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Recent Graphics Processing Units (GPUs), which have many processing units, can be used
for general purpose parallel computation. To utilize the powerful computing ability, GPUs are
widely used for general purpose processing. Since GPUs have very high memory bandwidth,
the performance of GPUs greatly depends on memory access. The main contribution of this
paper is to present a GPU implementation of computing Euclidean Distance Map (EDM)
with efficient memory access. Given a 2-dimensional binary image, EDM is a 2-dimensional
array of the same size such that each element is storing the Euclidean distance to the nearest
black pixel. In the proposed GPU implementation, we have considered many programming
issues of the GPU system such as coalesced access of global memory and shared memory bank
conflicts. To be concrete, transposing 2-dimensional arrays, which are temporal data stored
in the global memory, with the shared memory, the main access from/to the global memory
enables to be performed by coalesced access. In practice, we have implemented our parallel
algorithm in the following three modern GPU systems: Tesla C1060, GTX 480 and GTX 580,
respectively. The experimental results have shown that, for an input binary image with size
of 9216 × 9216, our implementation can achieve a speedup factor of 54 over the sequential
algorithm implementation.

Keywords: Euclidean distance map; proximate points; GPU; coalesced memory access;
bank conflict; CUDA

1. Introduction

Recent Graphics Processing Units (GPUs), which have a lot of processing units,
can be used for general purpose parallel computation. Since GPUs have very high
memory bandwidth, the performance of GPUs greatly depends on memory access.
CUDA (Compute Unified Device Architecture) [1] is the architecture for general
purpose parallel computation on GPUs. Using CUDA, we can develop parallel
algorithms to be implemented in GPUs. Therefore, many studies have been devoted
to implement parallel algorithms using CUDA [2–10].

In many applications of image processing such as blurring effects, skeletonizing
and matching, it is essential to measure distances between featured pixels and non-
featured pixels. For a 2-dimensional binary image with size of n×n, treating black
pixels as featured pixels, Euclidean Distance Map (EDM) assigns each pixel with
the distance to the nearest black pixel using Euclidean distance as underlying dis-
tance metric. We refer readers to Figure 1 for an illustration of Euclidean Distance
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Map. Assuming that the points p and q of the plane are represented by their Carte-
sian coordinates (x(p), y(p)) and (x(q), y(q)), as usual, we denote the Euclidean
distance between the points p and q by d(p, q) =

√
(x(p) − x(q))2 + (y(p) − y(q))2.
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Figure 1. Euclidean Distance Map

As is known to us, the computing time is an important issue in the real-time
image processing, especially for images with large size. For example, the real-time
image processing is the main part of many industrial applications such as the vision-
guided robot bin-picking system etc. Actually the vision-guided robot bin-picking
is one of the systems with highest interest of the industry. In order to positioning
bins precisely, bins with markers can be used. Especially, circle markers are used
for robot vision [11] since a circle must be seen as an ellipse from any angle. Thus,
a fast and reliable ellipse detection algorithm is needed. The Euclidean distance
transform can be used for the evaluation of the estimated ellipses in real time [12].
Therefore we also need a faster algorithm to implement the Euclidean distance
transform.

Many algorithms for computing EDM have been proposed in the past, such as
sequential algorithm [13–16] and parallel algorithm [17–19]. Breu et al. [13] and
Chen et al. [14, 15] have presented O(n2)-time sequential algorithm for computing
Euclidean Distance Map. Since all pixels must be read at least once, these sequential
algorithms with time complexity of O(n2) is optimal. Since in any EDM algorithm,
each of the n2 pixels has to be scanned at least once. Roughly at the same time,
Hirata [16] presented a simpler O(n2)-time sequential algorithm to compute the
distance map for various distance metrics including Euclidean, four-neighbor, eight-
neighbor, chamfer, and octagonal. On the other hand, for accelerating sequential
ones, numerous parallel EDM algorithms have been developed for various parallel
model. Lee et al. [20] presented an O(log2 n)-time algorithm using n2 processors on
the EREW PRAM. Pavel and Akl [19] presented an algorithm running in O(log n)
time and using n2 processors on the EREW PRAM. Clearly, these two algorithms
are not work-optimal. Fujiwara et al. [17] have presented a work-optimal algorithm
running in O(log n) time using n2

log n EREW processors and in O( log n
log log n) time

using n2 log log n
log n CRCW processors. Later, Hayashi et al. [18] have exhibited a

more efficient algorithm running in O(log n) time using n2

log n processors on the

EREW PRAM and in O(log log n) time using n2

log log n processors on the PRAM.
Since the product of the computing time and the number of processors is O(n2)
these algorithms are work optimal. Also, it was proved that the computing time
cannot be improved as long as work optimality is satisfied, these algorithms are
also work optimal. Thus, these algorithms are work-time optimal. Recently, Chen
et al. [21] have proposed two parallel algorithms for EDM on Linear Array with
Reconfigurable Pipeline Bus System [22]. Their first algorithm can computes EDM
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in O( log n log log n
log log log n ) time using n2 processors and the second algorithm can compute

EDM in O(log n log log n) time using n2

log log n processors.
In practice, now many applications have employed emerging GPUs (Graphics

Processing Unit) as real platforms to achieve an efficient acceleration. In GPU im-
plementation, there are some programming issues of the GPU system such as coa-
lesced access of global memory and shared memory bank conflicts [23]. Coalesced
access is necessary to hide the access latency of the global memory. When sequen-
tial threads access sequential and aligned values in the off-chip global memory, the
GPU will automatically combine them into a single transaction. An on-chip shared
memory is divided into 16 or 32 equally-sized modules of 32-bit width, called banks.
In the on-chip shared memory, the successive 32-bit words are assigned to succes-
sive banks. To avoid bank conflicts and achieve maximum throughput, concurrent
threads should access different banks.

In our previous paper [5], we have shown an optimal parallel algorithm for com-
puting Euclidean Distance Map (EDM) of a 2-dimensional binary image. Using
proximate points problem as preliminary foundation, we have proposed a simple
but efficient parallel EDM algorithm which can achieve O(n2

k ) time using k proces-
sors. To evaluate the performance of the proposed algorithm, we have implemented
it in a Linux server with four Intel hexad-core processors and a modern GPU sys-
tem, respectively. The experimental results have shown that, for an input binary
image with size of 10000 × 10000, the proposed parallel algorithm can achieve 18
times speedup in the multicore system, comparing with the performance of general
sequential algorithm. Meanwhile, for the same input image, the proposed parallel
algorithm can achieve 5 times speedup in that of GPU system. However, it is not
enough to cope with the above programming issues. Especially, in our implemen-
tation, 2-dimensional arrays are mainly accessed from/to the global memory four
times. However, two times of them cannot reap the benefit of the coalesced access.

The main contribution of this paper is to show an improved GPU implementation
of the algorithm with more efficient memory access. In our new implementation, we
have considered programming issues of the GPU system such as coalesced access
for global memory and shared memory bank conflicts. The new idea of our imple-
mentation is that we have improved the access for 2-dimensional arrays that are
temporal data stored in the global memory which cannot be done with coalesced ac-
cess in the previous implementation. To be concrete, transposing the 2-dimensional
arrays with the shared memory, the access enables to be performed by coalesced
access. We have implemented and evaluated our proposed parallel EDM algorithm
in the following three GPU systems, Tesla C1060 [24], GTX 480 [25] and GTX
580 [26], respectively. The experimental results have shown that for an input bi-
nary image with size of 9216 × 9216, our implementation can achieve a speedup
factor of 54 over the sequential algorithm implementation. Also, we have presented
that the density of black pixels in an input image affects the performance of the
proposed GPU implementation.

The remainder of this paper is organized as follows: Section 2 introduces the
proximate points problem for Euclidean distance metric and discusses several tech-
nicalities that will be crucial ingredients to our subsequent parallel EDM algorithm.
Section 3 shows the proposed parallel algorithm for computing Euclidean distance
map of a 2-dimensional binary image. Section 4 introduces the features of the GPU
system in CUDA. In Section 5, we review our previous GPU implementation. Sec-
tion 6 exhibits a new GPU implementation considering programming issues for the
GPU system. Section 7 shows the performance of the new GPU implementations
on different GPU systems. Finally, Section 8 offers concluding remarks.
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2. Proximate Points Problem

In this section, we review the proximate problem [18] along with a number
of geometric results that will lay the foundation of our subsequent algorithms.
Throughout, we assume that a point p is represented by its Cartesian coordinates
(x(p), y(p)). �� �� �� �� �� ���� �� �� �� ��

��	
��
�
Figure 2. Proximate intervals

Consider a collection P = {p1, p2, ..., pn} of n points sorted by x-coordinate, that
is, x(p1) < x(p2) < ... < x(pn). We assume, without loss of generality, that all the
points in P have distinct x-coordinates and that all of them lie above the x-axis.
The reader should have no difficulty to confirm that these assumptions are made
for convenience only and do not impact the complexity of our algorithms.

Recall that for every point pi of P the locus of all the points in the plane that
are closer to pi than to any other points in P is referred to as the Voronoi polygon
associated with pi and is denoted by V (i). The collection of all the Voronoi polygons
of points in P partitions the plane into the Voronoi diagram of P (see [27], p. 204).
Let Ii, (1 ≤ i ≤ n), be the locus of all the points q on the x-axis for which
d(q, pi) ≤ d(q, pj) for all pj , (1 ≤ j ≤ n). In other words, q ∈ Ii if and only if
q belongs to the intersection of the x-axis with V (i), as illustrated in Figure 2.
In turn, this implies that Ii must be an interval on the x-axis and that some of
the intervals Ii, (2 ≤ i ≤ n − 1), may be empty. A point pi of P is termed a
proximate point whenever the interval Ii is nonempty. Thus, the Voronoi diagram
of P partitions the x-axis into proximate intervals. Since the points of P are sorted
by x-coordinate, the corresponding proximate intervals are ordered, left to right,
as I : I1, I2, ..., In. A point q on the x-axis is said to be a boundary point between
pi and pj if q is equidistance to pi and pj , that is, d(pi, q) = d(pj , q). It should be
clear that p is boundary point between proximate points pi and pj if and only if the
q is the intersection of the (closed) intervals Ii and Ij . To summarize the previous
discussion, we state the following result;

Proposition 2.1 . The following statements are satisfied:

1) Each Ii is an interval on the x-axis;

2) The intervals I1, I2, ..., In lie on x-axis in this order, that is, for any nonempty
Ii and Ij with i < j, Ii lies to the left of Ij.

3) If the nonempty proximate intervals Ii and Ij are adjacent, then the boundary
point between pi and pj separates Ii ∪ Ij into Ii and Ij.

Referring again to Figure 2, among the seven points, five points p1, p2, p4, p6 and
p7 are proximate points, while the others are not. Note that the leftmost point p1

and the rightmost point pn are always proximate points.
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It is also clear that, the boundary of any two points can be computed by O(1)
time. For example, as shown in Figure 3, the coordinates of pi and pj are given.
The coordinates of the midpoint of pi and pj can be computed in the formulas:
xmid = (xi+xj)

2 and ymid = (yi+yj)
2 . The slope of the line which crosses the points pi

and pj can be computed by the formula: α = (yj−yi)
(xj−xi)

, here the α represents the slope
of the line. Further, the slope of the perpendicular bisector line of pi and pj can be
computed by the formula: β = − 1

α = − (xj−xi)
(yj−yi)

, here the β represents the slope of the
perpendicular bisector line. Finally the perpendicular bisector line of pi and pj can
be computed by the formula: y = β(x−xmid)+ymid = − (xj−xi)

(yj−yi)
(x− (xi+xj)

2 )+ (yi+yj)
2 .

The x-coordinate of the intersection point of the perpendicular bisector line and
the x-axis can be obtained as follow: xinter = (y2

j−y2
i )+(x2

j−x2
i )

2(xj−xi)
. This intersection

point is also the boundary point of pi and pj . Therefore the coordinate of the
boundary point is ( (y2

j−y2
i )+(x2

j−x2
i )

2(xj−xi)
, 0). The coordinate of the boundary point can������

������
���	
��
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Figure 3. Perpendicular bisector line of two points

be computed in O(1) time using a single processor.
Given three points pi, pj , pk with i < j < k, we say that pj is dominated by pi

and pk whenever pj fails to be a proximate point of the set consisting of these three
points. Clearly, pj is dominated by pi and pk if the boundary of pi and pj is to the
right of that of pj and pk. Since, the boundary of any two points can be computed
in O(1) time, therefore the task of deciding for every triple (pi, pj , pk), whether pj

is dominated by pi and pk takes O(1) time using single processor.
Consider a collection P = {p1, p2, ..., pn} of points in the plane sorted by x-

coordinate, and a point p to the right of P , that is, such that x(p1) < x(p2) < ... <
x(pn) < x(p). We are interested in updating the proximate intervals of P to reflect
the addition of p to P , as illustrated in Figure 4.

We assume, without loss of generality, that all points in P are proximate
points and let I1, I2, ..., In be the corresponding proximate intervals. Further, let
I ′1, I

′
2, ..., I

′
n, I ′p be the updated proximate intervals of P ∪ {p}. Let pi be a point

such that I ′i and I ′p are adjacent.

Lemma 2.2 . There exists a unique point of pi of P such that:

• The only proximate points of P ∪ {p} are p1, p2, ..., pi, p.
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Figure 4. Illustrating the addition of p to P = {p1, p2, p3, p4}

• For 2 ≤ j ≤ i, the point pj is not dominated by pj−1 and p. Moreover, for
1 ≤ j ≤ i − 1, I ′j = Ij.

• For i < j ≤ n, the point pj is dominated by pj−1 and p and the interval I ′j is
empty.

• I ′i and I ′p are consecutive on the x-axis and are separated by the boundary point
between pi and p.

We show an intuitive proof of the lemma by geometry. As shown in Figure 5(a),
the line pnp and line pn−1pn denote the perpendicular bisector lines of the point
pair {pn, p} and the point pair {pn−1, pn}. The intersection of pnp and the x-axis is
located left to the intersection of pn−1pn and the x-axis. It implies the proximate
interval of pn is empty. Now we draw the perpendicular bisector lines of the point
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(a) (b) (c)

Figure 5. Perpendicular bisector lines

pair of {pn−2, pn−1} and the point pair of {pn−1, p}, they are denoted by line
pn−2pn−1 and line pn−1p, see Figure 5(b). The intersection of pn−1p and the x-
axis is also located left to the intersection of pn−2pn−1 and the x-axis. It means
the proximate interval of pn−1 is also empty. We repeat the procedure until find
a point, pi, 1 < i < n − 1, its proximate interval is nonempty, see Figure 5(c). As
shown in the figure, the line pi−1pi denotes the perpendicular bisector line of the
point pair of {pi−1, pi} and the line pip denotes the perpendicular bisector line of
the point pair of {pi, p}. It is clear that the intersection of pip and x-axis is located
right to the intersection of pi−1pi and x-axis. It means the proximate interval of p
is decided. The proximate interval of pi is adjacent to the proximate interval of p.
The intersection of pip and x-axis is the boundary point of pi and p. It also imply
that the point p can not affect the proximate interval of pj , where 1 ≤ j ≤ i − 1.

Let P = {p1, p2, ..., pn} be a collection of proximate points sorted by x-coordinate
and let p be a point to the left of P , that is x(p) < x(p1) < x(p2) < ... < x(pn). For
further reference, we now take note of the following companion result to Lemma 2.2.
The proof is identical and, thus, omitted.

Lemma 2.3 . There exists a unique points of pi of P such that:

• The only proximate points of P ∪ {p} are p, pi, pi+1, ..., pn.
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• For i ≤ j ≤ n, the point pj is not dominated by p and pj+1. Moreover, for
i + 1 ≤ j ≤ n, I ′j = Ij.

• For 1 ≤ j < i, the point pj is dominated by p and pj+1 and the interval I ′j is
empty.

• I ′p and I ′i are consecutive on the x-axis and are separated by the boundary point
between p and pi.

The unique point pi whose existence is guaranteed by Lemma 2.2 is termed the
contact point between P and p. The second statement of Lemma 2.2 suggests that
the task of determining the unique contact point between P and a point p to the
right or the left of P reduces, essentially, to binary search.

Now, suppose that the set P = {p1, p2, ..., p2n}, with x(p1) < x(p2) < ... < x(p2n)
is partitioned into two subsets PL = {p1, p2, ..., pn} and PR = {pn+1, pn+2, ..., p2n}.
We are interested in updating the proximate intervals in the process or merging PL

and PR. For this purpose, let I1, I2, ..., In and In+1, In+2, ..., I2n be the proximate
intervals of PL and PR, respectively. We assume, without loss of generality, that all
these proximate intervals are nonempty. Let I ′1, I

′
2, ..., I

′
2n be the proximate intervals

of P = PL ∪PR. We are now in a position to state and prove the next result which
turns out to be a key ingredient in our algorithms.

Lemma 2.4 . There exists a unique pair of proximate points pi ∈ PL and pj ∈ PR

such that

• The only proximate points in PL ∪ PR are p1, p2, ..., pi, pj , ..., p2n.
• I ′i+1, ..., I

′
j−1 are empty, and I ′k = Ik for 1 ≤ k ≤ i − 1 and j + 1 ≤ k ≤ 2n.

• The proximate intervals I ′i and I ′j are consecutive and are separated by the bound-
ary point between pi and pj.

Proof . Let i be the smallest subscript for which pi ∈ PL is the contact point
between PL and a point in PR. Similarly, let j be the largest subscript for which
the point pj ∈ PR is the contact point between PR and some point in PL. Clearly,
no point in PL to the left of pi can be proximate point of P . Likewise, no point in
PR to the left of pj can be a proximate point of P .

Finally, by Lemma 2.2, every point in PL to the left of pi must be a proximate
point of P . Similarly, by Lemma 2.3, every point in PR to the right of pi must be
a proximate point of P , and proof of the lemma is complete. �

The points pi and pj whose existence is guaranteed by Theorem 2.4 are termed
the contact points between PL and PR. We refer the reader to Figure 6 for an
illustration. Here, the contact points between PL = {p1, p2, p3, p4, p5} and PR =
{p6, p7, p8, p9, p10} are p4 and p8.

����� ������������ ���� ���	 �
 �� ������	 �
 �� ��
����� ������������� ������ �	�
 �������	 �������

(a) Proximate interval (b) Merge of two point sets

of each point in two sets and their contact points

Figure 6. Illustrating the contact points between two sets of points

Next, we discuss a geometric property that enables the computation of the con-
tact points pi and pj between PL and PR. For each point pk of PL, let qk denote the
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contact point between pk and PR as specified by Lemma 2.3. We have the following
result.

Lemma 2.5 . The point pk is not dominated by pk−1 and qk if 2 ≤ k ≤ i, and
dominated otherwise.

Proof . If pk, (2 ≤ k ≤ i), is dominated by pk−1 and qk, then I ′k must be empty.
Thus, Lemma 2.4 guarantees that pk, (2 ≤ k ≤ i), is not dominated by pk−1 and
qk. Suppose that pk, (i + 1 ≤ k ≤ n), is not dominated by pk−1 and qk. Then,
the boundary point between pk and qk is to the right of that between these two
boundaries corresponds to I ′k, a contradiction. Therefore, pk, (i + 1 ≤ k ≤ n), is
dominated by pk−1 and qk, completing the proof. �

Lemma 2.5 suggests a simple, binary search-like, approach to finding the contact
points pi and pj between two sets PL and PR. In fact, using a similar idea, Breu
et al. [13] proposed a sequential algorithm that computes the proximate points of
an n-point planar set in O(n) time. The algorithm in [13] uses a stack to store the
proximate points found.

3. Parallel Euclidean Distance Map of 2-dimensional Binary Image

A binary image I of size n × n is maintained in an array bi,j , (1 ≤ i, j ≤ n). It is
customary to refer to pixel (i, j) as black if bi,j = 1 and as white if bi,j = 0. The rows
of the image will be numbered bottom up starting from 1. Likewise, the columns
will be numbered left to right, with column 1 being the leftmost. In this notation,
pixel b1,1 is in the south-west corner of the image, as illustrated in Figure 7(a). In
Figure 7(a), each square represents a pixel. For this binary image, its final distance
mapping array is shown in Figure 7(b).

1,6 1,7 1,8

1,9

(8,1)

(1,8)

(8,8)

(1,1)

0 0 0 0 1 0 0 0

0 0 1 1 1.4 1 0 1

0 1 1.4 1 1 1.4 1 1.4

1 1.4 1 0 0 1 2 2.2

2 2.2 1.4 1 1 1.4 2.2 2

1 1.4 2 2 2 2.2 1.4 1

0 1 1 1 1.4 2 1 0

0 0 0 0 1 2 1 0

(8,1)

(1,8)

(8,8)

(1,1)

Euclidean 
distance map

(a)  Binary image (b)  Mapping array

Figure 7. A binary image and its mapping array

The Voronoi map associates with every pixel in I the closest black pixel to it (in
the Euclidean metric). More formally, the Voronoi map of I is a function v : I → I
such that, for every (i, j), (1 ≤ i, j ≤ n), v(i, j) = v(i′, j′) if and only if

d((i, j), (i′, j′)) = min{d((i, j), (i′′, j′′)) | bi′′,j′′ = 1},

where d((i, j), (i′, j′)) =
√

(i − i′)2 + (j − j′)2 is the Euclidean distance between
pixels (i, j) and (i′, j′).
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The Euclidean Distance Map of image I associates with every pixel in I in the
Euclidean distance to the closest black pixel. Formally, the Euclidean Distance
Map is a function m: I → R such that for every (i, j), (1 ≤ i, j ≤ n), m(i, j) =
d((i, j), v(i, j)).

We now outline the basic idea of our algorithm for computing the Euclidean
Distance Map of image I. We begin by determining, for every pixel in row j,
(1 ≤ j ≤ n), the nearest black pixel, if any, in the same column of I. More precisely,
with every pixel (i, j) we associate the value

di,j = min{d((i, j), (i′, j′)) | bi′,j′ = 1, 1 ≤ j′ ≤ n}.

If bi′,j′ = 0 for every 1 ≤ j′ ≤ n, then let di,j = +∞. Next, we construct an
instance of the proximate points problem for every row j, (1 ≤ j ≤ n), in the
image I involving the set Pj of points in the plane defined as Pj = {pi,j = (i, di,j) |
1 ≤ i ≤ n}.

Having solved, in parallel, all these instances of the proximate points problem,
we determine, for every proximate point pi,j in Pj , its corresponding proximity
interval Ii. With j fixed, we determine, for every pixel (i, j) (that we perceive as
a point on the x-axis), the identity of the proximity interval to which it belongs.
This allows each pixel (i, j) to determine the identity of the nearest pixel to it. The
same task is executed for all rows 1, 2, ..., n in parallel, to determine, for every pixel
(i, j) in row j, the nearest black pixel. The details are spelled out in the following
algorithm:

vspace2mm Algorithm : Euclidean Distance Map(I)

Step 1 For each pixel (i, j), compute the distances

di,j = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

to the nearest black pixel in the same column.
vspace2mm Step 2 let Pj = {pi,j = (i, di,j) | 1 ≤ i ≤ n}. Compute the proximate

points E(Pj) of Pj .

Step 3 For every point p in E(Pj) determine its proximity interval of Pj .

Step 4 For every i, (1 ≤ i ≤ n), determine the proximate interval of Pj to which
the point (i, 0) (corresponding to pixel (i, j)) belongs. vspace2mm

e assume that there are n processors PE(1), PE(2), ..., PE(n) available. The
parallel implementation of above algorithm is shown as follows:

Step 1. We assign the i-th column (1 ≤ i ≤ n) to processor PE(i) to compute
the distance to the nearest black pixel in the same column. First, each PE(i)
(1 ≤ i ≤ n) reads pixel values in the i-th column from up to bottom to compute
that distance, as illustrated in Figure 8(a) (its original input image is shown in
Fig 7). Second, each processor PE(i) (1 ≤ i ≤ n) reads pixel values in the same
column from bottom to up to compute that distance, as illustrated in Figure 8(b).
Finally, each processor selects a minimum value of calculated two distances as
final value of the distance. It is clear that the time complexity of this step is O(n).

noindent Step 2. Again, we compute Euclidean Distance Map of input image I
along with row wise.

Step 2.1 For every i-th row (1 ≤ i ≤ n), each processor PE(i) computes the
proximate points using the theorem of proximate points problem as foundation,
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Figure 8. Process each column with two directions

as illustrated in Figure 9 and Figure 10. In Figure 10, the Voronoi polygons
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Figure 9. Processing with row wise

correspond to 5th row (shaded row) of the image illustrated in Figure 9. The
obtained proximate points are saved in a stack. It should be clear that each
column has its own corresponding stack. Therefore, in order to add a new
proximate point to the stack, we need to calculate boundary points of this new
point and existed proximate points which are kept in the stack. Then according to
locus of boundary points, we decide which points need to be deleted from the stack.

noindent Step 2.2 For every i-th row (1 ≤ i ≤ n), each processor PE(i) deter-
mines proximate intervals of obtained proximate points by computing boundary
point of each pair of adjacent proximate points. The boundary point of each pair
of adjacent proximate points can be obtained by calculating the intersection point
of two lines, one line is x-axis and another is the normal line of the line which
connects two adjacent proximate points. We refer reader to Figure 11 for the
illustration. Each pair of adjacent proximate points can be obtained from the stack.

Step 2.3 According to the locus of boundary points obtained from Step 2.2, each
processor determines the closest black pixel to each pixel of the input image. The
distance between a given pixel and its closest black pixel is also calculated in the
obvious way.
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Figure 11. Proximate intervals

It should be clear that, the whole Step 2 can be implemented in O(n) time using
n processors.

Theorem 3.1 . For a given binary image I with the size of n × n, Euclidean
Distance Map of image I can be computed in O(n) time using n processors.

Suppose that we have k processors (k < n). If this is the case, a straightforward
simulation of n processors by k processors can achieve optimal slowdown. In other
words, each of the k processors performs the task of n

k processors in our Euclidean
Distance Map algorithm. For example, in Step 1, the i-th processor (1 ≤ i ≤ k)
computes the nearest black pixel within the same column for rows from (i−1)· nk +1-
th to i · n

k . This can be done in O(n · n
k ) = O(n2

k ) time. Thus, we have,

Corollary 3.2 . For a given binary image I with the size of n × n, Euclidean
Distance Map of image I can be computed in O(n2

k ) time using k processors.

4. Compute Unified Device Architecture (CUDA)

CUDA uses two types of memories in the NVIDIA GPUs: the global memory and
the shared memory [23]. The global memory is implemented as an off-chip DRAM
of the GPU, and has large capacity, say, 1.5-6 Gbytes, but its access latency is
very long. The shared memory is an extremely fast on-chip memory with lower
capacity, say, 16-48 Kbytes. The efficient usage of the global memory and the shared
memory is a key for CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the coalescing of the global memory access and
the bank conflict of the shared memory access [5, 28]. To maximize the bandwidth
between the GPU and the DRAM chips, the consecutive addresses of the global
memory must be accessed in the same time. Thus, threads should perform coalesced
access when they access to the global memory. Figure 12 illustrates the CUDA
hardware architecture.

CUDA parallel programming model has a hierarchy of thread groups called grid,
block and thread. A single grid is organized by multiple blocks, each of which has
equal number of threads. The blocks are allocated to streaming processors such that
all threads in a block are executed by the same streaming processor in parallel. All
threads can access to the global memory. However, as we can see in Figure 12,
threads in a block can access to the shared memory of the streaming processor
to which the block is allocated. Since blocks are arranged to multiple streaming
processors, threads in different blocks cannot share data in shared memories.

CUDA C extends C language by allowing the programmer to define C functions,
called kernels. By invoking a kernel, all blocks in the grid are allocated in streaming
processors, and threads in each block are executed by processor cores in a single
streaming processor. In the execution, threads in a block are split into groups of
thread called warps. Each of these warps contains the same number of threads
and is execute independently. When a warp is selected for execution, all threads
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Figure 12. CUDA hardware architecture
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Figure 13. Coalesced and stride access

execute the same instruction. Any flow control instruction (e.g. if-statements in C
language) can significantly impact the effective instruction throughput by causing
threads of the same warp to diverge, that is, to follow different execution paths.
If this happens, the different execution paths have to be serialized. When all the
different execution paths have completed, the threads back to the same execution
path. For example, for an if-else statement, if some threads in a warp take the
if-clause and others take the else-clause, both clauses are executed in serial. On the
other hand, when all threads in a warp branch in the same direction, all threads
in a warp take the if-clause, or all take the else-clause. Therefore, to improve the
performance, it is important to make branch behavior of all threads in a warp
uniform.

As we have mentioned, the coalesced access to the global memory is a key issue
to accelerate the computation. As illustrated in Figure 13, when threads access
to continuous locations in a row of a 2-dimensional array (horizontal access), the
continuous locations in address space of the global memory are accessed in the
same time (coalesced access). However, if threads access to continuous locations in a
column (vertical access), the distant locations are accessed in the same time (stride
access). From the structure of the global memory, the coalesced access maximizes
the bandwidth of memory access. On the other hand, the stride access needs a lot
of clock cycles. Thus, we should avoid the stride access (or the vertical access) and
perform the coalesced access (or the horizontal access) whenever possible.

5. Our Previous Implementation of EDM Algorithm on GPUs

In this section, we show our previous implementation of EDM algorithm on
GPUs [5]. We have defined several memory access modes which affect the perfor-
mance of our algorithm. Using the access modes, we have implemented a parallel
EDM algorithm.

5.1 Access Modes

The key part of our Euclidean Distance Map algorithm is Step 1 and Step 2. We will
define several access modes which affect the performance of our algorithm. Recall
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that in Step 1, pixel values are read in column wise, and the distances to the nearest
black pixel are written in column wise. Instead, we can write the distances to the
nearest black pixel in row wise. In other words, we can read the pixel values in
column wise (i.e. Vertical), or in row wise (i.e. Horizontal) and write the distances
in column wise (i.e. Vertical) or in row wise (i.e. Horizontal). The readers should
refer to Figure 14 for illustrating the possible four access modes of Step 1.
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Figure 14. Access modes for Step 1

Let di,j denote the resulting distances of Step 1. For each access mode we can
write di,j as follows:

VV (Vertical-Vertical) di,j = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}
VH (Vertical-Horizontal) dj,i = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

HH (Horizontal-Horizontal) di,j = min{|k − j| | bi,k = 1, 1 ≤ k ≤ n}
HV (Horizontal-Vertical) dj,i = min{|k − j| | bi,k = 1, 1 ≤ k ≤ n}
Note that, for VH and HV access modes, the resulting values stored in the two
dimensional array is transposed.

In the same way, we can define four possible access modes VV, VH, HH and HV
for Step 2. For example, in VV mode, the distances are read in column wise and
the resulting values of Euclidean Distance Map are written in column wise.

The readers should have no difficulty to confirm that possible combinations of
access modes for Steps 1 and 2 are VV-HH, HH-VV, VH-VH, and HV-HV,
because the access mode satisfies the following two conditions:

Condition 1 If the resulting values in Step 1 are stored in a transposed array, those
in Step 2 also must be transposed. Otherwise, the resulting Euclidean Distance Map
is transposed.

Condition 2 The writing directions of Step 1 and Step 2 must be orthogonal.

Therefore, in the notation r1w1r2w2 of access modes, w1 and r2 must be distinct
from Condition 1 and the number of H in r1, w1, r2, and w2 must be even from
Condition 2. Therefore, the possible access modes are VV-HH, HH-VV, VH-VH,
and HV-HV.
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5.2 Implementations with Different Access Modes

In our previous work [5], we have implemented our proposed parallel EDM algo-
rithm with the above four access modes. Also, we have evaluated our proposed
parallel EDM algorithm with Tesla C1060 [24] which consists of 240 Streaming
Processor Cores and 4GB global memory. The experimental result shown in [5],
the performance of VH-VH access mode was better than the other access modes.
This is because in VH-VH access mode, the GPU implementation can benefit from
coalesced access to the global memory significantly.

For clear explanation, first we describe the details of the GPU implementation
of the parallel Euclidean Distance Map algorithm. Here we just describe the GPU
implementation of VH-VH access mode. For other access modes, their implemen-
tations can be understood in the same way.

t0t1 tk-1

Block 0

t0t1 tk-1

Block 1

t0t1 tk-1

Block n/k-1

…

Figure 15. Mapping blocks into subimages

For implementing Step 1 of the algorithm, we partition the original input image
of n×n into n

k subimages along with column wise, where k is the number of threads
in one block. We assign n

k blocks are assigned to subimages and each block processes
each corresponding subimage independently. Each thread of a block processes each
corresponding column of the subimage. We refer readers to Figure 15 as an simple
illustration. In Figure 15, each ti(0 ≤ i ≤ k− 1) represents a thread of a block and
each arrow represents an access of a pixel value by one thread. It is clear that, for
a subimage, the access to each row can be performed in coalescing.

By following Step 1 of the parallel EDM algorithm, each thread needs to access
each pixel value of the corresponding column two times. One is access for computing
results of up-to-bottom process and the other is access for computing results of
bottom-to-up process. After selecting the minimum value for each pixel, each thread
writes the minimum one into an extra array which stores the results of Step 1 along
with row wise. It is clear that, the both up-to-bottom process and bottom-to-up
process can benefit from full coalescing. However, the writing of the extra array
cannot benefit from the coalescing at all. On the other hand, in the implementation
of VV-HH access mode, the writing of the extra array is also can benefit from the
full coalescing. Therefore in VV-HH access mode, the implementation of Step 1 can
achieve the most significant performance. Differently, in HH-VV access mode, the
whole implementation of Step 1 cannot benefit from the coalescing at all since the
read and write operation for the global memory is stride access. Therefore Step 1
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of the HH-VV access mode achieved the worst performance.
In Step 2 of the algorithm, stacks are necessary for computing boundary points.

Since one stack is used for the computation of each column, n stacks are necessary
in total. We allocate a 2-dimensional array in the global memory to the stacks. Each
stack is assigned to one column of the 2-dimensional array. Also, each thread reads
elements of corresponding column of the extra array, which stores the results of
Step 1, to obtain elements of corresponding stack. However the push-pop operations
for the stacks are not uniform. Therefore the access of the extra array cannot
be performed in full coalescing. In the same way, the access of the stacks also
cannot be performed in full coalescing. This is reason that the implementation
of Step 2 cannot achieve a significant performance even in HH-VV access mode.
After computing boundary points, we compare the y-coordinate of each boundary
point with the y-coordinate of each pixel to obtain the distance to the closest black
pixel. If we assume that the mapping results will be stored in a 2-dimensional array
named output array, it needs all threads accesses the output array along with row
wise. In other words, each thread accesses the corresponding row of the output
array, and it cannot utilize the coalescing. However, in Step 2 of VV-HH access
mode, its whole implementation cannot benefit from the coalescing at all. This is
the reason that Step 2 of HV-HV access mode can be little faster than Step 2 of
VV-HH access mode.

6. New Implementation of EDM Algorithm on GPUs

The main purpose of this section is to show our new implementation of EDM
algorithm in the GPU. In the followings, we introduce a new access mode and a
new implementation with it.

6.1 New Access Mode with Efficient Memory Access

As we see in the previous section, VH-VH access mode can obtain the best per-
formance of four access modes. Therefore it is clear that coalesced access to global
memory plays an important role in our GPU implementations. However, VH-VH
access mode cannot fully benefit from coalesced access because its memory writing
does not support coalesced access. Therefore, in this subsection, we show a new
implementation of the proposed algorithm which can fully utilize the coalescing
in each implementing step in memory read and write. We call the access mode
of the new implementation as VTV-VTV access mode (VTV stands for Vertical-
Transpose-Vertical). To keep two conditions as shown in the previous section, fol-
lowing operations are performed in each step;

(1) An input data is read from global memory with coalesced read.
(2) The results are transposed with shared memory.
(3) The transposed results are written into the global memory with coalesced

write.

More specifically, in the new access mode of Step 1, the 2-dimensional array of the
input image is read in column wise by each thread. After processing, the results
are transposed using shared memory. The transposed data is written into another
array in column wise by each thread as the results of Step 1 and the input data
of Step 2. In the new implementation of Step 2, the 2-dimensional extra array
which contains the results of Step 1 is read in column wise by each thread. After
reading data from the 2-dimensional extra array, the resulting values of Step 2
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are transposed using shared memory. The transposed results are written into the
extra array column by column by each thread. It is clear that, in VTV-VTV access
mode, each step can be implemented with full coalescing.

6.2 GPU Implementation with New Access Mode

We now show the new implementation of Step 1 for VTV-VTV access mode. The
results, which are stored to 2-dimensional arrays, of up-to-bottom and bottom-to-
up process are obtained by the same manner of the implementation for VH-VH
access mode shown in Section 5.2. After that, each resulting 2-dimensional array is
divided into subimages whose size is 32×32. One block is assigned to each subimage
and each block runs independently.

In each block, the minimum values from corresponding elements in the two 2-
dimensional arrays are selected. To obtain the results of Step 1 in VTV-VTV
access mode, the minimum ones are transposed. In our proposed implementation,
to transpose them, we utilize the shared memory. As shown in Figure 16, the 32
resulting values of up-to-bottom and bottom-to-up process each are read in column
wise using coalesced access with 32 threads. The minimum ones are selected and
written to the shared memory in column wise. The above read and write operation
is executed column by column. After that, the values are written to the corre-
sponding transposed position in the global memory in column wise with coalesced
access. Using the shared memory, all the access from/to the global memory can be
coalesced.

Result of up-to-bottom process

Result of bottom-to-up process

t0            t31

Shared 
memory

Select 
minimum

values

Result of Step 1

write

32
����32

Write data into shared memory Read data from shared memory

t0

t0            t31

t31

t0            t31

t0          t31

Figure 16. Coalesced Transpose with Shared Memory

However, in the above implementation, the use of shared memory causes another
problem, shared memory bank conflicts. As given above, the size of the shared
memory array is 32 × 32. It means that one column of this array is mapped into
the same bank of shared memory, since there are 16 or 32 banks in shared memory
of CUDA GPU [23]. If multiple threads in a block access to the distinct banks
in the shared memory, the access can be serviced simultaneously. On the other
hand, if threads access to the same bank, the access has to be serialized. In our
implementation, when threads write the minimum values to the shared memory,
they write the minimum ones to the same column of the 2-dimensional array in the
shared memory (Figure 17(a)). Therefore, bank conflict occurs. To avoid the bank
conflict, we add a dummy column to the shared memory array (Figure 17(b)).
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Figure 17. Bank conflict free map

Adding the dummy column, elements of each column are mapped into different
banks and all the access in the transposing is free from the bank conflict.

In Step 2 of the implementation, the resulting values are transposed with the
shared memory in the same manner as the above.

7. Performance Evaluation

In this section, we show the performance evaluation of the proposed GPU imple-
mentation through different experiments. In all the experiments, we have used a
binary image of size 9216 × 9216. Every measurement is the average value of 20
experiments. For all measurements obtained from GPU systems, the variance corre-
sponding to each measurement is always less than 1. For example, the experimental
system is GTX 580 and the input image is the Lenna image (see Figure 18), then
the variance of the 20 experiments is only 0.64.

Table 1 shows the performance of the new implementation on different GPU sys-
tems. For the binary image of Lenna (see Figure 18), our new implementation using
VTV-VTV access mode can achieve 20, 46 and 54 times speedup on Tesla C1060,
GTX 480 and GTX 580 system respectively, over the performance of the sequential
algorithm implemented on a CPU system with Intel Core i7 processor [29]. The
experimental results also show that, even if the total computing time includes data
transfer time between host memory and global memory, our new implementation
also can achieve about 10, 30 and 34 times speedup on Tesla C1060, GTX 480
and GTX 580 system, respectively. The table also show that, the implementation
with the VTV-VTV access mode can achieve 1.6x speedup, compared with the
implementation with VHVH access mode, in GTX 580 system. However it just
achieve 1.4x speedup in Tesla C1060 system. Actually Tesla C1060 only support
previous generation CUDA architecture. However GTX 580 can support new gen-
eration CUDA architecture, Fermi architecture [30] . Compared with the previous
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Figure 18. Binary Image of Lenna

Table 1. Performance of implementation with VH-VH and VTV-VTV access mode on different GPU systems

(n=9216)

(a) Tesla C1060
CPU VH-VH access mode VTV-VTV access mode

Time[ms] Time[ms] Speed-up Time[ms] Speed-up
Step1 3956 147 26.9 39 101.4
Step2 7205 621 11.6 508 14.7
Total 11161 768 14.5 547 20.4

(b) GTX 480
CPU VH-VH access mode VTV-VTV access mode

Time[ms] Time[ms] Speed-up Time[ms] Speed-up
Step1 3956 90 43.9 20 197.8
Step2 7205 273 26.3 221 35.4
Total 11161 363 30.7 241 46.0

(c) GTX 580
CPU VH-VH access mode VTV-VTV access mode

Time[ms] Time[ms] Speed-up Time[ms] Speed-up
Step1 3956 93 42.5 16 247.2
Step2 7205 238 30.2 190 39.1
Total 11161 331 33.7 206 54.1

generation CUDA architecture, the Fermi architecture introduces several architec-
tural innovations. For example, in the Fermi architecture, at most 512 CUDA cores
can be supported, the global memory is featured by L1/L2 caches, the dual warp
scheduler is supported, etc. On the other hand, compared with the previous gener-
ation CUDA architecture, the number of memory transactions required by a fully
coalesced memory access is also reduced in the Fermi architecture. In the previous
generation CUDA architecture, a global memory request for a warp is split into
two memory requests, one for each half-warp, that are issued independently. It
means that, for a warp, it needs at least two memory transactions to access the
global memory, even the global memory accesses are coalesced. However, in the
Fermi architecture, a global memory request for a warp is issued into one memory
transaction, if the global memory accesses are coalesced. This is reason to why the
coalesed access of global memory can achieves more speedups in GTX 580.
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It should be clear that the execution time depends on contents of the input im-
ages. Therefore, we evaluated the performance for the input images that have the
different density of black pixels. We generated input images whose black pixels
are randomly distributed such that the density of black pixels is varied from 0%
to 100%. Figure 19 shows the performance of the GPU implementation with two
different access modes on the GTX 580 system. From the figure, the GPU imple-
mentation with VTV-VTV access mode can achieve a higher performance than
that with VH-VH access mode for each density of black pixels. The reason is that
more global memory accesses can be coalesced in VTV-VTV access mode.
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Figure 19. Performance of the GPU implementation with different access modes

Figure 19 also shows how the performance of the GPU implementation is affected
by the density of black pixels in the input image. However, the computing time of
Step 1 is independent from contents of the input images. The computing time of
Step 2 depends only on the contents. Therefore, we focus on the behavior in Step 2.
If the density of black pixels is small, pixels of input image have the common nearest
black pixel. In other words, each of the black pixels dominates relative large area
of the input image. Therefore, the behavior of the threads in each warp is almost
the same and computing time becomes shorter. According to the figure, when the
percentage of black pixels is close to about 40%, the proposed GPU implementation
achieves the worst performance. When the density is the above, many of pixels of
input image do not have the common nearest black pixel. Therefore, the behavior
of the threads in each warp differs and it causes worse performance. On the other
hand, when the percentage of black pixels is larger than 40%, the execution time
of the GPU implementation is decreasing along the increase of the percentage of
black pixels. The behavior of the threads in each warp is almost the same, which
is similar to the lower density of black pixels. Therefore, better performance is
achieved. Especially, if the density is close to the 100%, that is almost all the
pixels are black, access of stacks assigned to threads in a warp is almost identical.
Namely, all the access to the global memory over the whole process reaps the
benefit of coalesced access.
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Figure 20. Performance of CPU implementation with HV-HV access mode
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Figure 21. Speedup factor of GPU implementation compared with CPU implementation

Figure 20 shows the performance of the CPU implementation of the sequential
algorithm on images with different percentage of randomly distributed black pix-
els. In our previous paper [5], we have shown that the CPU implementation can
achieve the best performance in HV-HV access mode. Therefore, we only show
the performance of the CPU implementation with HV-HV access mode. In the
figure, it is clear that the density of black pixels has no significant effect on the
performance of the CPU implementation. Figure 21 shows the speedup factor of
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the GPU implementation with VTV-VTV access mode, compared with the CPU
implementation. From the figure, for the input images with different percentage of
randomly distributed black pixels, our proposed GPU implementation can achieve
at least 40 times speedup compared with the optimal CPU implementation.

On the other hand, experiments show that, the uniform distribution of black
pixels (see Figure 22) will result in the worst performance. Since the uniform dis-
tribution of black pixels will bring a more complicated global memory access on
GPUs. Therefore, in this paper, we just show the performance of the uniform dis-
tribution.

Figure 22. Uniform distribution with 10% black pixels

8. Conclusions

In this paper, we have proposed a simple parallel algorithm for the Euclidean
distance map and shown an intuitive GPU implementation of the proposed algo-
rithm. In the GPU implementation, we have considered many programming issues
of the GPU system such as coalesced access of global memory and shared mem-
ory bank conflicts. We have implemented our parallel algorithm in the following
three modern GPU systems: Tesla C1060, GTX 480 and GTX 580, respectively.
The experimental results have shown that, for an input binary image with size
of 9216 × 9216, our implementation can achieve a speedup factor of 54 over the
sequential algorithm implementation. On the other hand, we have also presented
that the density of black pixels in an input image affects the performance of the
proposed GPU implementation.

Appendix A.

In the appendix, we show the symbols and definitions appeared in Section 2 and
Section 3.
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