
GPU-accelerated Digital Halftoning by the Local Exhaustive Search

Hiroaki Kouge, Yasuaki Ito, and Koji Nakano
Department of Information Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima 739-8527, Japan
{kouge, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Abstract—The main contribution of this paper is to show
a new GPU implementation for the digital halftoning by the
local exhaustive search that can generate high quality binary
images. We have considered programming issues of the GPU
architecture to implement these two methods on the GPU.
The experimental result shows that our GPU implementation
for the local exhaustive search on NVIDIA GeForce GTX
980 for a 512×512 gray scale image runs in 732 seconds,
while the CPU implementation runs in 37,364 seconds. Thus,
our GPU implementation attains a speed-up factor of 50.98.
Additionally, we also propose a GPU implementation for the
digital halftoning by the partial exhaustive search of which
the search space of the local exhaustive search is reduced.
Similarly, we can accelerate the computation of the partial
exhaustive search 30.73 times faster.

Keywords-Image processing; Digital halftoning; GPGPU;
Local exhaustive search; Partial exhaustive search

I. INTRODUCTION

A gray scale image is a two dimensional matrix of pixels
taking a real number in the range [0, 1]. Usually a gray
scale image has 8-bit depth, that is, each pixel takes one
of the real numbers 0

255 ,
1

255 , . . . ,
255
255 , which correspond to

pixel intensities. A binary image is also a two dimensional
matrix of pixels taking a binary value 0 (black) or 1(white).
Halftoning is an important process to convert a gray scale
image into a binary image [1], [2], [3]. This process is
necessary when a monochrome or color image is printed
by a printer with limited number of ink colors.

Many halftoning techniques including error diffusion [4],
dot diffusion [5], ordered dither using the Bayer threshold
array [6] and the void-and-cluster threshold array [7], Direct
Binary Search (DBS) [8], [9], Local Exhaustive Search
(LES) [10], [11], and Partial Exhaustive Search (PES) [12]
have been presented.

It is known that, in many cases, the LES [10], [11]
generates better quality images. The key idea of the LES is
to find a binary image whose projected image onto human
eyes is very close to the original image. The projected
image is computed by applying a Gaussian filter, which
approximates the characteristic of the human visual system.
Let the total error of the binary image be the sum of the
differences of the intensity levels over all pixels between the
original image and the projected image. The LES performs
an exhaustive search for each of the small square subimages
in the binary image and replaces the subimages by the best

binary pattern. The exhaustive search is repeated until no
more improvement is possible. The LES generates a high
quality sharp binary image.

Recent Graphics Processing Units (GPUs), which have
a lot of processing units, can be used for general purpose
parallel computation. Since GPUs have very high memory
bandwidth, the performance of GPUs greatly depends on
memory access. CUDA (Compute Unified Device Architec-
ture) [13] is the architecture for general purpose parallel
computation on GPUs. Using CUDA, we can develop paral-
lel algorithms to be implemented in GPUs. Therefore, many
studies have been devoted to implement parallel algorithms
using CUDA [14], [15], [16], [17], [18], [19], [20].

The resulting halftoned images generated by the local
exhaustive search have high texture quality. However, com-
pared with other well-known halftone methods, such as the
Error diffusion, much more computing time is necessary.
The main contribution of this paper is to show a new GPU
implementation for the local exhaustive search. We have
considered programming issues of the GPU architecture to
implement the method. The experimental result shows that
our GPU implementation on NVIDIA GeForce GTX 980 for
a 512 × 512 gray scale image runs in 733 seconds, while
the CPU implementation runs in 37,363 seconds. Thus, our
GPU implementation attains a speed-up factor of 50.98.

The second contribution of this paper is to show a GPU
implementation of the Partial Exhaustive Search (PES) of
which the search space of the LES is reduced [12]. In order
to reduce the search space, the PES uses an “n choose k”
counter (C(n, k) counter for short), which lists all n-bit
numbers with (n − k) 0’s and k 1’s. Using the C(n, k)
counter, the quality of the resulting halftoned image is kept
and the computing time is reduced [12]. We have also
implemented the partial exhaustive search on the GPU. The
experimental result shows that our GPU implementation for
a 512 × 512 gray scale image runs in 449 seconds, while
the CPU implementation runs in 13,795 seconds. Thus, our
GPU implementation attains a speed-up factor of 30.73.

There are FPGA implementations of the LES and the PES
to accelerate the computation [10], [12]. Although specific
circuits for them are used, our GPU implementations for the
LES and the PES can perform the halftoning 1.47 and 1.22
times faster than FPGA implementations, respectively.

This paper is organized as follows. Section II reviews the

digital halftoning by the LES and the PES based on the
human visual system. Section III shows how to implement
the LES and the PES as a sequential implementation.
In Section IV, we show how we have implemented the
two methods in the GPU to accelerate the computation.
Section V shows the computing time. Section VI offers
conclusion.

II. REVIEW OF DIGITAL HALFTONING BY THE LOCAL
EXHAUSTIVE SEARCH

The main purpose of this section is to review digital
halftoning based on the human visual system and the Local
Exhaustive Search (LES) [10]. Also, the Partial Exhaustive
Search (PES) of which search space of the LES is reduced
is reviewed [12].

A. Digital halftoning based on the Human Visual System

Suppose that an original gray-scale image A = (ai,j)
of size N × N is given, where ai,j denotes the intensity
level at position (i, j) (1 ≤ i, j ≤ N) taking a real number
in the range [0, 1]. For simplicity, we assume that images
are square. The goal of screening is to find a binary image
B = (bi,j) of the same size that reproduces the original
image A, where each bi,j is either 0(black) or 1(white).
We measure the goodness of the output binary image B
using the Gaussian filter that approximates the characteristic
of the human visual system. Let V = (vg,h) denote a
Gaussian filter, i.e. a 2-dimensional symmetric matrix of size
(2w+1)× (2w+1), where each non-negative real number
vg,h (−w ≤ g, h ≤ w) is determined by a 2-dimensional
Gaussian distribution such that their sum is 1. In other words,

vg,h = c · e−
g2+h2

2σ2 (1)

where σ is a parameter of the Gaussian distribution and c
is a fixed real number to satisfy

∑
−w≤g,h≤w vg,h = 1. Let

R = (ri,j) be the projected gray-scale image of a binary
image B = (bi,j) obtained by applying the Gaussian filter
as follows:

ri,j =
∑

−w≤g,h≤w

vg,hbi+g,j+h (1 ≤ i, j ≤ n) (2)

Clearly, from
∑

−w≤g,h≤w vg,h = 1 and vg,h is non-
negative, each ri,j takes a real number in the range [0, 1]
and thus, the projected image R is a gray-scale image. We
can say that a binary image B is a good approximation
of original image A if the difference between A and R is
small enough. Hence, we are going to define the error of B
as follows. Error ei,j at each pixel location (i, j) is defined
by

ei,j = ai,j − ri,j , (3)

and the total error is defined by

Error(A,B) =
∑

1≤i,j≤n

|ei,j |. (4)

Since the Gaussian filter approximates the characteristics
of the human visual system, we can think that image B
reproduces original gray-scale image A if Error(A,B) is
small enough. The best binary image that reproduces A is a
binary image B is given by the following formula:

B∗ = argmin
B

Error(A,B). (5)

If the size of the Gaussian filter is 1× 1, then B∗ can be
obtained by the simple thresholding method. In other words,
the binary image B∗ = (bi,j) such that bi,j = 1 if and only if
ai,j ≥ 1

2 is an optimal binary image satisfying (5). However,
in general, it is very hard to find the optimal binary image
B∗ for a given gray-scale image A if the Gaussian filter is
not small, say, 7×7. Although we do not have the proof, we
believe that the problem of finding the optimal binary image
B∗ is NP-hard. A straightforward method to find the best
image is to evaluate Error(A,B) for all possible 2N

2

binary
images B. Clearly, this takes more than Ω(2N

2

) computing
time. Since n is usually much larger than 100, this approach
is not feasible. Thus, the challenge is to find, in practical
computing time, a nearly optimal binary image B, whose
total error is close to that of the optimal image B∗.

B. The Local Exhaustive Search

In the following, we review a digital halftoning method
using the Local Exhaustive Search (LES) to find a good bi-
nary image B whose total error with respect to original gray-
scale image A may not be minimum but is small enough.
The LES updates a small square region of a temporal binary
image by the best binary pattern, in which the total error is
the minimum over all possible binary patterns.

Suppose that an original image A and a temporary binary
image B are given. Further, let W (i, j) be a window of size
m×m in B whose top-left corner is at position (i, j). Our
first idea is to compute the total error for all 2m

2

binary
patterns in W (i, j) and replace the current binary subimage
in the window by the best binary pattern that minimizes the
total error. In other words, we find a binary image B′ such
that

B′ = argmin{Error(A,B) |
B and B′ differ only in W (i, j)}. (6)

Clearly, Error(A,B′) ≤ Error(A,B) always holds, and
thus, we can say that B′ is an improvement over B since it
is a better reproduction of original gray-scale image A.

Next, let us see the details on how B′ satisfying for-
mula (6) above is computed. Since we use a Gaussian
filter of size (2w + 1) × (2w + 1), the change of the
binary pattern affects the errors in a square region of size
(2w +m) × (2w +m), which we call the affected region.
We refer the reader to Figure 1 for illustrating a window, a
Gaussian filter, and the affected region. It should be clear that
the best binary pattern can be selected by computing the total

errors of the affected region of size (2w+m)× (2w+m),
because the change of the binary pattern does not affect
errors at pixels outside the affected region.

m

2w + m

2w + 1Gaussian filter

affected region

window W (i, j)

i, j

Figure 1. Illustrating a window of size m×m, a Gaussian filter of size
(2w+1)×(2w+1), and the affected region of size (2w+m)×(2w+m)

Let us evaluate the computing time necessary to find the
best binary pattern in the window. The error of a fixed pixel
in an affected region can be computed in O(m2) time by
evaluating formulas (2) and (3). Hence all the errors in the
affected region can be computed in O(m2(2w+m)2) time.
After that, their sum can be computed in O((2w + m)2)
time. Thus, the total error in the affected region can be
computed in O(m2(2w + m)2) time. Since we need to
check all the possible 2m

2

binary patterns, the best binary
pattern can be obtained in O(2m

2

m2(2w +m)2) time. We
can improve the computing time by flipping a pixel in the
order of the gray code of binary numbers. Recall that the
gray code represents a list of all d-bit binary numbers such
that any two adjacent numbers differ only one position.
Thus, by flipping an appropriate bit using the gray code,
we can list all the 2d binary numbers with d bits. Using the
gray code with m2 bits, we can evaluate the errors for all
binary patterns in O(2m

2

w2) time as follows. Starting with
the current pixel pattern in the window, we repeat flipping
an appropriate pixel according to the gray code. In each
flipping operation, we compute the total error in the affected
region for the current binary pattern in the window. Since
the flipping operation for a single bit affects the error of
(2w+1)× (2w+1) pixels, the total error can be computed
in O(w2) time in an obvious way. Thus, the best binary
pattern can be computed in O(w2) × 2m

2

= O(2m
2

w2)
time using the exhaustive search.

We are now in position to show a screening method LES.
Let B0 = (b0i,j) be an appropriate initial binary image.
Although we can initialize the binary image B0 using any
screening method, we assume that B0 is initialized by the
random dither method. In the random dither method, a
binary pixel takes value 1 with probability p if the pixel
value of the corresponding pixel of an original image is p

N

m

W (1, 1)

W (N − w, N − w)

Figure 2. Sliding window in raster scan order

(∈ [0, 1]). Thus, b0i,j = 1 with probability ai,j for every
i and j. We repeat sliding a window of size m × m and
improving the binary pattern in the window by replacing
the pixel values in it by the best binary pattern. The window
sliding can be done in any order. We perform window sliding
in the raster scan order as illustrated in Figure 2, to obtain
a better quality binary image B1. The same procedure is
repeated, that is, the window sliding operation is applied to
Bt−1 and obtain a better binary image Bt (t ≥ 1) until Bt−1

and Bt are identical and no more improvement is possible.
When computing Bt for t ≥ 2, we do not have to perform
the exhaustive search for all the windows. If the projected
image of the affected region for the current window did not
change, then we can omit the exhaustive search. The details
of our algorithm Local Exhaustive Search (LES) are spelled
out as follows:

Local Exhaustive Search(A)
Set an appropriate initial binary image in B0;
B1 ← B0;
for i← 1 to N − w + 1 do

for j ← 1 to N − w + 1 do
Perform the exhaustive search in W (i, j) for B1

and update B1 by the best binary pattern.
t← 1;
do {
t← t+ 1;
Bt ← Bt−1;
for i← 1 to N − w + 1 do

for j ← 1 to N − w + 1 do
If the projected image in the affected regions of
W (i, j) for Rt and Rt−1 are not identical then
perform the exhaustive search in W (i, j) for Bt

and update Bt by the best binary pattern.
} until (Bt and Bt−1 are identical)

output (Bt);

C. The Partial Exhaustive Search

In this section, we review a digital halftoning method,
named the Partial Exhaustive Search (PES), that reduces
the computation of the right-hand side of formula (6)

Instead of the exhaustive search that finds an optimal
binary pattern for all possible 2m

2

binary patterns, the
following partial search is performed. We briefly explain the
idea of the PES. Let x be a binary pattern in W (i, j), and
B/x be the binary image such that W (i, j) of B is replaced
by x. Let f be a function such that

f(x) = Error(A,B/x). (7)

In the LES, by computing f(x) for all possible 2m
2

bit
patterns x, we can obtain an optimal pattern x. Clearly, the
total error of B/x is not larger than that of B. Let C(n, k)
denote a set of binary numbers that has (n − k) 0’s and k
1’s. For example, C(6, 3) is

C(6, 3) = {000111, 001011, 001101, 001110, 010011,
010101, 010110, 011001, 011010, 011100,

100011, 100101, 100110, 101001, 101010,

101100, 110001, 110010, 110100, 111000}.

Let rk be the optimal binary pattern of f(x) over all binary
patterns representing numbers in C(m2, k), that is,

rk = arg min
x∈C(m2,k)

f(x).

It should be clear that

r = arg min{f(rk)|0 ≤ k ≤ m2},

where r is the optimal solution of f(x).
Let β be the total intensity in window W (i, j) of a current

binary image B, that is

β =
∑

0≤s,t≤m−1

bi+s,j+t. (8)

Since B is an intermediate solution, it is not ”bad” binary
image. Therefore, the number of 1’s in the best binary
pattern in W (i, j) must be close to β. Thus, we start the
search for f(rk) with k = β. By increasing and decreasing
q in an obvious way, we can find the bottom of the concave
sequence f(r0), f(r1), . . . , f(rm2). If we can start with o
(1 ≤ o ≤ m2 − 1) such that f(ro) is the bottom (i.e.
f(ro−1) > f(ro) < f(ro+1)), then the linear search just
computes f(ro−1), f(ro), and f(ro+1). If we start with
o = 0 then the linear search may just compute f(r0) and
f(r1), if f(r0) is the bottom. Using the PES, the searched
space can be reduced. Compared with the LES, the searched
space by the PES can be reduced to 1

3 to 1
6 [12]. These

facts allow us to reduce the computing time. Some reader
may think the quality of resulting binary images obtained by
the PES becomes lower than that by the LES. However, the
quality is almost the same and we will show the difference
between them in Section V.

III. IMPLEMENTATION FOR THE LOCAL EXHAUSTIVE
SEARCH AND THE PARTIAL EXHAUSTIVE SEARCH

Before explaining our GPU implementation, in this sec-
tion, we show how the LES and the PES are implemented
as a sequential implementation. Since the difference between
the LES and the PES is only local search, we will explain
the sequential implementation of the LES.

Our implementation consists of the two steps:
• Step 1: Initialization

An initial binary image B is computed from an input
gray scale image A by the random dither method.

• Step 2: The Local search
The local/partial exhaustive search is performed for all
the window and repeated until no more improvement
is possible.

In the following, we will explain the details of each step.
In Step 1, we perform the random dither method to obtain

the initial binary image of B. For each pixel, if a randomly
generated value is larger than the value of the pixel, the
pixel value of the corresponding pixel of B takes value 1.
Otherwise, it takes value 0.

In Step 2, we first compute the projected gray scale image
R = (ri,j) of the binary image B by computing formula (2).
We compute the error matrix E = (ei,j) by computing
formula (3) and the total error from formula (4). In this
step, we need to perform the LES that minimizes the total
error. It is sufficient to compute the total error of the affected
region that includes a window W (i, j) of size m×m in B
as illustrated in Figure 1. The affected region is a region of
the image B such that the Gaussian filter for W (i, j) affects
the pixel values of the blurred image. More specifically, the
affected region is a set Ai,j of positions in the image such
that

Ai,j = {(i′, j′)|i− w ≤ i′ ≤ i+ w +m,

j − w ≤ j′ ≤ j + w +m}.

Since the size of the Gaussian filter is (2w + 1) × (2w +
1), that of the affected region is (2w + m) × (2w + m).
Therefore, in the local search, we compute the total error at
pixel location (i, j) by evaluating the following formula:∑

(i′,j′)∈Ai,j

|ei′,j′ |. (9)

We evaluate this formula for all the possible 2k
2

binary
patterns, and replace pixels with the minimum total error.
In other words, we execute the following operation:

bi,j = argmin
∑

(i′,j′)∈Ai,j

|ei′,j′ |. (10)

To perform the LES, we need to compute the convolution
in formula (2) for each binary pattern. Since pixel values of
B are 0 or 1, ri,j can be computed by adding/subtracting the
values of the Gaussian filter vg,h to/from ri,j in Ai,j . For

example, when a pixel bi,j is changed from 0 to 1, the values
of the Gaussian filter vg,h are only added to ri,j in Ai,j . We
note that once the total error E is computed, the update of
E can be also computed by adding/subtracting the values of
the Gaussian filter. It can be performed without the update
of the projected image R. Therefore, in our implementation,
we directly update the total error E.

To obtain further acceleration, we use an update map. In
Step 2, a round of the raster scan order search is repeated.
It is possible that an area of a binary image is fixed in an
earlier round, and no pixels in the area are updated until
Step 2 terminates. Hence, it makes sense to perform the LES
for which pixels might be updated, we use a replacement
map U = (ui,j) of size n× n. Before a round of the raster
scan order search, all values in U is initialized by 0. We
set ui,j = 1 if the operation updates pixel bi,j , that is, the
value of bi,j is changed from 0 to 1 or from 1 to 0. Clearly,
at the end of the round, ui,j = 1 if bi,j has been replaced
in this period. Further, the affected region in which pixels
might be updated in the next round consists of (i, j) such
that ui,j or its neighbor takes value 1. Figure 3 illustrates
an example of a replacement map and the affected region.
In the next round, it is sufficient to perform the local search
for the affected region.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0

Figure 3. The replacement map in an affected region

IV. GPU IMPLEMENTATION

The main purpose of this section is to show our GPU
implementations of the local and partial exhaustive search.

A. CUDA Architecture

We briefly explain CUDA architecture that we will use.
NVIDIA provides a parallel computing architecture called
CUDA on NVIDIA GPUs. CUDA uses two types of mem-
ories in the NVIDIA GPUs: the global memory and the
shared memory [21]. The global memory is implemented
as an off-chip DRAM of the GPU, and has large capacity,
say, 1.5-6 GBytes, but its access latency is very long. The
shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-96 Kbytes. Figure 4 illustrates the
CUDA hardware architecture.

Streaming

Multiprocessor

Core Core

Core Core

Core Core

Core Core

Shared Memory

Streaming

Multiprocessor

Shared Memory

Streaming

Multiprocessor

Shared Memory

…

Global Memory

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Figure 4. CUDA hardware architecture

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to streaming
multiprocessors such that all threads in a block are executed
by the same streaming multiprocessor in parallel. All threads
can access to the global memory. However, threads in a
block can access to the shared memory of the streaming
multiprocessor to which the block is allocated. Since blocks
are arranged to multiple streaming multiprocessors, threads
in different blocks cannot share data in the shared memories.

B. GPU implementation for the local exhaustive search

We are now in a position to explain how we implement
the LES. We assume that an original gray scale image A of
size N×N to be halftoned is stored in the global memory in
advance, and the implementation writes the resulting binary
image B′ in the global memory. Further, we assume that the
random values and d-bit gray code numbers are also stored
in the global memory to perform the random dither method
and the LES, respectively. In the following, to perform the
computation in parallel, basically we divide an input image
into subimages whose size is q × q and perform halftoning
for each subimage in parallel. In our implementation, the
size of the subimage is N

q ×
N
q .

To implement Step 1, N2

q2 CUDA blocks are invoked one
for each subimage of size N

q ×
N
q . Each CUDA block is

responsible for generating an initial binary image B = (bi,j)
and computing the error matrix E = (ei,j) of the corre-
sponding subimage. After that, threads generate an initial
binary image by the random dither method. In the GPU
implementation, the computing cost of generating random
numbers is very high, that is, the generating time by the
GPU is much longer than that by the CPU. Therefore, we use
random values generated by the CPU and store them into the
global memory beforehand. Threads read the random value
from the global memory and perform the random dither
method. The result of B as the initial binary image is stored

into the global memory. Finally, the error matrix E = (ei,j)
of the corresponding block is computed from the blurred
image of B and pixel values in A of the affected region
Ai,j . The error matrix E of the resulting block is copied to
the global memory.

In Step 2, a kernel is invoked for each round in the LES
In each kernel, the LES to evaluate formula (5) is performed
in parallel using multiple CUDA blocks. Each CUDA block
is responsible for executing the LES of the corresponding
subimage.

However, the LES for adjacent blocks cannot be executed
in parallel, because the application of the Gaussian filter to
adjacent blocks affects each other. Thus, we partition blocks
into four groups such that Group 1: even columns and even
rows, Group 2: odd columns and even rows, Group 3: even
columns and odd rows, and Group 4: odd columns and odd
rows. The reader should refer to Figure 5 illustrating the
groups. We use 4N2

q2 CUDA blocks, and perform the LES
in all blocks of each group. Note that, if q ≥ 2w then
the Gaussian filter of two blocks in a group never affect
each other, where the subimage is q × q and the size of
the Gaussian filter is (2w + 1)× (2w + 1). In other words,
the affected regions of a particular group do not overlap
each other. Step 2 performs the local search for Group 1,
Group 2, Group 3, and Group 4, in turn. A CUDA block is
invoked for each block of a group. The CUDA block copies
the error matrix corresponding to the affected region in the
global memory to the shared memory.

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure 5. Groups of blocks

After that, each CUDA block performs the LES for the
corresponding subimage in raster scan order to obtain the
best combination of pixels in B. Concretely, multiple threads
in a block perform the local search pixel by pixel for the
corresponding subimage in the raster scan order. As shown
in Section III, to compute the convolution in formula (2),
it can be computed by adding/subtracting the value of the
Gaussian filter. Also, according to the gray code, we repeat
flipping an appropriate pixel. In the implementation, threads
use d-bit gray code numbers stored in the global memory

beforehand. In each flipping operation, we compute the total
error in the affected region for the current binary pattern in
the window. In our implementation, we utilize a summing
technique by binary reduction proposed in [22] to evaluate
the formula.

Finally, the updated binary image and the error matrix
are copied to the global memory. Some readers may think
that since the LES is concurrently performed using the
partition shown in Figure 5, the total error by computing
formula (4) increases compared with that by the sequential
one. However, in our experiment, the total errors are almost
the same and the quality of the resulting binary images
cannot be distinguished.

C. GPU implementation for the partial exhaustive search

In our implementation of the PES, basically the difference
from the above implementation of the LES is the local search
in Step 2 that finds the optimal binary pattern. Therefore, we
will show how the pixels are updated in window W (i, j)
of a current binary image B. First, the total intensity β is
obtained in the window by counting the number of white
pixels. Then, we start the search for f(rk) with k = β
and find the bottom f(ro) such that f(ro−1) > f(ro) <
f(ro+1) as shown in Section II-C. To perform the local
search, it is necessary to list C(m2, k) numbers. Also, we
use the same idea that gray code is used in the LES. We list
C(m2, k) numbers for each k (0 ≤ k ≤ m2) and each list
is resorted like gray code. We omit the detailed explanation,
but any two adjacent numbers in each resorted list differ only
at most two positions. Therefore, for each list, we compute
the difference positions from the next numbers one by one.
We store the first number and the positions in the global
memory in advance. Thus, in the PES, we also compute the
total error by adding/subtracting the values of Gaussian filter
and utilize a summing technique by binary reduction like the
implementation of the LES.

V. EXPERIMENTAL RESULTS

The main purpose of this section is to show the experi-
mental results. We will show the resulting images and the
computing time. We have used three gray scale images,
Lena [23] of size 512× 512.

In order to evaluate the computing time for generating
the halftoned images, we have used NVIDIA GeForce GTX
980, which has 2048 processing cores in 16 SM units [24].
We have also used Intel PC using Xeon X7460 running in
2.66GHz to evaluate the implementation by sequential algo-
rithms. We use the Gaussian filter with parameter σ = 1.0
and w = 3. In the local search, the window size of W (i, j)
is 4 × 4, i.e., m = 4. Also, the size of subimage used in
the GPU implementation is 9 × 9, i.e., q = 9. Figure 6
shows the resulting binary image using the LES. We can
find that the resulting image is high texture quality. Since
the resulting image using the PES is almost the same quality

and we cannot distinguish them, we omit the showing the
halftoned image by the PES. Table I shows the computing
time for generating the binary images. The computing time is
average of 10 times execution and the computing time of the
GPU includes data transfer time between the main memory
and the device memory in the GPU. Using the GPU, the
computing time of the LES can be reduced by a factor of
50.98.

Table I
COMPUTING TIME (IN SECONDS) OF THE LOCAL EXHAUSTIVE SEARCH

AND THE PARTIAL EXHAUSTIVE SEARCH

CPU FPGA [10], [12] GPU
Local exhaustive search 37,364 1,186 733
Partial exhaustive search 13,794 546 449

Table II shows average errors when “Lena” is halftoned
by Error Diffusion, DBS, LES, and PES. The average error
is an error per pixel that is computed from the total error
in formula (3). According to the table, the average error of
the LES and the PES is smaller than that of Error diffusion
and DBS and the difference between the LES and the PES
is much small. Also, the error of the parallel execution of
the LES and the PES is a little larger than that of sequential
ones. However, the difference of the error is small and the
appearance is almost the same.

Table II
AVERAGE ERROR WHEN “LENA” IS HALFTONED BY ERROR DIFFUSION,

DBS, LES, AND PES.

CPU GPU
Error Diffusion 7.06 —

DBS 5.86 —
Local exhaustive search 4.70 4.75
Partial exhaustive search 4.71 4.75

VI. CONCLUSIONS

In this paper, we have proposed an implementation of
the digital halftone method by the local exhaustive search
on the GPU. In our implementation, we have considered
programming issues of the GPU architecture. We have
implemented it on NVIDIA GeForce GTX 980. The ex-
perimental result shows that our GPU implementation for
the local exhaustive search on NVIDIA GeForce GTX 980
for a 512×512 gray scale image runs in 733 seconds,
while the CPU implementation runs in 37,364 seconds.
Thus, our GPU implementation attains a speed-up factor
of 50.98. Compared to the existing FPGA implementations
using specific circuits, the computing time of our GPU
implementation is shorter. We have also proposed a GPU
implementation of the digital halftone method by the partial
exhaustive search that reduces search space. Similarly, we

can accelerate the computation of the partial exhaustive
search 30.72 times faster.

REFERENCES

[1] T. Asano and K. Nakano, “Halftoning through optimization
of restored images – a new approach with hardware acceler-
ation,” The Institute of Electronics Information and Commu-
nication Engineers, COMP2002-75, Tech. Rep., March 2003.

[2] D. L. Lau and G. R. Arce, Modern Digital Halftoning.
Marcel Dekker, 2001.

[3] K. Nakano, “Various screening methods,” Convertech, vol. 36,
no. 1, pp. 72–77, 2008.

[4] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial
gray scale,” in Proc. of International Symposium Digest of
Technical Papers, Society for Information Displays, 1975, pp.
36–37.

[5] D. Knuth, “Digital halftones by dot diffusion,” ACM Trans-
actions on Graphics, vol. 6, no. 4, pp. 245–273, 1987.

[6] B. Bayer, “An optimum method for two-level rendition of
continuous-tone pictures,” in IEEE International Conference
on Communications, 1973, pp. 11–15.

[7] R. Uichney, “The void-and-cluster method for dither array
generation,” in IS&T/SPIE’s Symposium on Electronic Imag-
ing: Science and Technology. International Society for Optics
and Photonics, 1993, pp. 332–343.

[8] M. Analoui and J. Allebach, “Model-based halftoning by
direct binary search,” in Proc. SPIE/IS&T Symposium on
Electronic Imaging Science and Technology, vol. 1666, 1992,
pp. 96–108.

[9] D. J. Lieberman and J. P. Allebach, “Efficient model based
halftoning using direct binary search,” in Proc. of Interna-
tional Conference on Image Processing, vol. 1, 1997, pp.
775–778.

[10] Y. Ito and K. Nakano, “FM screening by the local exhaustive
search with hardware acceleration,” International Journal on
Foundations of Computer Science, vol. 16, no. 1, pp. 89–104,
2005.

[11] ——, “A new FM screening method to generate cluster-
dot binary images using the local exhaustive search with
FPGA acceleration,” International Journal on Foundations of
Computer Science, vol. 19, no. 6, pp. 1373–1386, 2008.

[12] K. Nakano and Y. Yamagishi, “Hardware n choose k counters
with applications to the partial exhaustive search,” IEICE
Trans. on Information & Systems, pp. 1350–1359, July 2005.

[13] NVIDIA Corporation, “CUDA ZONE,”
http://www.nvidia.com/page/home.html.

[14] J. Diaz, C. Muñoz-Caro, and A. Niño, “A survey of parallel
programming models and tools in the multi and many-core
era,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 8, pp. 1369–1386, August 2012.

Figure 6. The resulting binary image for “Lena” using the LES

[15] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell,
“A parallel implementation of k-means clustering on GPUs,”
in Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, July
2008, pp. 340–345.

[16] P. Harish and P. J. Narayanan, “Accelerating large graph algo-
rithms on the GPU using CUDA,” in Proceedings of the 14th
International Conference on High Performance Computing,
2007, pp. 197–208.

[17] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Im-
plementations of parallel computation of Euclidean distance
map in multicore processors and GPUs,” in Proceedings
of International Conference on Networking and Computing,
2010, pp. 120–127.

[18] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge de-
tection using a GPU,” in International Workshop on Advances
in Networking and Computing, Nov. 2010, pp. 279–280.

[19] S. Wang, S. Cheng, and Q. Wu, “A parallel decoding al-

gorithm of LDPC codes using CUDA,” in Proceedings of
Asilomar Conference on Signals, Systems, and Computers,
October 2008, pp. 171–175.

[20] Z. Wei and J. JaJa, “Optimization of linked list prefix compu-
tations on multithreaded GPUs using CUDA,” in Proceedings
of International Parallel and Distributed Processing Sympo-
sium, 2010.

[21] CUDA C Programming Guide Version 6.5, NVIDIA Corpo-
ration, 2014.

[22] K. Nakano, “Optimal parallel algorithms for computing the
sum, the prefix-sums, and the summed area table on the mem-
ory machine models,” IEICE Transactions on Information and
Systems, vol. E96-D, no. 12, pp. 2626–2634, December 2013.

[23] L.-M. Po, “Lenna 97: A complete story of Lenna,”
http://www.ee.cityu.edu.hk/˜lmpo/lenna/Lenna97.html, 2001.

[24] NVIDIA Corporation, “Whitepaper NVIDIA GeForce GTX
980 v1.1,” 2014.

