbcbcda”. It should
have no difficult to confirm that 214630 is output by this algorithm.
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Algorithm 1 LZW compression algorithm
1: Ω ← x0;
2: for i← 1 to n− 1 do
3: if Ω · xi is in C then
4: Ω ← Ω · xi;
5: else
6: Output(C−1(Ω)); AddTable(Ω · xi); Ω ← xi;
7: end if
8: end for
9: Output(C−1(Ω));

Table 1. LZW compression flow for input string X = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -
xi c b c b c b c d a -
Ω - c b c cb c cb cbc d a
S - cb(4) bc(5) - cbc(6) - - cbcd(7) da(8) -
Y - 2 1 - 4 - - 6 3 0

Next, let us discuss implementations of dictionary table C. The following
operations for a string Ω of characters and the following character x must be
supported for LZW compression; determining if Ω ·xi is in C, returning the value
of C−1(Ω), and performing AddTable(Ω ·xi). A straightforward implementation
of the dictionary table C, which uses an array such that i-th (i ≥ 0) element
stores C(i). However, since the lengths of strings in C are variable, the straight-
forward implementation of dictionary C is not efficient. All values of C(i) may
be accessed to compute C−1(Ω). We can use an associative array with keys C(i)
and values i, which can be implemented by a balanced binary tree or a hash
table. However, these operations take more than O(|Ω |) time. If the compres-
sion ratio is high, Ω may be a long string. Hence, it is not a good idea to use a
conventional associative array to implement C.

In this paper, we use a pointer-character table to implement the dictionary
table C as shown in Table 2. In this table, a pointer p(j) and a character c(j) are
stored for each code j. Also, a back-pointer q(j, x) for every code j and character
x is used. Back-pointer table q can be implemented using an associative array
which we will discuss later. We can obtain a string C(j) by traversing p until
we reach NULL. More specifically, C(j) can be obtained from p and c by the
following definition:

C(j) =

{
c(j) if p(j) = NULL
C(p(j)) · c(j) otherwise

(1)

We implement operation AddTable(Ω · xi) for dictionary C by performing
operation AddTable(j,xi) for the pointer-character table. If AddTable(j,xi) is
performed, a new entry k with p(k) = j and c(k) = xi is added to the pointer-
character table. In other words, the value k is written in q(j, xi) of back-pointer
table. Using the back-pointer table, we can rewrite LZW compression algorithm
in Algorithm 2.

We show how Table 2 is created. First, j ← c−1(x0) = 2 is executed. Next,
since q(j, x1) = q(2, b) is NULL, Output(2) and AddTable(2,b) are executed.
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Table 2. A pointer-character table and a back-pointer table

j 0 1 2 3 4 5 6 7 8 9
p(j) NULL NULL NULL NULL 2 1 4 6 3 0
c(j) a b c d b c c d a -

q(j, a) NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL
q(j, b) NULL NULL 4 NULL NULL NULL NULL NULL NULL NULL
q(j, c) NULL 5 NULL NULL 6 NULL NULL NULL NULL NULL
q(j, d) NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL
C(j) a b c d cb bc cbc cbcd da -

Algorithm 2 LZW compression algorithm with the back-pointer table

1: j ← c−1(x0);
2: for i← 1 to n− 1 do
3: if q(j, xi) 6= NULL then
4: j ← q(j, xi);
5: else
6: Output(j); AddTable(j, xi); j ← c−1(xi);
7: end if
8: end for
9: Output(j);

The pointer-character table has new entry p(4) = 2 and c(4) = b. Also, the value
4 is stored in q(2, b), and operation j ← c−1(b) = 1 is executed. In the next
iteration of the for-loop, since q(1, c) is NULL, Output(1) and AddTable(1,c)
are executed. The pointer-character table has new entry p(5) = 1 and c(5) = c,
and the value 5 is added in q(1, c). Similarly, we can confirm that a series of
codes 214630 is output by this algorithm.

3 Our FPGA Architecture for LZW Compression

This section describes our FPGA architecture of the LZW compression algorithm
with back-pointer table using block RAMs in Xilinx Virtex-7 FPGA. We use
Xilinx Virtex-7 Family FPGA XC7VX485T-2 as the target device [12]. In the
following, we use image data in a TIFF image file to be compressed.

First, we show the implementation of the back-pointer table q for TIFF LZW
compression. As shown in the above, the back-pointer table needs 220×12bits =
1.5MBytes. Since the size of the internal memory in the FPGA is limited and
most entries of the table are not used, we use a hash table to implement the
back-pointer table q.

In the proposed FPGA implementation, we use a hash table that is suitable
for FPGA implementation. The hash table consists of 1024 buckets Bs (0 ≤
s ≤ 1023) and each bucket Bs has 8 entries es,0, es,1, . . . , es,7. To implement this
hash table, we use two tables, number table and data table. Let |Bs| denote the
number of values stored in bucket Bs. Each element of the number table stores
|Bs|. Also, the data table stores values of back-pointers. The table is partitioned
into 8 tables, each of which stores one of the 8 entries. Each entry stores 12-bit
pointer j, 8-bit character x and 12-bit back-pointer q(j, x). Figure 1 illustrates
the structure of the hash table.
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Fig. 1. The arrangement of hash table

Let h(j, x) be a hash function returning a 10-bit number, where pointer j
is 12 bits and character x is 8 bits. To specify a 10-bit number, we use a hash
function h(j, x) = ((j << 4) ⊕ (j >> 6) ⊕ (x << 1) ∧ 0x3FF. Using this hash
function, we select a bucket in address h(j, x) and store the value of back-pointer
in one of the eight entries in the bucket. However, the bucket may be full, that is,
eight values are already stored in the bucket. If this is the case, called conflict ,
the current value of each address (h(j, x) + i) ∧ 0x3FF is read for i = 1, 2, . . .
until a bucket that has unused entries is found. We can easily find whether the
bucket Bs is full or not by referring |Bs| in the number table. Regarding the size
of the hash table, since the total size of the hash table is 8192 and at most 3837
elements are added, conflict may occur, but it is clear that the hash table can
store all data.

In the LZW compression, it is necessary to find whether a value of back-
pointer is already stored or not. Since the data table is partitioned into 8 tables,
we read 8 values at the same time. Therefore, given an address of bucket from
the hash function, we can find whether a value that includes the back-pointer is
stored or not without checking eight entries in the bucket one by one.

On the other hand, the number table consists of 1024 entries with 4 bits that
represent the number of used entries in each bucket. Using the number table,
we can simply determine an element whether it is already stored or not. Recall
that we need to initialize all entries in the hash table whenever compression for
each code segment is finished, that is, ClearCode is output. Since each entry
represents the number of used entries in each bucket, we set each entry to zero
without clearing the data tables.

In the proposed architecture, we perform LZW compression algorithm de-
scribed in Algorithm 2. The main part of the architecture is the hash table as
described in the above. There are three operations for the hash table, (i) initial-
ize operation, (ii) find operation, and (iii) add operation. We show the details of
these operations, as follows.

Initialize operation: As shown in the above, we clear only the number
table to initialize the hash table. However, the next characters cannot be input
during the initialization. Therefore, in the proposed architecture, we use two
number tables and switch them in turn whenever ClearCode is output. Since
the number table has 1024 entries, the initialize operation can be performed
while another code segment is processed.
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Find operation: This operation corresponds to “q(j, xi) 6= NULL”, “j ←
q(j, xi)”, and “Output(j)” in Algorithm 2. In the operation, first, we obtain the
address of the hash table by computing h(j, x). After that, we find whether a
back-pointer q(j, x) is stored in Bh(j,x). As shown in the above, we can simul-
taneously read eight values in a bucket and the number of values in a bucket
is read from the number table to read valid data. Since each entry in the hash
table has the values of j and x, we can find it by comparing j and x read from
the hash table with input values j and x. Therefore, we can check at most 8
entries in Bh(j,x) at the same time. After comparing, if q(j, x) is found, output
it. Otherwise, we check whether Bh(j,x) is full or not. If |Bh(j,x)| < 8, that is,
Bh(j,x) is not full, we can find q(j, x) does not exist in the hash table and output
NULL. If not, we perform the above operation for bucket B(h(j,x)+i)∧0x3FF for
i = 1, 2, . . . until we find whether q(j, x) is stored or not.

Add operation: It is performed as operation AddTable in Algorithm 2.
Indeed, it is performed after the find operation as described in Algorithm 2.
The entry to be stored locates in the bucket which was referred last in the find
operation. Therefore, according to the result of the find operation, we add j, x
and q(j, x) to the hash table and increment the corresponding number of stored
values in the number table.

In order to implement the hash table, we use block RAMs configured as dual-
port mode [13]. Each of the number table consists of one 18k-bit block RAMs.
Also, two 18k-bit block RAMs are assigned to one of the 8 tables in the data
table. Since we use two tables for the number table, eighteen 18k-bit block RAMs
are used in total. For the number table, its dual-port is used as reading port and
writing port. They are used to perform the find and add operations, respectively.
On the other hand, for the data table, we also use the dual-port as reading port
and writing port for each. To reduce the clock cycles, we always suppose that
for input string of characters x0, x1, . . . , xn−1, the condition q(j, xi) = NULL is
satisfied. Using this, we can continuously input characters unless the condition
q(j, xi) = NULL is not satisfied. When the condition is not satisfied, we need to
wait to input the next character.

4 Experimental Results

This section shows the implementation results of the proposed architecture for
LZW compression algorithm in the FPGA. We have implemented the proposed
circuit for LZW compression algorithm and evaluated it in VC707 board [14]
equipped with the Xilinx Virtex-7 FPGA XC7VX485T-2. The experimental re-
sults of the implementation is shown in Table 3. We also use Intel Core i7-4790
(3.6GHz) to evaluate the running time of the sequential LZW compression. In
the experiment, we have used three gray scale images with 4096 × 3072 pixels
as shown in Fig. 2, which are converted from JIS X 9204-2004 standard color
image data. The image “Graph” has high compression ratio since it has large
areas with similar intensity levels. The image “Crafts” has low compression ratio
since it has small details.
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“Crafts” “Flowers” “Graph”

Fig. 2. Three gray scale images with 4096× 3072 pixels used for experiments

Table 3. Implementation results of the proposed hardware algorithm

number of circuits 1 24 available
slice registers 104 (0.02%) 3120 (0.51%) 607200
slice LUTs 346 (0.11%) 7782 (2.56%) 303600

18K-bit block RAMs 18 (0.87%) 432 (20.97%) 2060
clock frequency [MHz] 179.99 163.35 —

Table 4 shows the time of compression on CPU and FPGA and the compres-
sion ratio (original image size : compressed image size). In our implementation
on the FPGA, to save the usage of block RAMs of FPGA, As shown in Ta-
ble 4, for only one proposed circuit of LZW compression, the results show that
implementation on FPGA is not faster than the implementation on the CPU.
However, since the proposed circuit uses very few FPGA resources, we have
succeeded in implementing 24 identical LZW compression circuits in an FPGA,
where the frequency is 163.35MHz. Simply calculated, for image “Crafts”, our
implementation with 24 circuits runs up to 23.51 times faster than sequential
LZW compression on a single CPU.

Table 4. Computing time for three images

images compression ratio CPU [ms] FPGA [ms] Speed-up
“Crafts” 1.43:1 109.10 101.07 1.08:1
“Flowers” 1.72:1 93.60 107.93 0.87:1
“Graph” 36.72:1 46.79 138.26 0.34:1

For gray scale image “Graph” which has high compression ratio with 4096×
3072 pixels, the proposed circuit of LZW compression compresses 4096× 3072×
1Byte original data in 138.26ms, that is, the throughput of the proposed circuit
is 86.79MBytes/s. On the other hand, for gray scale image “Crafts” which has
low compression ratio, the throughput is 118.73MBytes/s.

5 Conclusions

We have presented a hardware architecture for LZW compression algorithm of
compressing images. In the proposed architecture, we efficiently use dual-port
block RAMs embedded in the FPGA to implement a hash table that is used as
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the dictionary. It was implemented in a Virtex-7 family FPGA XC7VX485T-2.
The experimental results show that our module provides a throughput up to
118.73MBytes/s. Since the proposed circuit uses a few resources of the FPGA,
we have succeeded in implementing 24 identical LZW compression circuits in an
FPGA. The implementation of 24 LZW compression circuits attains a speed up
factor of 23.51 over the sequential implementation on the CPU.
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