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The main contribution of this paper is to introduce two parallel memory machines, the Discrete
Memory Machine (DMM) and the Unified Memory Machine (UMM). Unlike well studied
theoretical parallel computational models such as PRAMs, these parallel memory machines
are practical and capture the essential feature of GPU memory accesses. As a first step of
the development of algorithmic techniques on the DMM and the UMM, we first evaluate
the computing time for the contiguous access and the stride access to the memory on these
models. We then go on to present parallel algorithms to transpose a 2-dimensional array on
these models and evaluate their performance. Finally, we show that, for any permutation
given in off-line, data in an array can be moved efficiently along the given permutation both
on the DMM and on the UMM. Since the computing time of our permutation algorithms on
the DMM and the UMM is equal to the sum of the lower bounds obtained from the memory
bandwidth limitation and the latency limitation, they are optimal from the theoretical point
of view. We believe that the DMM and the UMM can be good theoretical platforms to develop
algorithmic techniques for GPUs.

Keywords: Memory banks, Parallel computing models, Parallel algorithms, Matrix
transpose, Array permutation, GPU, CUDA

1. Introduction

1.1 Background

The research of parallel algorithms has a long history of more than 40 years. Se-
quential algorithms have been developed mostly on the Random Access Machine
(RAM) [1]. In contrast, since there are a variety of connection methods and pat-
terns between processors and memories, many parallel computing models have been
presented and many parallel algorithmic techniques have been shown on them. The
most well-studied parallel computing model is the Parallel Random Access Machine
(PRAM) [2–4], which consists of processors and a shared memory. Each processor
on the PRAM can access any address of the shared memory in a time unit. The
PRAM is a good parallel computing model in the sense that parallelism of each
problem can be revealed by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that can be accessed by all
processors at the same time, it is imaginary and impractical.

The GPU (Graphical Processing Unit), is a specialized circuit designed to accel-
erate computation for building and manipulating images [5–8]. Latest GPUs are
designed for general purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have recently attracted the
attention of many application developers [5, 9, 10]. NVIDIA provides a parallel
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computing architecture called CUDA (Compute Unified Device Architecture) [11],
the computing engine for NVIDIA GPUs. CUDA gives developers access to the vir-
tual instruction set and memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multicore processors [12], since
they have hundreds of processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared memory and
the global memory [11]. The shared memory is an extremely fast on-chip memory
with lower capacity, say, 16-64 Kbytes. The global memory is implemented as an
off-chip DRAM, and has large capacity, say, 1.5-6 Gbytes, but its access latency is
very long. The efficient usage of the shared memory and the global memory is a key
for CUDA developers to accelerate applications using GPUs. In particular, we need
to consider the bank conflict of the shared memory access and the coalescing of the
global memory access [6, 12, 13]. The address space of the shared memory is mapped
into several physical memory banks. If two or more threads access the same memory
banks at the same time, the access requests are processed sequentially. Hence, to
maximize the memory access performance, threads of CUDA should access distinct
memory banks to avoid the bank conflicts of the memory accesses. To maximize
the bandwidth between the GPU and the DRAM chips, the consecutive addresses
of the global memory must be accessed at the same time. Thus, CUDA threads
should perform coalesced access when they access the global memory.

There are several previously published works that aim to present theoretical
practical parallel computing models capturing the essence of parallel computers.
Many researchers have been devoted to developing efficient parallel algorithms to
find algorithmic techniques on such parallel computing models. For example, pro-
cessors connected by interconnection networks such as hypercubes, meshes, trees,
among others [14], bulk synchronous models [15], LogP models [16], reconfigurable
models [17], among others. As far as we know, no sophisticated and simple parallel
computing model for GPUs has been presented. Since GPUs are attractive paral-
lel computing devices for many developers, it is challenging work to introduce a
theoretical parallel computing model for GPUs.

1.2 Our Contribution: Introduction to the Discrete Memory Machine and

the Unified Memory Machine

The first contribution of this paper is to introduce simple parallel memory machine
models that capture the essential features of the bank conflict of the shared mem-
ory access and the coalescing of the global memory access. More specifically, we
present two models, the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM), which reflect the essential features of the shared memory
and the global memory of NVIDIA GPUs.

The outline of the architectures off the DMM and the UMM are illustrated in
Figure 1. In both architectures, a sea of threads (Ts) are connected to the memory
banks (MBs) through the memory management unit (MMU). Each thread is a
Random Access Machine (RAM) [1], which can execute fundamental operations
in a time unit. We do not discuss the architecture of the sea of threads in this
paper, but we can imagine that it consists of a set of multi-core processors which
can execute many threads in parallel. Threads are executed in SIMD [18] fashion,
and the processors run on the same program and work on the different data. In
principle, each thread is assigned a local memory (or local registers) that can
access O(1) words of data. However, sometimes, we assume that each thread has
more than O(1) local registers, if many registers are very useful to accelerate the
computation. If this is the case, we assume that each thread has r local registers
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to store words of data. In either cases, we assume that each thread can access a
local register in 1 time unit.

DMM UMM

MMU

MB MB MB MB

MMU

MB MB MB MB

T T T T T T

T T T T T T

T T T T T T

T T T T T T
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a sea of threads a sea of threads
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T: Thread, MMU:Memory Management Unit, MB: Memory Bank

Figure 1. The architectures of the DMM and the UMM

MBs constitute a single address space of the memory. A single address space of
the memory is mapped to the MBs in an interleaved way such that the word of
data of address i is stored in the (i mod w)-th bank, where w is the number of
MBs. The main difference of the two architectures is the connection of the address
line between the MMU and the MBs, which can transfer an address value. In the
DMM, the address lines connect the MBs and the MMU separately, while a single
address line from the MMU is connected to the MBs in the UMM. Hence, in the
UMM, the same address value is broadcast to every MB, and the same address of
the MBs can be accessed in each time unit. On the other hand, different addresses
of the MBs can be accessed in the DMM. Since the memory access of the UMM is
more restricted than that of the DMM, the UMM is less powerful than the DMM.

The performance of algorithms on the PRAM is usually evaluated using two
parameters: the size n of the input and the number p of processors. For example,
it is well known that the sum of n numbers can be computed in O(n

p + log p) time

on the PRAM [2]. We will use four parameters, the size n of the input, the number
p of threads, the width w and the latency l of the memory when we evaluate
the performance of algorithms on the DMM and on the UMM. The width w is the
number of memory banks and the latency l is the number of time units to complete
the memory access. Hence, the performance of algorithms on the DMM and the
UMM is evaluated as a function of n (the size of a problem), p (the number of
threads), w (the width of a memory), and l (the latency of a memory). Further, r
(the number of local registers used by each thread) may be additionally used.

In NVIDIA GPUs, the width w of the shared memory and the global memory
is 16 or 32. Also, the latency l of the global memory is several hundreds clock
cycles. In CUDA, a grid can have at most 65535 blocks with at most 1024 threads
each [11]. Thus, the number p of threads can be 65 million.

1.3 Position and Role of Memory Machine Models, the DMM and the

UMM

The DMM and the UMM are theoretical models of parallel computation, that
capture the essential feature of the shared memory and the global memory of GPUs.
The architecture of the GPUs are more complicated. It is a hybrid of the DMM
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and the UMM. Also, when we develop efficient programs running on the GPUs,
we need to consider several issues. NVIDIA GPUs have other features such as
hierarchical architecture grid/block/thread. All threads are partitioned into equal
sized blocks. Synchronization of all threads in each block can be done by calling
barrier synchronization function syncthreads(), which has fairly low overhead.
On the other hand, no direct way is provided for synchronization of all threads in
all blocks. There are several indirect ways of synchronization of all threads, but
they have rather high overhead. It follows that, local barrier synchronization is
acceptable while global barrier synchronization should be avoid. This fact is not
incorporated in the DMM and the UMM. It may be possible to incorporate many
features of GPUs and introduce a more exact parallel computing model for GPUs. If
all features of GPUs are incorporated in our theoretical parallel models, they will be
too complicated and need more parameters. The development of algorithms on such
complicated models may have too much non-essential and tedious optimizations.
Thus, we focus on just memory access features on the current GPUs, and introduce
parallel computing models, the DMM and the UMM. Actually, efficient memory
access is a key issue to develop high performance programs on the GPUs [13, 19].
Thus, we have introduced two simple parallel models, the DMM and the UMM,
which focus on the memory access to the shared memory and the global memory
of NVIDIA GPUs. Sometimes, direct implementation of efficient algorithms on the
DMM and the UMM may not be efficient on an actual GPU. However, we believe
that algorithmic techniques on the DMM and the UMM are useful for developing
algorithms on GPUs.

In [20], a GPU memory model has been shown and a cache-efficient FFT has
been presented. However, their model focuses on the cache mechanism and ignores
the coalescing and the bank conflict. Also, in [21], acceleration techniques for GPU
have been discussed. Although they are taking care of the limited bandwidth of the
global memory, the details of the memory architecture are not considered. As far
as we know, this paper is the first work that introduces simple theoretical parallel
computing models for GPUs. We believe that the development of algorithms on
these models are useful to investigate algorithmic techniques for the GPUs.

Further, the parallel architecture of our memory machines make senses not only
for GPUs, but also for a class of all parallel machines that support a uniform
shared address space designed using a set of off-chip memory chips or on-chip
memory blocks. Usually, DRAMs [22] are used to constitute an off-chip memory.
An on-chip memory block can be implemented in a rectangular block of a VLSI
chip. For example, modern FPGAs has a lot of block RAMs, each of which can
store 18kbit data [23], can be used as a memory bank. To increase the capacity and
the bandwidth, we should use multiple on-chip memory chips or on-chip memory
blocks. To connect a set of processor cores with these memory elements though the
MMU, the architecture of the UMM and the DMM make a whole lot of sense.

1.4 Our Contribution: Fundamental Data Movement Algorithms on the

DMM and the UMM

The second contribution of this paper is to evaluate the performance of two memory
access methods, the contiguous access and the stride access on the DMM and the
UMM. The reader should refer to Figure 2 for illustrating these two access methods
by four threads T (0), T (1), T (2), and T (3). It is well-known that the contiguous
access is much more efficient than the stride access on the GPUs [13]. We will show
that, the contiguous access is also more efficient on the DMM and on the UMM.
More specifically, we first show that the contiguous access of an array of size n
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Figure 2. The contiguous access and the stride access for p = 4 and n = 16.

can be done in O( n
w + nl

p ) time units on the DMM and the UMM. We also show

two lower bounds, Ω( n
w ) time units by the bandwidth limitation and Ω(nl

p ) time
units by the latency limitation to access all of data in an array of size n. Thus, the
contiguous access on the DMM and the UMM is optimal. Further, we will show
that the stride access on the DMM can be done in O( n

w · GCD(n
p , w) + nl

p ) time

units on the DMM, where GCD(n
p , w) is the greatest common divisor of n

p and

w. Hence, the stride access on the DMM is optimal if n
p and w are co-prime. The

stride access on the UMM can be done in O(min(n, n
w · n

p + nl
p )) time units. Hence,

the stride access on the UMM needs an overhead of a factor of n
p .

From these memory access results, we have one important observation as follows.
The factor n

w in the computing time comes from the bandwidth limitation of the
memory. It takes at least n

w time units to access whole data in an array of size n from

the memory bandwidth w. Also, the factor nl
p comes from the latency limitation.

From the memory access latency l, each thread cannot send a new access request in
l time units. It follows that, each thread can access the memory once in l time units
and any consecutive l time units can have at most p access requests by p threads.
Hence, nl

p time units are necessary to access all of the elements in an array of size

n. Further, to hide the latency overhead factor nl
p from the bandwidth limitation

factor n
w , the number p of the threads must be no less than wl. We can confirm

this fact from a different aspect. We can think that the memory access requests are
stored in a pipeline buffer of size l for each memory bank. Since we have w memory
banks, we have wl pipeline registers to store memory access requests at all. Since at
most one memory request per thread are stored in the wl pipeline registers, wl ≤ p
must be satisfied to fill the pipeline registers full of memory access requests.

1.5 Our Contribution: Transpose and Permutation on the DMM and the

UMM

The third contribution is to show optimal off-line permutation algorithms on the
DMM and the UMM.

As a preliminary step, we show transposing algorithms for a 2-dimensional array
of size

√
n × √n. In [19], several techniques are presented for transposing a 2-

dimensional array stored in the shared memory and the global memory on GPUs.
We have adapted these techniques on the DMM and the UMM. The resulting
transposing algorithms run in O( n

w + nl
p ) time units and in O(( n

w + nl
p )

√

w
r ) time

units on the DMM and the UMM, respectively.
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We next show a permutation algorithm on the DMM. We use a graph theo-
retic result of bipartite graph edge-coloring to schedule data routing. The resulting
algorithm runs in O( n

w + nl
p ) time units on the DMM.

Finally, we show a permutation algorithm on the UMM. This algorithm repeat-
edly performs transposing and row-wise permutation. The resulting algorithm runs
in O(( n

w + nl
p )

√

w
r ) time units on the UMM, respectively.

This paper is organized as follows. We first define the DMM and the UMM in
Section 2. In Section 3, we evaluate the performance of the DMM and the UMM for
the contiguous access and the stride access to the memory. Section 4 discusses lower
bounds obtained by the bandwidth limitation and the latency limitation. Section 5
presents algorithms that perform the transpose of 2-dimensional array on the DMM
and the UMM. In Section 6, we show that any permutation on an array can be
done efficiently on the DMM. Finally, Section 7 presents a permutation algorithm
on the UMM.

2. Parallel Memory Machines: DMM and UMM

We first introduce the Discrete Memory Machine (DMM) of width w and latency
l. Let m[i] (i ≥ 0) denote a memory cell of address i in the memory. Let B[j] =
{m[j],m[j + w],m[j + 2w],m[j + 3w], . . .} (0 ≤ j ≤ w− 1) denote the j-th bank of
the memory. Clearly, a memory cell m[i] is in the (i mod w)-th memory bank. We
assume that memory cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in a time unit. Also, we
assume that l time units are necessary to complete an access request and continuous
requests are processed in a pipeline fashion through the MMU. Thus, it takes k+l−1
time units to complete k continuous access requests to a particular bank.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

memory banks of DMM

A[0]

A[1]

A[2]

A[3]

B[0] B[1] B[2] B[3]

address groups of UMM

Figure 3. Banks and address groups for w = 4

Let T (0), T (1), . . . , T (p−1) denote p threads on the memory machine. We assume
that p threads are partitioned into p

w groups of w threads called warps. More
specifically, p threads are partitioned into p

w warps W (0),W (1), . . ., W ( p
w − 1)

such that W (i) = {T (i · w),T (i · w + 1), . . . ,T ((i + 1) · w − 1)} (0 ≤ i ≤ p
w − 1).

Warps are activated for memory access in turn, and w threads in a warp try to
access the memory at the same time. In other words, W (0),W (1), . . . ,W (w − 1)
are activated in a round-robin manner if at least one thread in a warp requests
memory access. If no thread in a warp needs memory access, such warp is not
activated for memory access and is skipped. When W (i) is activated, w threads in
W (i) send memory access requests, one request per thread, to the memory bank.
We also assume that a thread cannot send a new memory access request until the
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previous memory access request is completed. Hence, if a thread send a memory
access request, it must wait l time units to send a new memory access request.

For the reader’s benefit, let us evaluate the time for memory access using Fig-
ure 4 on the DMM for p = 8, w = 4, and l = 3. In the figure, p = 8 threads
are partitioned into p

w = 2 warps W (0) = {T (0), T (1), T (2), T (3)} and W (1) =
{T (4),T (5),T (6),T (7)}. As illustrated in the figure, 4 threads in W (0) try to ac-
cess m[0],m[1],m[10], and m[6], and those in W (1) try to access m[8],m[9],m[14],
and m[15]. The time for the memory access are evaluated under the assumption
that memory access are processed by imaginary l pipeline stages with w registers
each as illustrated in the figure. Each pipeline register in the first stage receives
memory access requests from threads in an activated warp. Each i-th (0 ≤ i ≤ w−1)
pipeline register receives the request to memory bank M(i). In each time unit, a
memory request in a pipeline register is moved to the next one. We assume that
the memory access completes when the request reaches a last pipeline register.

Note that, the architecture of pipeline registers illustrated in Figure 4 are imag-
inary, and it is used only for evaluating the computing time. The actual archi-
tecture should involves a multistage interconnection network [24, 25] or sorting
network [26, 27], to route memory access requests.

Let us evaluate the time for memory access on the DMM. First, access requests
for m[0],m[1],m[6] are sent to the first stage. Since m[6] and m[10] are in the same
bank B[2], their memory requests cannot be sent to the first stage at the same
time. Next, the m[10] is sent to the first stage. After that, memory access requests
for m[8],m[9],m[14],m[15] are sent at the same time, because they are in different
memory banks. Finally, after l − 1 = 2 time units, these memory requests are
processed. Hence, the DMM takes 5 time units to complete the memory access.

We next define the Unified Memory Machine (UMM for short) of width w as
follows. Let A[j] = {m[j · w],m[j · w + 1], . . . ,m[(j + 1) · w − 1]} denote the j-
th address group. We assume that memory cells in the same address group are
processed at the same time. However, if they are in the different groups, one time
unit is necessary for each of the groups. Also, similarly to the DMM, p threads are
partitioned into warps and each warp access to the memory in turn.

Again, let us evaluate the time for memory access using Figure 4 on the UMM for
p = 8, w = 4, and l = 3. The memory access requests by W (0) are in three address
groups. Thus, three time units are necessary to send them to the first stage. Next,
two time units are necessary to send memory access requests by W (1), because
they are in two address groups. After that, it takes l− 1 = 2 time units to process
the memory access requests. Hence, totally 3 + 2 + 2 = 7 time units are necessary
to complete all memory accesses.

3. Sequential memory access operations

We begin with simple operations to see the potentiality of the DMM and the UMM.
Let p and w be the number of threads and the width of the memory machines. We
assume that an array m of size n is arranged in the memory. Let m[i] (0 ≤ i ≤ n−1)
denote the i-th word of the memory. We assume that w ≤ p and n is divisible by p.
We consider two access operations to the memory such that each of the p threads
accesses the n

p memory cells out of the n memory cells. Suppose that array m is
arranged in a 2-dimensional array mc of size n

p × p (i.e. n
p rows and p columns)

such that mc[i][j] = m[i · p + j] for all i and j (0 ≤ i ≤ n
p − 1 and 0 ≤ j ≤ p − 1).

Similarly, let ms be a 2-dimensional array of size p× n
p (i.e. p rows and n

p columns)
such that ms[i][j] = m[i · n

p + j] for all i and j (0 ≤ i ≤ p− 1 and 0 ≤ j ≤ n
p − 1).
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Figure 4. An example of memory access

The contiguous access and the stride access can be written as follows:

[Contiguous Access]
for t← 0 to n

p − 1

for i← 0 to p− 1 do in parallel
T (i) accesses to mc[t][i] (= m[t · p + i])

[Stride Access]
for t← 0 to n

p − 1

for i← 0 to p− 1 do in parallel
T (i) accesses to ms[i][t] (= m[i · n

p + t])

The readers should refer to Figure 2 for illustrating the contiguous and stride
accesses for n = 20, p = 4, and n

p = 5. At time t = 0, p threads access contiguous

locations m[0],m[1],m[2], and m[3] in the contiguous access, while they access
distant locations m[0],m[5],m[10], and m[15] in the stride access.
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Let us evaluate the time necessary to complete the contiguous access and the
stride access. In the contiguous access, w threads in each warp access memory cells
in different memory banks. Hence, the memory access by a warp takes l time units.
Also, the memory access requests by a warp is sent in every 1 time unit. Since we
have p

w warps, the access to p memory cells by p threads can be completed in p
w+l−1

time units. Since this access operation is repeated n
p times, the contiguous access

takes ( p
w + l− 1) · np = O( n

w + nl
p ) time units on the DMM. In the contiguous access

on the UMM, each warp access to the memory cells in the same address group.
Thus, the memory access by a warp takes l time unit and the whole contiguous
access is completed in O( n

w + nl
p ) time units.

The performance analysis of the stride access on the DMM is a bit complicated.
Let us start with a simple case: n

p = w. In this case, the p threads access p memory

cells m[t],m[w + t],m[2w + t], . . . ,m[(p − 1)w + t] for each t (0 ≤ t ≤ w − 1).
Unfortunately, these memory cells are in the same memory bank B[t]. Hence, the
memory access by a warp takes w + l− 1 time units and the memory access to the
p memory cells takes w · p

w + l − 1 = p + l − 1 time units. Thus, the stride access

when n
p = w takes at least (p + l − 1) · n

p = O(n + nl
p ) time units.

Next, let us consider general case. The w threads in the first warp access
m[t],m[np + t],m[2n

p + t], . . . ,m[(w − 1)n
p + t] for each t (0 ≤ t ≤ w − 1).

These w memory cells are allocated in the banks B[t mod w], B[(n
p + t) mod

w], B[(2n
p + t) mod w], . . . , B[((w − 1)n

p + t) mod w]. Let L = LCM(n
p , w) and

G = GCD(n
p , w) be the Least Common Multiple and the Greatest Common Di-

visor of n
p and w, respectively. From the basic number theory, it should be clear

that t mod w = ( L
n

p

· n
p + t) mod w, and the values of t mod w, (n

p + t) mod w, . . .,

(( L
n

p

− 1) · n
p + t) mod w are distinct. Thus, the w memory cells are in the L

n

p

= w
G

banks B[t mod w], B[(n
p +t) mod w], B[(2n

p +t) mod w], . . . , B[((w
G−1)n

p +t) mod w]
equally, and each bank has G memory cells of the w memory cells. Hence, the w
threads in a warp take G + l − 1 time units for each t, and the p threads take
G · p

w + l− 1 time units for each t. Therefore, the DMM takes (G · p
w + l− 1) · n

p =

O(nG
w + nl

p ) time units to complete the stride access. If n
p = w then G = w and the

time for the stride access is O(n + nl
p ). If n

p and w are co-prime, G = 1 and the

stride access takes O( n
w + nl

p ) time units.
Finally, we will evaluate the computing time of the stride access on the UMM.

If n
p ≥ w (i.e. n ≥ pw), then the w memory cells are accessed by w threads in a

warp are in the different address group. Thus, w threads access w memory cells in
w + l− 1 time units, and the stride access takes (w · p

w + l− 1) · np = O(n+ nl
p ) time

units. When n
p < w (i.e. n < pw), the w memory cells accessed by w threads in a

warp are in at most ⌈ (w−1) n

p
+1

w ⌉ ≤ n
p address groups. Hence, the stride access by p

threads for each t takes at most n
p ·

p
w + l− 1 = n

w + l− 1 time units, and thus, the

whole stride access takes ( n
w + l − 1) · n

p = O( n2

pw + nl
p ) time units. Consequently,

the stride access can be completed in O(min(n, n2

pw ) + nl
p )) time units for all values

of n
p . Thus, we have,

Theorem 3.1 . The contiguous access and the stride access on the DMM and
the UMM can be completed in time units shown in Table 1.

Suppose that we have two arrays a and b of size n each. The copy operation from
a and b can be done by the contiguous read and the contiguous write in an obvious
way. Since both the DMM and the UMM can perform the contiguous access in
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Table 1. The running time for the contiguous access and the stride access

DMM UMM

Contiguous Access O( n
w + nl

p ) O( n
w + nl

p )

Stride Access O( n
w ·GCD(n

p , w) + nl
p ) O(min(n, n2

pw ) + nl
p )

n =#data, p =#threads, w =memory bandwidth, l =memory latency

O( n
w + nl

p ) time units from Theorem 3.1, we have,

Corollary 3.2 . The copy between two arrays of size n each can be done in
O( n

w + nl
p ) time units using p threads on the DMM and on the UMM with width w

and latency l.

4. The lower bounds of the computing time and the latency hiding

Let us discuss the lower bound of the computing time of the DMM and the UMM
for non-trivial problems, which require to access all words in an input array of size
n.

Since the bandwidth of the memory is w, at most w words in the memory can
be accessed in a time unit. Thus, it takes at least Ω( n

w ) time to solve a non-trivial
problem. We call the Ω( n

w )-time lower bound the bandwidth limitation.

Since the memory access takes latency l, a thread can send at most t
l memory

access requests in t time units. Thus, the p threads can send at most pt
l access

requests totally. Since at least n memory access requests to solve a non-trivial
problem, pt

l ≥ n must be satisfied. Thus, at least t = Ω(nl
p ) time units are necessary.

We call the Ω(nl
p )-time lower bound the latency limitation.

From the discussion above, we have,

Theorem 4.1 . Both the DMM and the UMM with p threads, width w, and
latency l takes at least Ω( n

w + nl
p ) time units to solve a non-trivial problem of size

n.

From Theorem 4.1, the copy operation for Corollary 3.2 is optimal. In the fol-
lowing sections, we will show algorithms for data movement running in O( n

w + nl
p

time. Since data movements are non-trivial problems, they have a lower bound of
Ω( n

w + nl
p ) time units. Hence, the algorithms for data movement are optimal.

Let us discuss two factors, n
w for bandwidth limitation and nl

p for latency limi-

tation. If n
w ≥ nl

p , that is, wl ≤ p, then the bandwidth limitation dominates the
latency limitation. As illustrated in Figure 4, both the DMM and the UMM have
wl imaginary pipeline registers. Each thread can occupy one of the wl imaginary
pipeline registers for memory access. Thus, we need at least wl threads to fill all
the pipeline registers with memory access requests. Otherwise, that is, if wl > p,
then a set of wl pipeline registers always has an empty one. It follows that, for the
purpose of hiding the latency overhead, the number p of threads must be at least
the number wl of the pipeline registers.

5. Transpose of a 2-dimensional array

Suppose that a 2-dimensional array a and b of size
√

n × √n is arranged in the
memory. The transpose of the 2-dimensional array is a task to move a word of data
stored in a[i][j] to b[j][i] for all (0 ≤ i, j ≤ √n− 1).
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Let us start with a straightforward transpose algorithm using the contiguous
access and the stride access. The following algorithm transposes a 2-dimensional
array a of size

√
n×√n.

[Straightforward transposing algorithm]
for t← 0 to n

p − 1

for i← 0 to p− 1 do in parallel
j ← (t · p + i)/

√
n

k ← (t · p + i) mod
√

n
T (i) performs b[j][k]← a[k][j]

On the PRAM, simultaneous reading and simultaneous writing by processors
can be done in O(1) time. Hence, this straightforward transposing algorithm runs
in O(n

p ) time on the PRAM. Also, it takes at least Ω(n
p ) time to access n words

by p processors on the PRAM. Thus, this straightforward transposing algorithm is
time optimal for the PRAM.

Since the straightforward algorithm involves the stride access, it is not difficult
to see that the DMM and the UMM take O( n

w ·GCD(
√

n,w) + nl
p ) time units and

O(min(n, n2

pw ) + nl
p ) time units for transposing a 2-dimensional array, respectively.

On the DMM, GCD(
√

n,w) = w if
√

n is divisible by w. If this is the case, the
transpose takes O(n) time units the DMM. We will show that, regardless of the
value of n, the transpose can be done in O( n

w + nl
p ) time units both on the DMM

and on the UMM.
We first show an efficient transposing algorithm on the DMM. The technique used

in this algorithm is essentially the same as the diagonal block reordering presented
in [19]. The key idea is to access the array in diagonal fashion. The details of the
algorithm are spelled out as follows:

[Transpose by the diagonal access on the DMM]
for t← 0 to n

p − 1

for i← 0 to p− 1 do in parallel
j ← (t · p + i)/

√
n

k ← (t · p + i) mod
√

n
T (i) performs b[(j + k) mod

√
n][k]← a[k][(j + k) mod

√
n]

The readers should refer to Figure 5 for illustrating the indexes of threads reading
from memory cells in a and writing in memory cells of b for n = p = 16 and
w = 4. From the figure, we can confirm that threads T (j · 4 + 0),T (j · 4 + 1),T (j ·
4 + 2),T (j · 4 + 3) read from memory cells in diagonal location of a and write to
memory cells in diagonal location of b for every j (0 ≤ j ≤ 3). Thus, reading and
writing to memory banks by w threads in a warp are different. Hence, p threads
can copy p memory cells in p

w + l− 1 time units and thus the total computing time

is ( p
w + l − 1) · n

p = O( n
w + nl

p ) time units. Therefore, we have,

Lemma 5.1 . The transpose of a 2-dimensional array of size
√

n×√n can be done
in O( n

w + nl
p ) time units using p threads on the DMM with memory width w and

latency l.

Next, we will show that the transpose of a 2-dimensional array can be also done
in O( n

w + nl
p ) on the UMM if every thread has w local registers. As a preliminary

step, we will show that the UMM can transpose a 2-dimensional array of size w×w
in wl time units using w threads with each thread having a local storage of size
w. We assume that each thread has w local registers. Let ri[0], ri[1], . . . ri[w − 1]
denote w local registers of T (i).



12 Koji Nakano

ba

T (0)

T (1)

T (2)

T (3)

T (4)

T (5)

T (6)

T (7)

T (8)

T (9)

T (10)

T (11)

T (12)

T (13)

T (14)

T (15)

T (0)

T (1)

T (2)

T (3)

T (4)

T (5)

T (6)

T (7)

T (8)

T (9)

T (10)

T (11)

T (12)

T (13)

T (14)

T (15)

Figure 5. Transposing on the DMM
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Figure 6. Transposing of a 2-dimensional array of size w × w on the UMM

[Transpose by the rotating technique on the UMM]
for t← 0 to w − 1

for i← 0 to w − 1 do in parallel
T (i) performs ri[t]← a[t][(t + i) mod w]

for t← 0 to w − 1
for i← 0 to w − 1 do in parallel

T (i) performs b[t][(t− i) mod w]← ri[(t− i) mod w]

Let (i, j) denote the value stored in a[i][j] initially. The readers should refer to
Figure 6 for illustrating how these values are transposed.

Let us confirm that the algorithm above correctly transpose the 2-dimensional
array a. In other words, we will show that, when the algorithm terminates, b[i][j]
stores (j, i). It should be clear that, the value stored in ri[t] is (t, (t + i) mod w).
Since ((t − i) mod w, t) is stored in ri[(t − i) mod w], it is also stored in b[t][(t −
i) mod w] when the algorithm terminates. Thus, every b[i][j] (0 ≤ i, j ≤ w − 1)
stores (j, i). This completes the proof of the correctness of our transpose algorithm
on the UMM.

Let us evaluate the computing time. In the reading operation ri[t] ← a[t][(t +
i) mod w], w memory cells a[t][(t + 0 mod w)], a[t][(t + 1 mod w)], . . . , a[t][(t + w−
1 mod w)] are in the different memory banks. Also, in the writing operation b[t][(t−
i) mod w] ← ri[(t − i) mod w], w memory cells b[t][(t − 0 mod w)], b[t][(t − 1 mod
w)], . . . , b[t][(t − (w − 1) mod w)] are in the different memory banks. Thus, each
reading and writing operation can be done in O(l) time units and this algorithm
runs in O(wl) time units.

The transpose of a larger 2-dimensional array of size
√

n × √n can be done by
repeating the transpose of a 2-dimensional array of size w×w. The algorithm has

two steps. More specifically, the 2-dimensional array is partitioned into
√

n
w ×

√
n

w
subarrays of size w × w. Let A[i][j] (0 ≤ i, j ≤ n

w − 1) denote the subarray of size
w × w. First, each subarray A[i][j] is transposed independently using w threads
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√
n

√
n

w

w

local transpose global transpose

Figure 7. Transposing on the UMM

(local transpose). After that, the corresponding words of A[i][j] and A[j][i] are
swapped for all i and j in an obvious way (global transpose). Figure 7 illustrates
the transposing algorithm on the UMM.

Let us evaluate the computing time to complete the transpose of a
√

n × √n
2-dimensional array. Suppose that we have p (≤ n

w ) threads and partition the p
threads into p

w groups with w threads each. We assign n
w2 /

p
w = n

pw subarrays to

each warp of w threads. Each of the p
w warps transposes each of the p

w subarrays
in parallel. It takes O(w · ( p

w + l)) = O(p + wl) time units. The transposing of
p
w subarrays is repeated n

pw times, the total computing time for transposing all

subarrays is n
pw ·O(p + wl) = O( n

w + nl
p ) time units. It should have no difficulty to

confirm that the global transpose can be also done in O( n
w + nl

p ) time units. Thus
we have,

Lemma 5.2 . The transpose of a 2-dimensional array of size
√

n × √n can be
done in O( n

w + nl
p ) time using p (w ≤ p ≤ n

w ) threads on the UMM with each thread
having w local registers.

Finally, we will show the case that each thread of the UMM has r (< w) local
registers. We first show how we transpose a 2-dimensional array a of size

√
rw×√rw

using w threads. We first partition w threads into
√

rw groups of
√

w
r threads each.

Each group has totally
√

w
r · r =

√
rw local registers and works as a single thread

with
√

rw local registers. Each group i (0 ≤ i ≤
√

w
r ) with

√
rw local registers can

read and store
√

rw data a[0][(i+0) mod
√

rw], a[1][(i+1) mod
√

rw], . . . , a[
√

rw−
1][(i +

√
rw− 1) mod

√
rw] in the local registers. After that, they are written into

b[(i+0) mod
√

rw][0], a[(i+1) mod
√

rw][1], . . . , a[(i+
√

rw−1) mod
√

rw][
√

rw−1].
All groups read and write the arrays in turn, the transpose of a 2-dimensional array
a of size

√
rw ×√rw can be done in O(l

√
rw) time units.

Similarly to Lemma 5.2, we perform the transpose of a 2-dimensional array a of
size
√

n×√n. For this purpose, we partition a into
√

n
rw ×

√

n
rw subarrays of size√

rw ×√rw. Let us evaluate the computing time. The p threads can transpose p
w

subarrays in parallel in O(
√

rw ·( p
w + l)) = O(p

√

r
w + l
√

rw) time. Since we have n
rw

subarrays, this transpose operation is repeated n
rw/ p

w = n
rp times. Thus, the local

transpose can be done in O(p
√

r
w+l
√

rw)· nrp = O( n√
rw

+nl
p ·

√

w
r ) = O(( n

w+nl
p )·

√

w
r )

time units. The global transpose is just a copy of data, it can be done in O( n
w + nl

p )
time units. Hence, we have,

Lemma 5.3 . The transpose of a 2-dimensional array of size
√

n × √n can be
done in O(( n

w + nl
p ) ·

√

w
r ) time using p (w ≤ p ≤ n

r ) threads on the UMM with

each thread having r (r ≤ w) local registers.



14 Koji Nakano

Lemma 5.3 implies that the transpose by the UMM with r local registers has a
overhead of factor

√

w
r .

6. Permutation of an array on the DMM

In Section 5, we have presented algorithms to transpose a 2-dimensional array on
the DMM and the UMM. The main purpose of this section is to show algorithms
that perform any permutation of an array. Since a transpose is one of the permuta-
tions, the results of this section is a generalization of those presented in Section 5.

Let a and b be one dimensional arrays of size n each, and P be a permutation
of (0, 1, . . . , n − 1). The goal of permutation of an array is to copy a word of data
stored in a[i] to b[P (i)] for every i (0 ≤ i ≤ n − 1). We assume that, permutation
P is given in offline. We will show that, for given any permutation P , permutation
of an array can be done efficiently on the DMM and the UMM.

Let us start with evaluating the performance of the straightforward permuta-
tion algorithm. Suppose we need to do permutation of an array a of size n and
permutation P is given.

[Straightforward permutation algorithm]
for t← 0 to n

p − 1 do

for j ← 0 to p− 1 do in parallel
i← t · p + j
T (j) performs b[P (i)]← a[i]

Clearly each t takes O(1) time unit on the PRAM. Hence, the straightforward
algorithm runs in O(n

p ) time units on the PRAM.
This straightforward permutation algorithm also works correctly on the DMM

and the UMM. However, it may take a lot of time to complete the permutation. In
the worst case, this straightforward algorithm takes O(n) time units on the DMM
and the UMM if all writing operation to b[P (i)] are in the same bank on the DMM
or in the different address groups on the UMM. We will show that any permutation
of an array of size n can be done in O( n

w + nl
p ) time units on the DMM and the

UMM.
If we can schedule reading/writing operations for permutation such that w

threads in a warp read from distinct banks and write in distinct banks on the
DMM, the permutation can be done efficiently. For such scheduling, we use the
following important graph theoretic result [28, 29]:

Theorem 6.1 König. A regular bipartite graph with degree ρ is ρ-edge-colorable.

Figure 8 illustrates an example of a regular bipartite graph with degree 4 painted
by 4 colors. Each edge is painted by one of the 4 colors such that no node is
connected to edges with the same color. In other words, no two edges with the
same color share a node. The readers should refer to [28, 29] for the proof of
Theorem 6.1.

We show a permutation algorithm on the DMM. Suppose that a permutation
P of (0, 1, . . . , n − 1) is given. We draw a bipartite graph G = (U, V,E) of P as
follows:

• U = {B[0], B[1], B[2], . . . , B[w − 1]} is a set of nodes each of which corresponds
to a bank of a.

• V = {B[0], B[1], B[2], . . . , B[w − 1]} is a set of nodes each of which corresponds
to a bank of b.

• For each pair source a[i] and destination b[P (i)], E has a corresponding edge
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Figure 8. A regular bipartite graph with degree 4

connecting B[i mod w](∈ U) and B[P (i) mod w](∈ V ).

Clearly, an edge (B[u], B[v]) (0 ≤ u, v ≤ w−1) corresponds to a word of data to be
copied from bank B[u] of a to B[v] of b. Also, G = (U, V,E) is a regular bipartite
graph with degree n

w . Hence, G is n
w -colorable from Theorem 6.1. Suppose that

all of the n edges in E are painted by n
w colors 0, 1, . . ., n

w − 1. We determine
value si,j (0 ≤ i ≤ n

w − 1, 0 ≤ j ≤ w − 1, 0 ≤ si,j ≤ n − 1) such that an edge
(B[si,j mod w], B[P (si,j) mod w]) with color i corresponds to a pair of source a[si,j]
and destination b[P (si,j)]. It should have no difficulty to confirm that, for each i,

• w banks B[si,0 mod w], B[si,1 mod w], . . . , B[si,w−1 mod w] are distinct, and

• w banks values B[P (si,0) mod w], B[P (si,1) mod w], . . . , B[P (si,w−1) mod w] are
distinct.

Thus, we have an important lemma as follows:

Lemma 6.2 . Let si,j denote a source defined above. For each i, we have, (1)
a[si,0], a[si,1], . . ., a[si,w−1] are in different banks, and (2) b[P (si,0)], b[P (si,1)], . . .,
b[P (si,w−1)] are in different banks.

We can perform the bank conflict-free permutation using si,j. The details are
spelled out as follows.

[Permutation algorithm on the DMM]
for t← 0 to n

p − 1 do

for j ← 0 to p− 1 do in parallel
i← t · p + j
k ← si/w,i mod w

T (j) performs b[P (k)]← a[k]

Since b[P (k)] ← a[k] are performed for all k (0 ≤ k ≤ n − 1), this algorithm
performs data movement along permutation P correctly. We will show that this
permutation algorithm terminates in O( n

w + nl
p ) time units. For t = 0, warp W (q)

(0 ≤ q ≤ p
w − 1) with w threads T (wq),T (wq + 1), . . . ,T (w(q + 1) − 1) performs

b[P (sq,0)] ← a[sq,0], b[P (sq,1)] ← a[sq,1], . . ., b[P (sq,w−1)] ← a[sq,w−1] in parallel.
From Lemma 6.2, these w threads read from different banks in a and write to
different banks in b. Thus, p threads complete operations for t = 0 in O( p

w + l)
time units. Similarly, we can prove that the operation for every t can be done in
O( p

w + l) time units. Thus the total running time is n
p ·O( p

w + l) = O( n
w + nl

p ) time
units. Thus, we have,
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Theorem 6.3 . Any permutation on an array of size n can be done in O( n
w + nl

p )
time units using p threads on the DMM with width w and latency l.

7. Permutation of an array on the UMM

The main purpose of this section is to show a permutation algorithm on the UMM.
Our permutation algorithm uses the transpose algorithm on the UMM presented
in Section 5.

We start with a small array. Suppose that we have an array a of size w and
permutation P on it. Since all elements in a are in the same address group, they
can be read/written in a time unit. Thus, any permutation of an array a of size w
can be done in O(l) time units.

Next, we show a permutation algorithm for an array a of size w2. We can consider
that a permutation is defined on a 2-dimensional array a. In other words, the goal
of permutation is to move a word of data stored in a[i][j] to a[P (i ·w + j)/w][P (i ·
w + j) mod w] for every i and j (0 ≤ i, j ≤ w − 1). We first show an algorithm for
the row-wise permutation which is a permutation satisfying P (i ·w + j)/w = i for
all i and j. Figure 9 shows an example of row-wise permutation. In this figure, we
assume that each a[i][j] is initially storing (P (i · w + j)/w,P (i · w + j) mod w]) =
(i, P (i·w+j) mod w]). After the permutation, it is copied to a[i][P (i·w+j) mod w]
and thus, each a[i][j] stores (i, j).

(3,0) (3,1)

(2,0)(2,1)

(0,1) (0,0)(0,3)

(1,3)

(0,2)

(1,2) (1,1)

(3,2)

(1,0)

(3,3)

(2,3) (2,2)

(3,0) (3,1)

(2,0) (2,1)

(0,1)(0,0) (0,3)

(1,3)

(0,2)

(1,2)(1,1)

(3,2)

(1,0)

(3,3)

(2,3)(2,2)

row-wise
permutation

Figure 9. Row-wise permutation

We use p threads (w ≤ p ≤ w2) partitioned into p
w warps W (0),W (1), . . . ,W ( p

w−
1) with w threads each. The details of the row-wise permutation algorithm are as
follows.

[Row-wise permutation algorithm]

for t← 0 to w2

p − 1

for i← 0 to p
w do in parallel

W (i) performs permutation of the (t · p
w + i)-th row.

Clearly, each row of an array a of size w2 corresponds to an address group. For
each t and i, W (i) can perform a permutation of a row in O(l) time units. Hence,
for each t, W (0),W (1), . . . ,W ( p

w − 1) can perform the row-wise permutation of p
w

rows in O( p
w + l) time units. Thus, the row-wise permutation algorithm terminates

in w2

p · (
p
w + l) = O(w + w2l

p ) time units. Hence we have,

Lemma 7.1 . Any row-wise permutation of a two-dimensional array of size w×w
can be done in O(w + w2l

p ) time units using p threads (w ≤ p ≤ w2) on the UMM
with width w and latency l.

We next show an algorithm for the column-wise permutation , which is a permu-
tation satisfying P (i ·w + j) mod w = j for all i and j. This can be done by three
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steps as follows:

[Column-wise permutation on the UMM]
Step 1: Transpose the two-dimensional array
Step 2: Row-wise permute the two-dimensional array
Step 3: Transpose the two-dimensional array

Figure 10 illustrates the data movement of the three steps. Again, in this figure, we
assume that each a[i][j] is initially storing (P (i·w+j)/w,P (i·w+j) mod w) = (P (i·
w+j) mod w, j). After the transpose in Step 1, a[j][i] stores (P (i ·w+j) mod w, j).
The row-wise permutation is performed such that a[j][i] stores (i, j). Finally, by
transposing in Step 3, a[i][j] stores (i, j).

Since column-wise permutation can be done by transposing and row-wise per-
mutation, from Lemma 5.2 and Lemma 7.1, we have,

Lemma 7.2 . Any column-wise permutation of a two-dimensional array of size
w × w can be done in O(wl) time units using w threads on the UMM with each
thread having w local registers.
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Figure 10. Column-wise permutation

We next show any permutation of a 2-dimensional array of size w×w can be done
in O(wl) time units using w threads on the UMM by the row-wise permutation
and the column-wise permutation. For a given permutation P on a 2-dimensional
array a, we draw a bipartite graph G = (U, V,E) as follows:

• U = {A[0], A[1], A[2], . . . , A[w − 1]} is a set of nodes each of which corresponds
to an address group of source.

• V = {A[0], A[1], A[2], . . . , A[w − 1]} is a set of nodes each of which corresponds
to an address group of destination.

• For each pair source a[i][j] and destination a[P (i ·w + j)/w][P (i ·w + j) mod w],
E has a corresponding edge connecting A[i](∈ U) and A[P (i · w + j)/w](∈ V ).

For example if a word of data in a[1][3] is copied to a[2][4] by permutation P , an
edge is drawn from node A[1] in U and node A[2] in V . Clearly, G is a regular
bipartite graph with degree w. From Theorem 6.1, this bipartite graph can be
painted using w colors such that w edges painted by the same color never share a
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node.
Suppose that, for a given permutation P on a 2-dimensional array a of size w×w,

we have painted edges in w colors 0, 1, . . ., w − 1. Since each edge corresponds to
a data stored in a, we can think that data is painted by the same color as the
corresponding edge. Permutation can be done by three steps as follows:

[Permutation on the UMM]
Step 1: Row-wise permute the 2-dimensional array.
Step 2: Column-wise permute the 2-dimensional array.
Step 3: Row-wise permute the 2-dimensional array.

Let us see how permutation of each step is determined by edge coloring. As before,
we assume that a[i][j] is storing (P (i ·w + j)/w,P (i ·w + j) mod w) and show that
after the permutation algorithm is executed a[i][j] stores (i, j). The readers should
refer to Figure 11 for illustrating the data movement of the permutation algorithm
for w = 4. From the figure we can confirm the following lemma:

Lemma 7.3 . Suppose that data stored in a 2-dimensional array of w × w are
painted by w colors using edge coloring of the corresponding bipartite graph above.
We have: (1) data in the same row are painted by different colors, and (2) data
painted by the same color has different row destination.

Since nodes in U are connected to w edges painted by different colors, we have
(1) above. Also, since w edges painted by the same color connected to different
nodes in V , we have (2) above.

(3,0) (3,1) (2,0) (2,1)

(0,1) (0,0) (0,3) (1,3)

(0,2) (1,2) (1,1) (3,2)

(1,0) (3,3) (2,3) (2,2)

(3,0) (3,1)(2,0) (2,1)

(0,1) (0,0) (0,3)(1,3)

(0,2)(1,2) (1,1) (3,2)

(1,0)(3,3) (2,3) (2,2)

(3,0) (3,1)

(2,0) (2,1)

(0,1) (0,0) (0,3)

(1,3)

(0,2)

(1,2) (1,1)

(3,2)

(1,0)

(3,3)

(2,3) (2,2)

(3,0) (3,1)

(2,0) (2,1)

(0,1)(0,0) (0,3)

(1,3)

(0,2)

(1,2)(1,1)

(3,2)

(1,0)

(3,3)

(2,3)(2,2)

row-wise
permutation

column-wise
permutation

row-wise
permutation

Figure 11. Illustrating a data movement of the permutation algorithm on the UMM

In Step 1, row-wise permutation is performed such that data with color i (0 ≤
i ≤ w− 1) are stored in the i-th column. From Lemma 7.3 (1), w data in each row
are painted by w colors, Step 1 is possible. Step 2 uses column-wise permutation
to move data to the final row destination. From Lemma 7.3 (2), w data in each
column has different w row destination, Step 2 is possible. Finally, in Step 3, row-
wise permutation is performed to move data to the final column destination.

Since the permutation algorithm on the UMM performs the row-wise permu-
tation and the column-wise permutation, from Lemma 7.1 and Lemma 7.2, we
have,
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Lemma 7.4 . Any permutation of an array of size w2 can be done in O(wl) time
units using w threads on the UMM with each thread having local memory of w
words.

We go on to show a permutation algorithm on a larger array a. Suppose we need
to perform permutation of array a of size w4. We can consider that an array a
is a 2-dimensional array of size w2 × w2. We use the permutation algorithm for
Lemma 7.4 to perform the row-wise permutation of the 2-dimensional array of size
w2 × w2. Similarly to the permutation algorithm for Lemma 7.4, we generate a
bipartite graph with G = (U, V,E) such that

• U = {0, 1, 2, . . . , w2 − 1} is a set of nodes each of which corresponds to a row of
source.

• V = {0, 1, 2, . . . , w2 − 1} is a set of nodes each of which corresponds to a row of
destination.

• For each pair source a[i][j] and destination a[P (i·w+j)/w2][P (i·w+j) mod w2],
E has a corresponding edge connecting i(∈ U) and P (i · w + j)/w(∈ V ).

Similarly to the permutation algorithm for Lemma 7.4, any permutation of a
2-dimensional array of size w2 ×w2 can be done in three steps, row-wise permuta-
tion, column-wise permutation, and then row-wise permutation. The key idea is to
use the permutation algorithm for Lemma 7.4 to perform the row-wise permuta-
tion and the column-wise permutation. We will discuss the details of the row-wise
permutation and the column-wise permutation of a 2-dimensional array of size
w2 ×w2

We show that the row-wise permutation of a 2-dimensional array of size w2×w2

can be done in O(w3 + w4l
p ) time units using p threads on the UMM. The p threads

are partitioned into p
w warps. First, each of the p

w warps assigned a row of the first
p
w rows performs the row-wise permutation of the first p

w row in parallel. This can
be done by the permutation algorithm for Lemma 7.4, which runs O(wl) time units.
Note that, each of the w threads of a warp requests at most O(w) memory access
in the permutation algorithm for Lemma 7.4. The first memory access requests by
the p threads in p

w warps are completed p
w + l time units. Since the memory access

requests by p threads are repeated O(w) times, the row-wise permutation of the
first p

w rows is completed in O(( p
w + l) ·w) = O(p+wl) time units. Since we have w2

rows, this operation is repeated w2/ p
w = w3

p times. Thus, the row-wise permutation

can be done in O((p + wl) · w3

p ) = O(w3 + w4l
p ) time units on the UMM.

Similarly to the row-wise permutation of a 2-dimensional array of size w × w
shown in Figure 10, the column-wise permutation of a 2-dimensional array of size
w2 × w2 can be done by transpose, row-wise permutation, and transpose. The
transpose of a 2-dimensional array of size w2 × w2 can be done in O(w3 + w4l

p )
time units on the UMM from Lemma 5.2. Also, the row-wise permutation can be
done in O(w3 + w4l

p ) time units. Thus, the column-wise permutation can be done

in O(w3 + w4l
p ) time units.

We are now in a position to show our permutation algorithm for a 2-dimensional
array of size w2 × w2. Similarly to permutation of a 2-dimensional array of size
w ×w, permutation of a 2-dimensional array of size w2 ×w2 can be done in three
steps, row-wise permutation, column-wise permutation and row-wise permutation.
Since each step can be done in O(w3 + w4l

p ) time on the UMM, any permutation

of a 2-dimensional array of size w2 ×w2 can be done in O(w3 + w4l
p ) time units on

the UMM.
We can use the same technique for a permutation of an array of size w4 × w4.

The readers should have no difficulty to confirm that any permutation can be done
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in O(w7 + w8l
p ) time units on the UMM using p threads.

Repeating the same technique, we can obtain a permutation algorithm for an
array of size n = wc × wc. Permutation of a 2-dimensional array of size wc × wc

can be done by executing the row-wise permutation recursively three times and the
transpose for an array of size wc/2 × wc/2 twice. If the size n of an array satisfies
n ≤ wO(1), that is, c = O(1), then the depth of the recursion is constant. If this is

the case, the computing time is O(w2c−1 + m2cl
p ) = O( n

w + nl
p ). Thus, we have,

Lemma 7.5 . Any permutation of an array of size n can be done in O( n
w + nl

p ) time

units (w ≤ p ≤ n
w ) on the UMM with each thread having w local registers provided

that n ≤ wO(1).

Finally, if each register has only r (≤ w) local registers, we can use the transpose
algorithm for Lemma 5.3. If this is the case, we have,

Theorem 7.6 . Any permutation of an array of size n can be done in O(( n
w +

nl
p ) ·

√

w
r ) time units (w ≤ p ≤ n

r ) on the UMM with each thread having r (r ≤ w)

local registers provided that n ≤ wO(1).

8. Conclusion

In this paper, we have introduced two parallel memory machines, the Discrete
Memory Machine (DMM) and the Unified Memory Machine (UMM). We first
evaluated the computing time of the contiguous access and the stride access of the
memory on the DMM and the UMM. We then presented an algorithm to transpose
a 2-dimensional array on the DMM and the UMM. Finally, we have shown that
any permutation of an array of size n can be done in O( n

w + nl
p ) time units on the

DMM and the UMM with width w and latency l. Since the computing time just
involves the bandwidth limitation n

w and the latency limitation nl
p , the permutation

algorithms are optimal.
Although the DMM and the UMM are simple, they capture the characteristic

of the shared memory and the global memory of NVIDIA GPUs, Thus, these two
parallel computing models are promising for developing algorithmic techniques for
NVIDIA GPUs. As a future work, we plan to implement various parallel algorithms
developed for the PRAM so far on the DMM and on the UMM. Also, NVIDIA
GPUs have small shared memory and large global memory. Thus, it is also inter-
esting to consider a hybrid memory machine such that threads are connected to a
small memory of DMM and a large memory of UMM.
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