
Optimal Parallel Hardware K-Sorter and

TopK-Sorter, with FPGA implementations

Naoyuki Matsumoto, Koji Nakano and Yasuaki Ito

Department of Information Engineering

Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—This paper presents a FIFO-based parallel merge
sorter optimized for the latest FPGA. More specifically, we show a
sorter that sorts K keys in latency K+log

2
K−1 using log

2
K

comparators. It uses K

M
+log

2
K+log

2
M−1 memory blocks

with capacity M to implement FIFOs. It receives K keys one by
one in every clock cycle and outputs the sorted sequence of them
from K + log

2
K − 1 clock cycles after. Since K clock cycles

are necessary to input all K keys, our sorter is almost optimal in
terms of the latency. Also, since the total FIFO capacity is only
K+M log

2
K+M log

2
M−M and at least K keys must be

stored in the sorter, our sorter is also almost optimal in terms of
the total FIFO capacity if M is small. This paper also presents
topK-sorter, which outputs top K keys in N input keys for any
large N . Our topK-sorter runs in latency N + log

2
K using

log
2
K +1 comparators. It uses memory blocks of size M and

the total FIFO capacity is only 2K+M log
2
K+M log

2
M−

2M . Quite surprisingly, the total FIFO capacity is independent of
N . Also, since the latency must be at least N , that of our topK-
sorter is almost optimal in terms of the latency. Finally, we have
implemented our K-sorter and topK-sorter in a Xilinx Virtex-7
FPGA using built-in Distributed RAMs and Block RAMs. The
implementation results show that our K-sorter reduces the used
memory resources by half, and both K-sorter and topK-sorter
are practical and efficient.

I. INTRODUCTION

An FPGA is a programmable logic device designed to
be configured by the customer or designer by hardware de-
scription language after manufacturing. Since an FPGA chip
maintains relative lower price and programmable features, it is
widely used in those fields which need to update architecture
or functions frequently such as image processing [1], [2] and
education [3]. Latest FPGA architectures consist of an array
of Configurable Logic Blocks (CLBs), Block RAMs, DSP
Bocks, I/O pads, and interconnects [4], [5]. Since they work
in parallel, FPGAs can be used to accelerate the computation.

It is no doubt that sorting is one of the most important
tasks in computer engineering, such as database operations,
image processing, statistical methodology and so on. Hence,
many sequential sorting algorithms have been studied in the
past [6]. To speedup the sorting, multiprocessors are employed
for parallel sorting. Several parallel sorting algorithms such as
parallel merge sort [7], bitonic sort [8], [9], randomized parallel
sorting [10], column sort [11], sampling sort [12], and parallel
radix sort [13], [14] have been devised. Lately, several parallel
sorting algorithm using GPUs has been shown [15]–[17].

It is well known that a FIFO-based merge sorter can sort K
keys using log2 K comparators and FIFOs with total capacity
2K + log2 K − 1 [18]. It uses standard K ′-mergers (K ′ =

20, 21, . . . , K
2), each of which merges two sorted sequences of

size K ′ into one sorted sequence of size 2K ′. This sorter that
we call standard K-sorter sorts K keys given from the input
port one by one in every clock cycle, and the resulting sorted
K keys are output from K + log2 K − 1 clock cycles after
as illustrated in Figure 1. Since the resulting sorted sequence
can be output only after all keys are input, the latency must
be at least K . Thus, the latency of a standard K-sorter is very
close to be optimal. Also, it is well known that Ω(K logK)
comparisons are necessary to sort K keys [19] . Since K-
sorter sorts K keys in 2k+logK−1 clock cycles using log2 K
comparators, it performs O(K logK) comparisons. Hence, K-
sorter is optimal in terms of the total number of comparisons.
Although this sorting architecture was presented a long time
ago, it is still one of the best sorting architectures in terms of
optimality of latency and comparisons.

This paper first presents K-sorter/M which is an im-
provement of a standard K-sorter. We mainly evaluate the
performance of hardware sorters using total FIFO capacity and
latency, which correspond to the hardware resource and the
computing time, respectively. Our K-sorter/M uses memory
blocks of size M to implement FIFOs. Since latest FPGAs
have a lot of small built-in memory blocks, it makes sense to
use memory blocks to implement parallel sorting architectures.
Our K-sorter/M sorts K keys in latency K+log2 K−1 using
log2 K comparators and FIFOs with K

M
+log2 K+log2 M−1

memory blocks. Hence, the total FIFO capacity is only
K+M log2 K+M log2 M −M . Since K-sorter/M performs
exact simulation of standard K-sorter, it is also almost optimal
in terms of the latency and the number of total comparisons.
In addition, since at least K keys must be stored in FIFOs, the
total FIFO capacity is very close to be optimal if M is small,
while standard K-sorter is not optimal.

This paper also presents topK-sorter/M , which outputs
top K keys in N input keys for any large N . Figure 1
illustrates a timing chart of top8-sorter/M . It first outputs the
sorted sequence of the first K keys. After that, it outputs
the sorted sequence of the smallest K keys in the first 2K
keys. In general, at each i-th iteration (i ≥ 1), it outputs the
sorted sequence of the smallest K keys in the first iK keys.
Hence, it can find top K keys in N = iK input keys for
any large N . Our topK-sorter/M runs in latency N + log2 K
using log2 K + 1 comparators and FIFOs with total capacity
5
2K+M log2 K+M log2 M . In Figure 1, top8-sorter outputs
top 8 keys out of 24 keys in latency 24 + log2 8 = 27.
Since top K keys can be output only after all N keys are
input, topK-sorter/M is almost optimal in terms of the latency.

8 9 6 3 1 7 4 0 1 2 8 3 0 4 6 5

0 1 3 4 6 7 8 9 0 1 2 3 4 5 6 8

input

output of 8-sorter

latency

0 1 3 4 6 7 8 9 0 0 1 1 2 3 3 4

latency

output of top8-sorter

6 9 5 3 1 8 4 7

1 3 4 5 6 7 8 9

0 0 1 1 1 2 3 3

Fig. 1. A timing chart for 8-sorter and top-8 sorter

TopK-sorter/M may have many applications in the area of
data mining. For example, Apriori algorithm [20], [21], which
finds frequent item sets over transaction database, repeatedly
finds top K frequently appeared data sets. Hence, it is very
important to speed the computation for finding top K keys.
We do not discuss implementation of Apriori algorithm, but
we expect that our new idea for topK-sorter can be used for
accelerate Apriori algorithm.

Finally, we have implemented our K-sorter and topK-
sorter in a Xilinx Virtex-7 FPGA. The implementation results
show that our K-sorter/M reduces the used memory resources
by half, and both K-sorter/M and topK-sorter/M are practical
and efficient.

Several sorting architectures based on K-sorter have been
presented [22], [23]. In [24], they have presented a topK-
sorter. Basically, their architecture is an N -input bitonic sorter
from which circuit elements unnecessary to find top K keys
are removed. Since bitonic sorting needs a lot of comparators,
their architecture can find only top 4 key in 256 key.

Table I summarizes the theoretical analysis of performance
of mergers, sorters and topK sorters. The FIFO capacity of K-
sorter [18] is 2K + log2 K − 1, while that of our K-sorter/M
is K +M log2 K +M log2 M −M . Thus, if M is so small
that M ≪ K , then our K-sorter/M reduces by half the total
FIFO capacity.

This paper is organized as follows: We first review a
standard K-merger in Section II. Section III shows our topK-
merger and topK-sorter, which finds top K keys in any
large number of input keys. Section IV presents our K-
merger and topK-merger, which use FIFOs with fewer total
capacity. It also shows K-sorter and topK-sorter using them.
We show how memory blocks of FPGAs are implemented
in V. Section VI shows implementation results of K-sorters
and topK-mergers in the FPGAs. Section VII concludes our
work.

II. MERGER AND SORTER USING FIFOS

This section reviews standard K-merger with two FIFOs
of size K + 1 and K , respectively, that merges two sorted
sequence with K keys each into one sorted sequence with 2K
keys [18]. We also show that standard K-sorter that sorts K
keys can be implemented using multiple mergers and evaluate
the performance.

Standard K-merger has one input port and one output
port and receives one key from the input port and outputs

one key to the output port in every clock cycle. The in-
put sequence is partitioned into subsequences of K keys
each and each subsequence is sorted. More specifically, let
X = 〈x0, x1, . . . , xN−1〉 denote N input keys. They are
partitioned into subsequences X0, X1, . . . , XN

K
−1 and each

Xi = 〈xi·K , xi·K+1, . . . , xi·K+K−1〉 (0 ≤ i ≤ N
K

− 1)
is sorted. Standard K-merger merges each pair of adjacent
subsequences X2i and X2i+1 (0 ≤ i ≤ N

2K − 1) into one
sorted sequence with 2K keys.

Standard K-merger has two FIFOs A and B that can store
K+1 keys and K keys, respectively as illustrated in Figure 2.
Initially, both FIFOs are empty. First, all K keys in X0 are
enqueued in FIFO A one by one. After that, all K keys in X1

are enqueued in FIFO B. Similarly, X2 is enqueued in FIFO A
and then X3 is enqueued in FIFO B. This enqueue procedure
is repeated until all keys in X are enqueued in FIFOs. More
specifically, for every i (≥ 0), all keys in X2i are enqueued
in FIFO A and then those in X2i+1 are enqueued in FIFO B.
At the same time, dequeue operation is performed. After the
first key xK in X1 is enqueued, we start dequeuing one of
FIFOs A and B. Two keys in the heads of FIFOs A and B
are compared and the smaller one is dequeued and sent to the
output port. If FIFO B is empty, then FIFO A is dequeued.
Also, if keys stored in the heads of two FIFOs are originated
from different pairs, that from earlier pair is dequeued. More
specifically, when two keys in X2i+1 and X2i+2 are compared,
that in X2i+1 is dequeued even if that of X2i+2 is smaller.
Once two FIFOs has totally K + 1 keys, dequeue operation
is performed for one of the FIFOs and enqueue operation is
performed for one of the FIFOs. Hence, two FIFOs always
have totally K + 1 keys until all input keys are enqueued.
The readers should refer to Figure 2 that illustrates standard
4-merger, the timing chart and the data movement. We can
see that the first two subsequences of 4 keys each are merged
into one sorted subsequence of 8 keys. It should be clear that
FIFOs A and B may store K + 1 and K keys. If all keys in
X0 are larger than those of X1, then FIFO A will store K+1
keys. Also, if all keys in X0 are smaller than those of X1,
then FIFO B will store K keys.

Figure 2 illustrates the architecture of a 4-merger. It has
FIFOs A and B can store 5 and 4 key each. It also shows the
timing chart and the corresponding data movement through
two FIFOs. All four keys in the first subsequence are stored
in the FIFO A and the first key of the second subsequence
is enqueued in the FIFO B. After that, dequeuing procedure,
which removes a smaller number of two numbers stored in
the heads of the FIFOs, is started. We can see that the first

TABLE I. THEORETICAL ANALYSIS OF MERGERS AND SORTERS

architectures comparators # of FIFOs total FIFO capacity latency

K-merger [18] 1 2 2K + 1 K + 1
K-merger/M 1 max(K

M
+ 1, 2) max(K + M, 2M) K + 1

K-sorter [18] log
2
K 2 log

2
K 2K + log

2
K − 2 K + log

2
K − 1

K-sorter/M log
2
K K

M
+ log

2
K + log

2
M − 1 K + M log

2
K + M log

2
M − M K + log

2
K − 1

topK-merger 1 3 5

2
K 1

topK-merger/M 1 max(K

M
+ 2, 3) max(3

2
K + M, 3M) 1

topK-sorter log
2
K + 1 2 log

2
K + 3 9

2
K + log

2
K − 2 N + log

2
K

topK-sorter/M log
2
K + 1 2 K

M
+ log

2
K + log

2
M + 1 5

2
K + M log

2
K + M log

2
M N + log

2
K

369 8

0 01

a

369 8

1 14

b

369 8

4

3

7

c

69 8

47 4

1

d

69 81

7

62

e

2 9 81

7 7

3

f

2 9 8138 8

g

2 9138

0

9

h

2 138

04 0

i

3 6 98 0 1 74 1 2 83 0 4 65

0 1 43 6 7 98 0 1 32 4 5 86

Input

sorted sorted sorted sorted

sorted sorted

Output

a b c d e f g h

latency

A

B

Input Output

2 138

45

1

j

i j

Fig. 2. The architecture of standard 4-merger, the timing chart, and the data movement

two subsequences of 4 key each are merged into one sorted
subsequence of 8 key.

Let us confirm that FIFOs A and B may store K + 1 and
K keys, respectively. If all keys in X0 are larger than those of
X1, then all keys in X1 are dequeued before those in X0 are
dequeued. Hence, when the first key x2K in X2 is enqueued,
FIFO A still stores all K keys in X0. Thus, FIFO A will store
K keys in X0 and x2K and K + 1 keys are necessary and
sufficient for the capacity of FIFO A. On the other hand, if all
keys in X0 are smaller than those of X1, then all keys in X0

are dequeued before those in X1 are dequeued. Hence, FIFO
B stores all K keys in X0 when we start enqueueing keys in
X2 in FIFO A. Thus, K keys are necessary and sufficient as
the capacity of FIFO B.

Let us evaluate the latency of standard K-merger. The
latency is the time necessary to obtain the first output after
the first input is given. In Figure 2, after the first input 3 is
given, the first output 0 is obtained in 5 clock cycles. Hence,
the latency of standard 4-merger is 5. In standard K-merger,
the first output is obtained after the first key xK of X1 is
enqueued in FIFO B. Thus, the latency of standard K-merger
is K + 1 and we have,

Lemma 1: Standard K-merger merges two sorted se-
quence with K keys into one sorted sequence in latency
K+1 using one comparator and two FIFOs with total capacity
2K + 1.

Using standard 20-merger, 21-merger, . . ., 2k−1-merger, we
can construct standard 2k-sorter that sorts 2k keys. Figure 3
illustrates standard 8-sorter. We can see that the first 8 keys
are sorted correctly. After that, the next 8 keys are also sorted

correctly. Let us evaluate the latency of 2k-sorter. Since the
latency of standard K-merger is K + 1 and it uses 1-merger,
2-merger 4-merger, . . ., 2k−1-merger, the latency of 2k-sorter
is (20 + 1)+ (21 + 1)+ · · ·+ (2k−1 +1) = 2k + k− 1. Also,
the total capacity of FIFOs used in 2k-sorter is (2 · 20 + 1) +
(2 · 21 + 1) + · · ·+ (2 · 2k−1 + 1) = 2k+1 + k − 2. Thus, we
have,

Lemma 2: Standard K-sorter can sort K keys in latency
K+log2 K−1 using log2 K comparators and 2 log2 K FIFOs
with total capacity 2K + log2 K − 2.

III. TOPK -MERGER AND TOPK -SORTER

In this section, we first design topK-merger, that maintains
top K keys given so far. We will design topK-sorter using
topK-merger and standard K-sorter. We assume that a FIFO
supports unenqueue and remove-all operations that removes
the tail key and all keys in the FIFO, respectively.

The architecture of topK-merger is very similar to that of
K-merger. From the input port, sorted sequences of K keys
each are given one by one. It always outputs top K keys of the
input keys given so far. TopK-merger has three FIFOs: FIFOs
A and B of size K each and FIFO C of size K

2 . FIFOs A
and B are used to store top K keys and FIFO C is used to
buffer input keys. Figure 4 illustrates the architecture of top4-
merger, the timing chart, and the data movement. As before,
let x0, x1, . . . be input keys and X0, X1, . . . be subsequences
of K keys each. First, K keys in X0 are enqueued in FIFO C
and they are dequeued immediately. At the same time, they are
enqueued in FIFO A. After that, keys in X1 are enqueued in
FIFO C. After the first key xK in X1 is enqueued, the heads

6 3 1 7 4 0 1 2 8 3 0 4 6 58 9

8 9 63 1 7 40 1 2 83 0 4 65

3 6 98 0 1 74 1 2 83 0 4 65

0 1 43 6 7 98 0 1 32 4 5 86

1-merger/2 2-merger/2 4-merger/2

a b c d

a

b

c

d

latency

3689

0

17

4

1

2

Fig. 3. 8-sorter and the timing chart

of FIFO A and FIFO C, that is, x0 and xK are compared,
and the smaller one is dequeued and enqueued in FIFO B.
This operation is repeated until top K keys of X0 and X1

are output and enqueued in FIFO B. Note that top K keys of
X0 and X1 are output and the remaining K keys should be
discarded. Hence, when a key in X1 in FIFO C is dequeued,
FIFO A must be unenqueued, because the tail key in FIFO
A cannot be a top K key. In other words, either dequeue
operation or unenqueue operation is performed for FIFO A,
and the number of keys stored in FIFO A is decreased by one.
Also, the remove-all operation is performed FIFO C to discard
keys. It is possible that no dequeue operation is performed for
FIFO C. Since FIFO C can store up to K

2 keys, some keys
may not be enqueued. If this is the case, we do not perform
such enqueue operation, because such keys cannot be top K
keys. When the first key x2K in X2 is enqueued in FIFO C,
FIFO A is empty and FIFO B stores the top K keys of X0

and X1. The same operations are repeated for FIFO B and
FIFO C, top K keys of X0, X1, and X2 are output, and FIFO
A stores them. In this way, topK-merger outputs top K keys
so far. Since topK-merger has three FIFOs of sizes K , K , and
K
2 , respectively, we have,

Lemma 3: TopK-merger repeats outputting top K keys of
subsequences of sorted K keys each received so far, with
latency 1 using 3 FIFOs with total capacity 5

2K .

Using topK-merger and standard K-sorter, we can design
topK-sorter. By standard K-sorter, each subsequence of length
K in an input sequence can be sorted. TopK-merger receives
them and outputs top K keys so far in latency 1. Hence, after i
subsequences of N = ik keys are received, it starts outputting
top K keys. Figure 5 illustrates the architecture of top8-sorter,
which uses top8-merger and a standard 8-sorter. Also, standard
K-sorter has 2 log2 K FIFOs with total capacity 2K+log2 K−
2, and topK-merger uses three FIFOs with total capacity 5

2K .
Thus, we have,

Lemma 4: TopK-sorter outputs top K keys out of N keys
in latency N + log2 K using 2 log2 K + 3 FIFOs with total
capacity 9

2K + log2 K − 2.

IV. MEMORY EFFICIENT IMPLEMENTATIONS OF

K -SORTER AND TOPK -SORTER

The main purpose of this section is to improve standard
K-merger and topK-merger by reducing the FIFO capacity.
We then show memory efficient implementations of K-sorter
and topK-sorter.

Let us design K-merger/M , which uses FIFOs of size M .
We first assume that M ≤ K . Recall that K-merger can be
implemented using two FIFOs A and B of sizes K+1 and K .
Also, the total number of keys stored in FIFOs A and B is at
most K +1. Using this fact, we can simulate FIFOs A and B
using S = K

M
+ 1 FIFOs F0, F1, . . . FS−1, each of which can

store M keys. Hence, the total FIFO capacity is MS = K +
M . Since K keys must be stored in a memory to merge two
sorted sequence of length K , the total FIFO capacity cannot
be smaller than K . Thus, the total FIFO capacity of K +M
is almost optimal. In K-merger/M , the input and output ports
of S FIFOs are connected as follows:
(1) the input port of K-merger/M is connected to all S FIFOs,
(2) the output ports of FIFOs F0 and FS−1 are connected to
the comparator,
(3) the output port of each FIFO Fi (1 ≤ i ≤ S − 2) is
connected to the input ports of FIFOs Fi−1 and Fi+1, and
(4) the output port of FIFO FS−1 is connected to the input
port of FIFO FS−2.
Keys in FIFO A of standard K-merger are stored from FIFO
F0 and those in FIFO B are stored from FIFO FS−1. In other
words, if i FIFOs F0, F1, . . ., Fi−1 are used for keys to be
stored in FIFO A, then the remaining S − i FIFOs Fi, Fi+1,
. . ., FS−1 can be used for simulating FIFO B. If this is the
case, the i FIFOs stores at least (i−1)M+1 keys to be stored
in FIFO A. Hence, the number of keys to be stored in FIFO
B is at most (K + 1) − ((i − 1)M + 1) = M(S − i) and
these keys can be stored in the remaining S − i FIFOs. Thus,
S FIFOs of size M can simulate FIFOs A and B.

Figure 6 (1) illustrates the architecture of 16-merger/4,
which has five FIFOs with capacity 4. We can see that 11
keys from 1 to 19 to be stored in FIFO A are stored in FIFOs
F0, F1, and F2 and 6 keys from 2 to 12 in FIFO B are stored
in FIFOs F3 and F4.

Clearly, enqueue, dequeue, unenqueue, remove-all oper-

a

3 6 98 0 1 74 2 5 98 1 4 65

3 6 98 0 1 43 0 1 32 0 1 21

Input

Output

sorted sorted sorted sorted

top-4 top-4 top-4 top-4

a b c d e f g h i

Output

A

B

C

Input

89 36

01 0

a

8 36

1

0

4 1

b

36

1 0

7 4

3

c

6

1 0

2 4

3

4

d

1 0

5 2

34 0

e

0

1

8 2

34

5

1

f

01

9 2

34

5 2

g

01

3

5

3

2

1

h

013

1

02

4

i

13

1

12

5

j

j

4

7

9

Fig. 4. The architecture of top4-merger, the timing chart, and the data movement

1-merger/2 2-merger/2

top8-merger/38-sorter/2

4-merger/2

Fig. 5. The architecture of top8-sorter using 8-sorter and top8-merger

F0

F1

F2

F3

F4

10

2468

12

24681012

1357 1357

9111315

9111315

171819

171819
F0

F1

(1) 16-merger/4

(2) 16-merger/16

24681012

13579111315171819
F0

F1

(3) 16-merger/32

32 numbers

Fig. 6. The architectures of 16-merger/4 and 16-merger/16

ations for FIFOs can be simulated in an obvious way. For
example, in Figure 6, enqueue operation for FIFO A can be
done by that for FIFO F2. Dequeue operation for FIFO A
can be done by that for FIFOs F0, F1, and F2, and enqueue
operation for FIFOs F0 and F1.

Also, note that the output port of FIFO FS−1 must be
connected to the input port of FIFO FS−2, while the output
port of FIFO F0 is not connected to the input port of FIFO F1.
Recall that FIFOs A and B stores at most K +1 and K keys,
respectively. If K + 1 keys are stored in FIFO A, the tail key
is stored in FIFO FS−1 and it will be moved to FIFO FM−2

to simulate dequeue operation for FIFO A. On the other hand,

FIFO B stores at most K keys, and thus FIFO F0 never store
a key to be stored in FIFO B.

When K = M , K-merge/M uses two FIFOs F0 and F1

of size M each as illustrated in Figure 6 (2). Since FIFO A
may store K +1 = M +1 keys, FIFO F1 is used to store the
tail of K+1 keys stored in FIFO A. Hence the output port of
F1 must be connected to the input port of F0 to move the tail
stored in FIFO F1 to FIFO F0. If K < M , then K-merger/M
also uses two FIFOs F0 and F1 of size M each as illustrated
in Figure 6 (3). If this is the case, the connection between the
output port of F1 and the input port of F0 is not necessary.
The reader may think that K-merger/M such that K < M

makes no sense because two FIFOs have much larger capacity
than the maximum number of keys stored in them. However,
Virtex-7 FPGAs have fixed size memory blocks, and we may
need to use them to implement K-merger/M for small K .

Consequently, we have,

Lemma 5: K-merger/M merges two sorted sequence with
K keys into one sorted sequence in latency K + 1 using
max(K

M
+1, 2) FIFOs with total capacity max(K +M, 2M).

We can design topK-merger/M by the same technique to
reduce the total FIFO capacity. Recall that top K merger uses
two FIFOs A and B that can store K keys each. Also, they
store at most K keys totally. To simulate these two FIFOs, we
use S = K

M
+ 1 FIFOs F0, F1, . . ., FS−1 that can store M

keys each. These S FIFOs can simulate FIFOs A and B of
topK-merger in the same way as the simulation of standard
K-merger by K-merger/M . Note that it is not necessary to
connect the output port of FIFO FS−1 and the input port of
FIFO FS−2, because the total capacity of S − 1 FIFOs F0,
F1, . . ., FS−2 is K and FIFO FS−1 never stores a key to be
stored in FIFO A. Figure 7 illustrates top16-merger/4, which
has five FIFOs with capacity 4 and FIFO C with capacity 8.

F0

F1

F2

F3

F4

C

Fig. 7. The architecture of top-16 merger using five FIFOs with 4 keys each
and one FIFO with 8 keys

Since we use S + 1 = K
M

+ 2 FIFOs with total capacity

SM + K
2 = 3

2K +M , we have

Lemma 6: TopK-merger/M repeats outputting top K keys
of subsequences of sorted K keys each received so far, with
latency 1 using max(K

M
+ 2, 3) FIFOs with total capacity

max(32K +M, 3M).

We can use 20-merger/M , 21-merger/M , . . ., 2k−1-
merger/M to implement K-sorter. We call the resulting K-
sorter, K-sorter/M , which has

k−1∑

i=0

max(
2i

M
+ 1, 2) =

m−1∑

i=0

2 +
k−1∑

i=m

(
2i

M
+ 1)

= 2m+ 2k−m − 1 + k −m

=
K

M
+ log2 K + log2 M − 1

FIFOs, where 2m = M . Since the capacity of each FIFO is
M , the total FIFO capacity is K+M log2 K+M log2 M−M
and we have,

Theorem 7: K-sorter/M (K ≥ M) can sort K keys with
latency K + log2 K − 1 using log2 K comparators and K

M
+

log2 K+log2 M−1 FIFOs with total capacity K+M log2 K+
M log2 M −M .

Let topK-sorter/M denote a sorter obtained using K-
sorter/M and topK-merger/M . From Lemma 6 and Theo-
rem 7, we have,

Theorem 8: TopK-sorter/M (K ≥ M) outputs top K keys
in N keys with latency N + log2 K using 2K

M
+ log2 K +

log2 M + 1 FIFOs with total capacity 5
2K + M log2 K +

M log2 M .

V. BUILT-IN MEMORIES IN FPGAS

Virtex-7 FPGAs have built-in memories that can be used
to implement FIFOs. This section introduces two types of
memories, Block RAMs and Distributed RAMs.

It is well known that a FIFO can be implemented as a ring
buffer data structure using a RAM. Elements in a FIFO are
stored in a RAM with dual ports for reading and writing. Two
pointers, read pointer and write pointer are used to specify the
head and the tail of keys. Hence, FIFOs can be implemented
using a simple dual-port RAM, which has independent writing
address input and reading address input. We will show that
how RAM can be configured in FPGAs. We assume that keys
to be stored in FIFOs have 32 bits.

Virtex-7 FPGAs has a lot of Block RAMs, which can be
used as ring buffers for FIFOs. For example, XC7VX485T
has 1,030 Block RAMs, each of which can be configured as
one 36kb Block RAM or two 18kb Block RAMs [5]. A 36kb
Block RAM and a 18kb Block RAM can be configured as a
1k×36 and a 512×36 simple dual-port memory as illustrated in
Figure 8. They have three input ports for writing data, writing
address, and reading address. Writing ports are used to append
a key in the tail and reading address port is used to read a key in
the head. Thus, FIFOs with 1k and 512 keys with 32 bits can be
implemented using 36kb and 18kb Block RAMs, respectively.
Also, larger FIFOs can be implemented using multiple Block
RAMs in an obvious way.

Virtex-7 FPGAs also have a lot of Configurable Logic
Blocks (CLBs), each of which has two slices [4]. For example,
XC7VX485T has 37,950 CLBs, that is, 75,900 slices. Each
slice is either a SLICEM or a SLICEL, and XC7VX485T
has 32,700 SLICEMs and 43,200 SLICELs. Each slice has
four 6-input Look-Up Tables (6LUTs), each of which is a
26 = 64-bit memory. Those in a SLICEL is read-only, in
the sense that the values stored in 6LUT cannot be updated
after the programming of the FPGA. On the other hand, the
values stored in a 6LUT in a SLICEM can be changed, and
thus, it can be used as a 64 × 1 RAM. Also, each 6LUT in
a SLICEM can be configured as four 5-input Look-Up Tables
(5LUTs) such that each 5LUT has 2-bit data input and 2-bit
data output. Hence, each 5LUT can be used as a 32×2 RAM.
However, address ports of one of the four LUTs in a SLICEM
are shared and so it is not possible to use them independently.
In particular, since one of the four LUTs has one address input
used for specifying both reading and writing addresses, Hence,
it cannot be used to implement a simple dual-port RAM. The
remaining three LUTs can be used to implement a simple dual-
port RAM. As illustrated in Figure 9, four LUTs in a SLICEM

read address

write address

write data

18k-bit
block RAM

read output

9

9

36

36

read address

write address

write data

36k-bit
block RAM

read output

10

10

36

36

Fig. 8. A 18kb Block RAM and a 36kb Block RAM configured as a 512×36
memory and a 1k×36 memory, respectively

5LUT

5LUT

5LUT

5LUT

32 × 6

5
write

address

read
address

5

write
data

read
data

6LUT

6LUT

6LUT

6LUT

64 × 3

6
write

address

read
address

6

write
data

read
data

Fig. 9. Four LUTs configured as a 32×6 memory and a 64× 3 memory

can be configured as either a 32×6 RAM or a 64×3 RAM.
Therefore, we can construct a 32×36 RAM using 6 SLICEMs
and a 64×33 RAM using 11 SLICEMs. Thus, FIFOs with 32
keys and with 64 keys can be constructed using 6 SLICEMs
(i.e. 24 LUTs) and 11 SLICEMs (i.e. 44 LUTs), respectively.
RAMs constructed by LUTs are called Distributed RAMs.

VI. IMPLEMENTATION RESULTS

This section shows implementation results for Virtex-7
FPGA XC7VX485T on the VC707 Evaluation Board [25]. We
assume that input keys to be sorted have 32 bits. Input keys to
be sorted can be either signed/unsigned 32-bit integers or 32-
bit single precision floating-point numbers (IEEE 754 Standard
for Floating-Point Arithmetic [26]) , because the comparators
for them are the same.

XC7VX485T has 75,900 slices, out of which 43,200 and
32,700 are SLICELs and SLICEMs, respectively. Since 4
LUTs in each SLICEM can be configured as a Distributed
RAM, totally 32, 700 × 4 = 130, 800 LUTs can be used for
Distributed RAMs. Also, since both SLICELs and SLICEMs
can be used for embedded logics, 75, 900 × 4 = 303, 600
LUTs can be used for implementing logics. Further, each
slice has 8 flip-flops, and so, we can embed registers with
totally 75, 900×8 = 607, 200 bits in XC7VX485T. It also has
1,030 Block RAMs, each of which can be configured as either
one 36kb Block RAMs or two 18kb Block RAMs. Basically,
the tail and head pointers are implemented in embedded
registers. State machines for controlling mergers and sorters
can be implemented using embedded registers and LUTs in
slices. More specifically, registers are used to store the current
state and slices are used to compute the next state. Other

miscellaneous logics are implemented in either SLICEMs or
SLICELs. Distributed RAMs are implemented in SLICEMs.
As we have explained in Section V, FIFOs of sizes 32 × 32
and 64×32 can be implemented using 24 LUTs and 44 LUTs
in SLICEMs, respectively.

A. K-merger using Distributed RAMs

We have implemented standard K-merger using Dis-
tributed RAMs for various configurations. Table II shows
the performance of standard K-merger shown in [18]. It
uses two FIFOs of sizes K + 1 and K implemented using
Distributed RAMs on the FPGA. The table shows the numbers
of LUTs used for logic (LUT(Logic)) and Distributed RAMs
(LUT(Memory)), and the total number of register bits. From
K = 1 to 32, 32 × 32 Distributed RAMs implemented in 24
LUTs. When K = 1, one FIFO to store 2 keys is implemented
using a 32×32 Distributed RAMs, and the other FIFO to store
1 key is implemented in one 32-bit register. From K = 2 to
32, two 32× 32 Distributed RAMs are used to implement two
FIFOs. When K = 32, one of the FIFOs need to store 33
keys, one 32-bit register is attached to a 32 × 32 Distributed
RAM. For K = 64 and larger, 2 · K

64 Distributed RAMs of
size 64× 32 are used to implement two FIFOs of sizes K +1
and K each. Also, one 32-bit register is attached to expand
the capacity of FIFO A by one. Hence, 2 · K

64 · 44 LUTs are
used for Distributed RAMs for K = 64 and larger. For large
K , the number of LUTs used for FIFOs is dominant. So, we
can expect that our idea for reducing the FIFO size works
effectively for large merger.

Table III shows the performance of our 64k-merger/M
using Distributed RAMs from M = 32 to 64k. Recall that
K-merger/M uses S = K

M
+ 1 FIFOs of size M each. Thus,

64k-merger/M uses S = 64k
M

+ 1 FIFOs. When M = 32,
64k
32 + 1 = 2049 FIFOs with capacity 32 are used. Since a
32 × 32 Distributed RAM can be implemented in 24 LUTs,
2049 × 24 = 49716 LUTs are used. For M = 64 and
larger, each FIFO of size M are implemented using 64 × 32
Distributed RAMs each of which can be embedded in FPGAs
using 44 LUTs. Hence, a FIFO with capacity M × 32 can
be implemented using 44 · M

64 LUTs. For example, when
M = 2k, a FIFO with capacity 2k× 32 is implemented using
44· 2k64 = 1408 LUTs. Since S = 64k

M
+1 = 33 FIFOs are used,

the total number of LUTs is 1408×33 = 46464. In general, for
M = 64 and larger, 44 · M64 · (

64k
M

+1) = 11
16 · (64k+M) LUTs

are used for 64k
M

+1 FIFOs. Thus, more LUTs for Distributed
RAMs are used when M is smaller. On the other hand, since
each FIFO needs LUTs to embed some logic to control it,
LUTs used for logic is almost proportional to the number of
FIFOs. Therefore, we should find and use the best parameter
M that minimizes the total number of LUTs. We can see that,
in Table III, the number of LUTs is minimized when M = 2k
and S = 33.

Table IV shows the performance of our architecture K-
merger/M using Distributed RAMs. We have implemented
K-merger/M for all possible values of M and selected a
parameter M for each K that minimizes the total number of
LUTs as we have shown in Table III for K = 64k. Recall
that our K-merger/M uses S = K

M
+ 1 FIFOs of size M

each. From K = 1 to 256, the total number of LUTs is
minimized when S = 2, because FIFOs are small and the

TABLE II. THE PERFORMANCE OF STANDARD K -MERGER USING DISTRIBUTED RAMS

K 1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

Registers 41 48 55 62 69 76 83 90 97 104 111 118 125 132 139 146 153

LUTs 140 262 287 288 245 280 336 532 731 1264 2043 3904 7558 14632 28311 57463 114652

LUTs (Logic) 116 214 239 240 197 232 248 356 379 560 635 1088 1926 3368 5783 12407 24540

LUTs (Memory) 24 48 48 48 48 48 88 176 352 704 1408 2816 5632 11264 22528 45056 90112

Clock(MHz) 287 271 270 266 267 268 269 239 220 219 191 170 167 160 163 145 137

TABLE III. THE PERFORMANCE OF 64K-MERGER/M USING DISTRIBUTED RAMS

M (FIFO size) 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

S (#FIFOs) 2049 1025 513 257 129 65 33 17 9 5 3 2

Registers 24685 14449 8299 4712 2666 1516 878 528 338 236 182 137

LUTs 191746 139817 117036 81114 73728 63678 62684 63527 65668 70705 86310 115986

LUTs(Logic) 142570 94717 71892 35882 28320 17918 16220 15655 14980 14385 18726 25874

LUTs(Memory) 49176 45100 45144 45232 45408 45760 46464 47872 50688 56320 67584 90112

Clock(MHz) 177 196 189 174 167 156 147 138 144 146 135 129

TABLE IV. THE PERFORMANCE OF K -MERGER/M USING DISTRIBUTED RAMS: BEST CONFIGURATION IS SELECTED

K 1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

M(FIFO size) 1 2 4 8 16 32 64 128 256 256 256 512 1k 1k 1k 1k 2k

S(#FIFOs) 2 2 2 2 2 2 2 2 2 3 5 5 5 9 17 33 33

Registers 70 17 25 33 41 49 57 65 73 105 146 161 176 269 450 807 878

LUTs 144 211 233 239 254 281 368 570 775 1186 1770 3003 5143 9090 16821 32502 62684

LUTs(Logic) 144 163 185 191 206 233 280 394 423 658 890 1243 1623 2754 4853 9270 16220

LUTs(Memory) 0 48 48 48 48 48 88 176 352 528 880 1760 3520 6336 11968 23232 46464

Clock(MHz) 418 270 269 255 240 242 238 226 227 201 190 180 163 164 164 164 147

logic and registers for controlling FIFOs need more LUTs than
Distributed RAMs. So, if we used more than two FIFOs, LUTs
for logic would increase and thus the total number of LUTs
would also increase. From K = 512, the total number of LUTs
is minimized when S is more than two. For example, 64k-
merger/M has the minimum number of LUTs when M = 2k
and S = 33. We can see that 64k-merger/2k uses 62684 LUTs
while standard 64k-merger uses 114652 LUTs. Hence, our
64k-merger/2k uses almost half (54%) LUTs of standard 64-
merger.

B. K-merger using Block RAMs

We have also implemented various K-mergers using Block
RAMs. Table V shows the performance of standard K-
merger [18] using two FIFOs of size K + 1 and K . We have
implemented a FIFO of size K + 1 using a Block RAM of
size K and one register, when K = 512 and 1k. For K less
than or equal to 1k, standard K-merger uses two 18kb Block
RAMs, each of which can be configured as a 512×32 memory.
From K = 1k, K-merger uses S = 2 · K

1k 36kb Block RAMs
to implement two FIFOs of size K . Since standard K-merger
uses only two FIFOs, the numbers of LUTs and registers to
control FIFOs are very small.

Table VI shows the performance of 512k-merger/M for
various values of M . It uses 18kb Block RAMs only when
M = 512. For M = 1k and larger, it uses S = 512k

M
+1 FIFOs

with capacity M . Since FIFOs with capacity M (M ≥ 1k) can
be implemented using M

1k 36kb Block RAMs, it uses (512k
M

+
1)M1k = 512 + M

1k Block RAMs. Hence, the number of used
Block RAMs increases and the number of LUTs decreases as
the value of M increases. The appropriate values of M can be
determined by the number of available resources when K ≥
1k. For example, suppose that our first priority is to minimize
the number of used block RAMs, and the second priority is

to minimize the number of used LUTs. If this is the case,
we should select M = 1k, because 512k-merger/M uses 513
Block RAMs when M = 512 and 1k, and it uses fewer LUTs
when M =1k. Also, we can confirm that 512k-merger/M can
be implemented using 513 block RAMs, while 512k-merger
needs 1025 block RAMs. Hence, our 512k-merger/M reduces
by half the number of block RAMs.

Table VII shows the best architecture for each K that
minimizes the number of Block RAMs. If more than one
architecture uses the same number of Block RAMs for some
K , we have selected one that uses the minimum number of
LUTs. In the table, “4+” in M means that two FIFOs of sizes
5 and 4 are used by standard K-merger is the best. It uses
two 18kb block RAMs in one slice for FIFOs A and B. When
K = 512, both our 512-merger/512 and standard K-merger
uses 1 Block RAM. However, our 512-merger/512 uses fewer
LUTs, and thus, it is selected. When K = 1k and larger, our
K-merger/1k uses fewer LUTs than standard K-merger.

C. TopK-merger/M

Table VIII show the performance of TopK-merger using
Distributed RAMs. We have selected parameter M that min-
imizes the number of Distributed RAMs for each K . From
K = 2 to 512, two FIFOs F0 and F1 of size M are used. If
K ≥ 1k, architectures with more than two FIFOs minimize
the number of used LUTs, because the size of logic to control
FIFOs is not dominant.

Tables IX show the performance of TopK-merger using
Block RAMs. We have selected an architecture that minimizes
the number of Block RAMs for each K . If more than one
configurations use the same number of Block RAMs, we have
selected one with the minimum number of LUTs. From K = 8
to 1k, we use 18kb block RAMs. For example, Top1k-merger

TABLE V. THE PERFORMANCE OF STANDARD K -MERGER USING BLOCK RAMS

K 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k

Registers 121 128 135 142 149 156 163 170 177 184 191 198 205 212 227 228 237 246

LUTs(Logic) 423 307 323 353 476 471 514 578 477 572 621 492 519 582 603 575 623 757

Block RAMs 1 1 1 1 1 1 1 1 2 4 8 16 32 64 128 256 512 1024

18kb Block RAMs 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

36kb Block RAMs 0 0 0 0 0 0 0 0 2 4 8 16 32 64 128 256 512 1024

Clock(MHz) 224 205 215 215 215 213 212 220 269 275 292 278 283 299 299 284 281 249

TABLE VI. THE PERFORMANCE OF 512K-MERGER/M USING BLOCK RAMS

M (FIFO size) 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k

S (#FIFOs) 1025 513 257 129 65 33 17 9 5 3 2

Registers 54426 28325 14759 7715 4066 2180 1207 705 451 320 233

LUTs(Logic) 187083 96503 52593 25683 14096 7750 4333 2482 1559 1231 806

Block RAMs 513 513 514 516 520 528 544 576 640 768 1024

18kb Block RAMs 1025 0 0 0 0 0 0 0 0 0 0

36kb Block RAMs 0 513 514 516 520 528 544 576 640 768 1024

Clock(MHz) 156 184 209 207 211 212 220 226 225 246 236

TABLE VII. THE PERFORMANCE OF K -MERGER/M USING BLOCK RAMS: BEST CONFIGURATION IS SELECTED

K 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k

M (FIFO size) 4+ 8+ 16+ 32+ 64+ 128+ 256+ 512 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k

S(#FIFOs) 2 2 2 2 2 2 2 2 2 3 5 9 17 33 65 129 257 513

Registers 121 128 135 142 149 156 163 147 155 227 342 569 1011 1898 3669 7188 14281 28325

LUTs(Logic) 423 307 323 353 476 471 514 546 526 821 1275 2083 3681 6622 11721 25593 48492 96503

Block RAMs 1 1 1 1 1 1 1 1 1 3 5 9 17 33 65 129 257 513

18kb Block RAMs 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

36kb Block RAMs 0 0 0 0 0 0 0 0 2 3 5 9 17 33 65 129 257 513

Clock(MHz) 224 205 215 215 215 213 212 211 281 234 228 229 226 209 202 197 215 184

uses four FIFOs, F0, F1, F2 and C, each of which stores 512
keys. For K = 2k and above, we use 36kb block RAMs. For
example, top2k-merger uses four FIFOs of size 1k each.

D. K-sorter and topK-sorter

Table X shows the performance of K-sorter. Recall that
K-sorter can be implemented using 2i-merger (0 ≤ i ≤
log2 K− 1). We succeeded in implementing up to 512k-sorter
in XC7VX485T. Since a 18kb block RAM can store 512 keys
and we have used distributed RAMs for 2i-merger such that
2i ≤ 256 and block RAMs for 2i-merger such that 2i ≥ 512.
For example, 512-sorter uses 1-merger, 2-merger ,. . ., 256-
merger, all of which are implemented using distributed RAMs.
We have selected the best configuration for each 2i-merger
shown in Tables IV and VII.

Table XI shows the performance of TopK-sorter. Recall
that TopK-sorter can be implemented using K-sorter and
TopK-merger. We use K-sorter in Table X and TopK-merger
in Tables VIII and IX for constructing topK-sorter. From
K = 8 to 256, Distributed RAM implementations for TopK-
merger shown in Table VIII are used. For K = 512 and
above, Distributed RAM implementations in Table IX are
used. We succeeded in implementing up to top256k-sorter in
XC7VX485T.

VII. CONCLUSION

We have presented K-sorter and topK-sorter optimized
for the latest FPGAs. From theoretical point of view, our
K-sorter is almost optimal in terms of the latency, the total
number of comparisons, and the total FIFO capacity. Also,
our topK-sorter is close to be optimal in terms of the latency.

We have implemented K-sorter and topK-sorter and evaluated
the performance in a Virtex-7 FPGA. The implementation
results show that our K-sorter and topK-sorter are practical
and efficient.

REFERENCES

[1] K. Nakano and E. Takamichi, “An image retrieval system using FPGAs,”
IEICE Transactions on Information and Systems, vol. E86-D, no. 5, pp.
811–818, May 2003.

[2] K. Nakano and Y. Yamagishi, “Hardware n choose k counters with ap-
plications to the partial exhaustive search,” IEICE Trans. on Information

& Systems, vol. E88-D, no. 7, 2005.

[3] K. Nakano and Y. Ito, “Processor, assembler, and compiler design
education using an fpga,” in Proc. of International Conference on
Parallel and Distributed Systems, Dec. 2008, pp. 723–728.

[4] Xilinx Inc., 7 Series FPGAs Configurable Logic Block User Guide,
Nov. 2014.

[5] ——, 7 Series FPGAs Memory Resources User Guide, Nov. 2014.

[6] D. E. Knuth, The Art of Computer Programming. Vol.3: Sorting and

Searching. Addison-Wesley, 1973.

[7] M. Jeon and D. Kim, “Parallel merge sort with load balancing,”
International Journal of Parallel Programming, vol. 31, no. 1, pp. 21–
33, February 2003.

[8] K. Batcher, “Sorting networks and their applications,” in in Proceedings

of the AFIPS Spring Joint Computer Conference 32, 1968, pp. 307–314.

[9] M. F. Ionescu and K. E. Schauser, “Optimizing parallel bitonic sort,”
in in Proceedings of the 11th International Symposium on Parallel
Processing, April 1997, pp. 303–309.

[10] D. R. Helman, D. A. Bader, and J. JáJá, “A randomized parallel
sorting algorithm with an experimental study,” Journal of Parallel and

Distributed Computing, vol. 52, pp. 1–23, July 1998.

[11] A. C. Dusseau, D. E. Culler, K. E. Schauser, and R. P. Martin,
“Fast parallel sorting under Log P: Experience with the CM-5,” IEEE
Transactions on Parallel and Distributed Systems, vol. 7, pp. 791–805,
August 1996.

TABLE VIII. THE PERFORMANCE OF TOPK -MERGER USING DISTRIBUTED RAMS: BEST CONFIGURATION IS SELECTED

K 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

M (FIFO size) 2 4 8 16 32 64 128 256 512 256 256 1k 1k 1k 2k 2k

S (#FIFOs) 2 2 2 2 2 2 2 2 2 5 9 5 9 17 17 33

Registers 46 22 29 36 43 50 57 64 71 146 223 176 269 450 489 878

LUTs 204 214 226 243 265 327 506 786 1362 2223 3880 6937 12759 24381 46473 91385

LUTs (Logic) 156 142 154 171 193 215 286 346 482 991 1592 2009 3607 6781 11273 22393

LUTs (Memory) 48 72 72 72 72 112 220 440 880 1232 2288 4928 9152 17600 35200 68992

Clock(MHz) 248 248 248 248 248 255 231 219 199 197 170 160 142 144 138 120

TABLE IX. THE PERFORMANCE OF TOPK -MERGER/M USING BLOCK RAMS: BEST CONFIGURATION IS SELECTED

K 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k

M (FIFO size) 8 16 32 64 128 256 512 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k

S(#FIFOs) 2 2 2 2 2 2 2 3 3 5 9 17 33 65 129 257 513

Registers 128 135 142 149 156 163 147 155 227 342 569 1011 1898 3669 7188 14281 28325

LUTs(Logic) 658 559 494 534 859 581 605 867 762 1421 2130 3784 6878 13070 23445 47794 9417

Block RAMs 2 2 2 2 2 2 2 2 4 7 13 25 49 97 193 385 769

18kb Block RAMs 3 3 3 3 3 3 3 4 0 0 0 0 0 0 0 0 0

36kb Block RAMs 0 0 0 0 0 0 0 0 4 7 13 25 49 97 193 385 769

Clock(MHz) 215 216 216 216 215 216 216 190 250 219 209 207 206 198 178 173 158

TABLE X. THE PERFORMANCE OF K -SORTER

K 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k

Registers 83 116 185 261 344 434 531 678 855 1081 1423 1989 3000 4898 8556 15742 29978

LUTs 602 796 1003 1257 1605 1994 2847 3161 3709 4378 5482 7190 10334 16615 27947 50076 93280

LUTs(Logic) 482 628 787 993 1253 1466 1967 2281 2829 3498 4602 6310 9454 15735 27067 49196 92400

LUTs(Memory) 120 168 216 264 352 528 880 880 880 880 880 880 880 880 880 880 880

Block RAMs 0 0 0 0 0 0 0 1 3 6 11 20 37 70 135 264 521

18kb Block RAMs 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2

36kb Block RAMs 0 0 0 0 0 0 0 0 2 5 10 19 36 69 134 263 520

Clock(MHz) 266 255 254 254 254 227 227 211 200 200 200 200 200 199 185 185 182

TABLE XI. THE PERFORMANCE OF TOPK -SORTER

K 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k

Registers 111 151 227 310 400 498 701 855 1114 1455 2021 3034 4932 8590 15779 30119

LUTs 783 1019 1264 1570 1974 2764 3240 3788 4467 5553 7433 10512 16848 28172 50445 97381

LUTs(Logic) 591 779 976 1194 1402 1796 2360 2908 3587 4673 6553 9632 15968 27292 49565 96501

LUTs(Memory) 192 240 288 376 572 968 880 880 880 880 880 880 880 880 880 880

Block RAMs 0 0 0 0 0 0 2 4 7 13 24 45 86 167 328 649

18kb Block RAMs 0 0 0 0 0 0 3 3 2 2 2 2 2 2 2 2

36kb Block RAMs 0 0 0 0 0 0 0 2 6 12 23 44 85 166 327 648

Clock(MHz) 248 248 248 254 231 219 216 201 200 200 200 200 195 180 170 167

[12] D. Man, Y. Ito, and K. Nakano, “An efficient parallel sorting algorithm
compatible with the standard qsort,” International Journal on Founda-

tions of Computer Science, vol. 22, no. 5, pp. 1057–?1072, 2011.

[13] A. Sohn and Y. Kodama, “Load balanced parallel radix sort,” in in Pro-
ceedings of the 12th ACM International Conference on Supercomputing,
July 1998, pp. 305–312.

[14] S. J. Lee, M. Jeon, D. Kim, and A. Sohn, “Partitioned parallel radix
sort,” Journal of Parallel and Distributed Computing, vol. 62, pp. 656–
668, 2002.

[15] P. Kipfer and R. Westermann, “Improved GPU sorting,” in GPU Gems

2. Addison Wesley, 2005, pp. 733–746.

[16] E. Sintorn and U. Assarsson, “Fast parallel GPU-sorting using a hybrid
algorithm,” Journal of Parallel and Distributed Computing, vol. 68, pp.
1381–1388, October 2008.

[17] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, “A novel sorting
algorithm for many-core architectures based on adaptive bitonic sort,” in
Proc. of International Parallel and Distributed Processing Symposium,
May 2012, pp. 228–237.

[18] S. Todd, “Algorithm and hardware for a merge sort using multiple
processors,” IBM Journal of Research and Development, vol. 22, no. 5,
pp. 509–517, Sept. 1978.

[19] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms. MIT Press, 1990.

[20] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in Proc. of the 20th International Conference

on Very Large Data Bases, Sept. 1994, pp. 487–499.

[21] R. J. Bayardo Jr., “Efficiently mining long patterns from databases,” in
Proc. of ACM SIGMOD International Conference on Management of

Data, 1998, pp. 85–93.

[22] R. Marcelino, H. C. Neto, and J. M. P. Cardoso, “Unbalanced FIFO
sorting for FPGA-based systems,” in Proc. of International Conference

on Electronics, Circuits, and Systems, Dec. 2009, pp. 431 – 434.

[23] D. Koch and J. Torresen, “FPGASort: A high performance sorting archi-
tecture exploiting run-time reconfiguration on FPGAs for large problem
sorting,” in Proc. of International Symposium on Field Programmable

Gate Arrays, 2011, pp. 45–54.

[24] A. Farmahini-Farahani, A. Gregerson, M. Schulte, and K. Compton,
“Modular high-throughput and low-latency sorting units for fpgas in the
large hadron collider,” in Proc. of Symposium on Application Specific

Processors, 2011, pp. 38–45.

[25] Xilinx Inc., VC707 Evaluation Board for the Virtex-7 FPGA User
Guide, 2014.

[26] IEEE, 754-2008 - IEEE Standard for Floating-Point Arithmetic, Aug.
2008.

