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Conway’s Game of Life is the most well-known cellular automaton. The universe of the
Game of Life is a 2-dimensional array of cells, each of which takes two possible states,
alive or dead. The state of every cell is repeatedly updated according to those of eight
neighbors. A cell will be alive if exactly three neighbors are alive, or if it is alive and two
neighbors are alive. The main contribution of this paper is to develop several acceleration
techniques for simulating the Game of Life using a GPU as follows: (1) the states of 32/64
cells in 32/64-bit words (integers) and the next states are computed by the Bitwise
Parallel Bulk Computation (BPBC) technique, (2) the states of cells stored in 2 words
are updated at the same time by a thread, (3) warp shuffle instruction is used to directly
transfer the current states stored in registers, and (4) multi-step simulation is performed
to reduce the overhead of data transfer and invoking CUDA kernel. The experimental
results show that, the performance of our GPU implementation using GeForce GTX
TITAN X is 1350×109 updates per second for 16K-step simulation of 512K× 512K cells
stored in the SSD. Since Intel Core i7 CPU using the same technique performs 13.4×109

updates per second, our GPU implementation for the Game of Life achieves a speedup
factor of 100. Thus, these techniques work very efficiently on a GPU.
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1. Introduction

Conway’s Game of Life was created by John Horton Conway, a mathematician at

Gonville and Caius College of the University of Cambridge [1, 6]. The universe of

the Game of Life is an 2-dimensional array of cells, each of which takes one of two

states, 1 (alive) and 0 (dead). The state of every cell is updated by the current states

of the eight neighbors as follows: The next state of a cell is alive if and only if it has

three alive neighbors, or if it is alive and has two alive neighbors. Figure 1 shows

an example of one-step simulation of the Game of Life. For simplicity, we assume

that the universe of the Game of Life is square and wrapped around to handle the

boundary cells.

The GPU (Graphics Processing Unit) is a specialized circuit designed to accel-

erate computation for building and manipulating images [7, 23, 27]. Latest GPUs
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Fig. 1. One-step simulation of the Game of Life

are designed for general purpose computing and can perform computation in ap-

plications traditionally handled by the CPU. Hence, GPUs have recently attracted

the attention of many application developers [7, 8, 9, 24, 25]. NVIDIA provides a

parallel computing architecture called CUDA (Compute Unified Device Architec-

ture) [15, 18], the computing engine for NVIDIA GPUs. CUDA gives developers

access to the virtual instruction set and memory of the parallel computational el-

ements in NVIDIA GPUs. In many cases, GPUs are more efficient than multicore

processors [11], since they have thousands of processor cores and very high memory

bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared memory

and the global memory [18]. The shared memory is an extremely fast on-chip mem-

ory with lower capacity, say, 16-48 Kbytes. The global memory is implemented as

an off-chip DRAM, and thus, it has large capacity, say, 1.5-12 Gbytes, but its ac-

cess latency is very long. The efficient usage of the shared memory and the global

memory is a key for CUDA developers to accelerate applications using GPUs. In

particular, we need to consider bank conflicts of the shared memory access and

coalescing of the global memory access [8, 9, 11, 13, 14, 15]. The address space of

the shared memory is mapped into several physical memory banks. If two or more

threads access the same memory banks at the same time, the access requests are pro-

cessed in turn. Hence, to maximize the shared memory access performance, threads

of CUDA should access distinct memory banks to avoid the bank conflicts of the

memory accesses. To maximize the throughput between the GPU and the DRAM

chips, the consecutive addresses of the global memory must be accessed at the same

time. Thus, CUDA threads should perform coalesced access when they access the

global memory. Also, the latency of the global memory access is several hundred

clock cycles, while that of the shared memory access is around 10 clock cycles [21].

Hence, we should minimize the memory access to the global memory to maximize

the performance. Further, CUDA-enabled GPUs with Kepler [16] and Maxwell [20]

architectures support warp shuffle instructions that directly exchanges data stored

in registers of threads in the same warp [18]. It is faster than inter-thread com-

munication implemented by reading/writing the shared memory. Thus, we should

use warp shuffle instructions whenever possible. Actually, appropriate use of warp
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shuffle instructions can accelerate the computation [3, 28].

In our previous paper [5], we have introduced the Bitwise Parallel Bulk Com-

putation (BPBC) technique to accelerate the computation. The BPBC technique

supports ultimate fine grained bit parallelism and thus can achieve very high ac-

celeration over the straightforward sequential computation. The BPBC technique

simulates a combinational logic circuit for a lot of instances at the same time using

the bitwise logical operations. More formally, let f be a function computed by a

combinational logic circuit and X0, X1, . . . , XM−1 be the M inputs. By the BPBC

technique f(X0), f(X1), . . ., f(XM−1) can be computed very efficiently. The idea

of the BPBC technique is

• to store a bit of each input instance in a particular bit of words of data,

say 32-bit integers, and

• to simulate the combinational logic circuit for 32 input vectors at the same

time by bitwise logic operations supported by computing devices such as

CPUs and GPUs.

We are interested in how we can accelerate the simulation of the Game of Life

using CUDA-enabled GPUs. Sometimes, simulation of the Game of Life means that

the states of all cells of every step is output to a file or a computer display. However,

in such simulation, the overhead for output of cells is much larger than that for

computation of cells. Since we are interested in computation of states of cells, we

ignore the overhead for output of cells. More specifically, we focus on accelerating

simulation that computes the values of all cells in the universe after T steps for a

given T .

The main contribution of this paper is to develop several acceleration techniques

for simulating the Game of Life using a GPU as follows.

(1) the states of 32/64 cells in 32/64-bit words (integers) and the next states are

computed by the Bitwise Parallel Bulk Computation (BPBC) technique,

(2) the states of cells stored in 2 words are updated at the same time by a

thread,

(3) warp shuffle instruction is used to directly transfer the current states stored

in registers, and

(4) multi-step simulation is performed to reduce the overhead of data transfer

and invoking CUDA kernel.

It is easy to write a program for simulating the Game of Life if the state of a cell

is stored in a word of data such as an 8-bit character or a 32-bit integer. However,

for accelerating the simulation, it makes sense to use bit-per-cell arrangement [4]

in which the state of a cell is stored as a bit of a word. For example, a 32-bit

integer is used to store the states of consecutive 32 cells. A very sophisticated way

to compute the next states of cells stored in a word by bitwise operations has been

presented [26]. Also, the simulation of the Game of Life can be done by stencil codes,
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a class of kernels updating elements in an array according to some fixed pattern,

called stencil. Hence, it is easy to implement the simulation using a framework of

stencil computation. For example, it can be implemented on GPUs with few codes

using stencil operations of MATLAB [12].

As far as we know, there is no published technical paper aiming to acceler-

ate the simulation. Very few papers presented GPU implementations of the sim-

ulation [2, 22], but their implementations are straightforward and did not aim to

accelerate the simulation. On the other hand, there are a lot of web sites that

present GPU implementations of the Game of Life. For example, bitwise logical

operations for the bit-per-cell arrangement are used to compute the next states of

cells [4]. Our implementations also use the bit-per-cell arrangement. Moreover, we

developed a multiple-step simulation technique, which reduces memory access to

the global memory. Also, we store the states of cells in registers of threads, and

data transfer between registers is performed by a warp shuffle instruction. Using

these techniques, we have obtained extremely fast GPU implementation for simulat-

ing the Game of Life using GPUs. For simulating the Game of Life with more than

1,000,000,000 cells, the best GPU implementation in [4] achieved 24.7×109 updates

per second on GeForce GTX 480 GPU. We will show that our GPU implementation

achieves 1990× 109 updates per second on GeForce GTX TITAN X GPU. Hence,

our implementation more than 80 times faster than the previously published im-

plementation. GeForce GTX 480 and GTX TITAN X have 480 and 3072 processor

cores running 1401MHz and 1000MHz, respectively. Thus, our implementation is

much more efficient even if the difference of computing power of different GPUs is

taking into account. Further, we have implemented fast simulation of a very large

universe stored in the SSD (Solid State Drive). The performance of our simulation

on GeForce GTX TITAN X is 1350 × 109 updates per second for 16K-step simu-

lation of 512K× 512K cells stored in the SSD. Since Intel Core i7 CPU performs

13.4× 109 updates per second, our GPU implementation for the Game of Life with

a very large universe achieves a speedup factor of 100. To evaluate the efficiency

of the proposed method, we compare the proposed GPU implementation with a

straightforward GPU implementation method without acceleration technique pro-

posed in this paper. The straightforward method can compute 14.8× 109 updates

per second for a 16K×16K (214×214) array with the same GPU. Thus, we achieved

a speed-up factor of 134 using the proposed method.

This paper is organized as follows. In Section 2, we first briefly explain the

GPU architecture and CUDA programming model necessary to understand GPU

implementations of the Game of Life for the reader’s benefit. Section 3 defines the

Game of Life formally and shows straightforward implementations. In Section 4, we

introduce the BPBC technique and show how we can apply it to simulation of the

Game of Life. Section 5 shows that we can reduce the number of bitwise operations

by updating states in two words at the same time. Section 6 presents an idea of

multiple-step simulation, which copies the states of cells to the shared memory and

repeats the simulation several times. Using this simulation technique, we can reduce
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the number of CUDA kernel calls and the total amount of global memory access

of the GPU. In Section 7, we show that simulation can be performed by a warp

shuffle instruction of the GPU. Section 8 shows how we simulate the Game of Life

for a very large universe stored in the SSD. Finally, Section 9 shows experimental

results. Section 10 concludes our work.

2. GPU architecture and CUDA programming model

This section briefly describes the GPU architecture and the CUDA programming

model necessary to understand GPU implementations of the Game of Life. Please

see [18] for the details.

Figure 2 (1) illustrates an architecture of CUDA-enabled GPUs. A GPU is a

single-chip processor equipped with multiple Streaming Multiprocessors (SMs), each

of which has processor cores, a shared memory and a register file. The GPU processor

is connected to an off-chip memory. For example, GeForce GTX TITAN X has 24

SMs a with 128 processor cores, a 96Kbyte shared memory, and a register file with

64K 32bit registers each. The off-chip memory can be accessed by all processor

cores in all SMs, while the shared memory can be accessed only by processor cores

in the same SM. Also, registers in a register file are assigned to a processor core, and

they can be accessed only by the assigned processor core. The off-chip memory is

quite large, say 12G bytes, but the memory access latency is quite large, say several

hundred clock cycles. The memory access latency of the shared memory is around

10 cycles [21] and that of registers in the register file is smaller. Hence, to accelerate

the computation, we should minimize the global memory access. We should also use

registers whenever possible.

When we develop programs running on GPUs, we can use CUDA programming

model illustrated in Figure 2 (2) to support scalability. We assume CUDA Compute

Capability 5.2, which is available for GeForce GTX TITAN X [17]. Usually, a CUDA

program executed on the host computer invokes CUDA kernels one or more times.

A CUDA kernel executes one or more CUDA blocks running on SMs of the GPU.

CUDA blocks in a CUDA kernel are identical in the sense that they have the

same number of threads executing the same program. Each CUDA block can have

up to 1024 threads, and is dispatched to one of the SM of the GPU. Since the

number of CUDA blocks can be more than the number of SMs in a single GPU,

they are dispatched to SMs in turn. Also, it is possible that two or more CUDA

blocks are executed in a single SM at the same time. Each SM can handle up to

32 CUDA blocks with total of 2048 threads at the same time. Since each SM has

128 processor cores, at most 128 threads among them can be active and work in

parallel. In other words, each SM can have up to 2048 resident threads and 128 of

them can be active on processor cores. A CUDA block can use the shared memory,

aSince the architecture of GeForce GTX TITAN X is called Maxwell, its SM is particularly termed
Maxwell Streaming Multiprocessor (SMM) [19].
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Fig. 2. GPU architecture and CUDA programming model

which can be accessed by all threads in it. The shared memory of a CUDA block

is implemented in the shared memory of the SM. Hence, its capacity is up to 96K

bytes for CUDA compute capability 5.2 [18], and two or more CUDA blocks can be

arranged in the SM at the same time only if the total shared memory capacity is no

more than 96K bytes. All threads in all CUDA blocks can access the global memory,

which is arranged in the off-chip DRAM of the GPU. Note that after all threads

in a CUDA block terminate, data stored in the shared memory is lost, because the

shared memory in an SM may be used for another CUDA block. If data stored in

the shared memory must be referred later, it must be copied to the global memory

on developer’s own responsibility.

Threads in a CUDA block are partitioned into groups of 32 threads each called

warps. It is guaranteed that the 32 threads in the same warp execute the same

instruction at the same time. Hence, if a CUDA block has at most 32 threads,

they are executed synchronously. However, threads in different warps may not be

executed at the same time. All threads in a CUDA block can call syncthreads()

for barrier synchronization if necessary. However the cost of syncthreads() is not
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negligibly small. Hence, it makes sense to use a CUDA block with 32 threads for

avoiding barrier synchronization using syncthreads(), if we need to synchronize

all threads in a CUDA block frequently. Also, to synchronize all threads in all

CUDA blocks, we need to use separate CUDA kernel calls, because SMs in the

GPU executes CUDA blocks in turn. Since the synchronization of all CUDA blocks

are very costly, we should minimize the number of such synchronization operations.

Efficient usage of the global memory and the shared memory is a key for CUDA

developers to accelerate applications using GPUs. To maximize the throughput be-

tween the GPU and the off-chip memory, the consecutive addresses of the global

memory must be accessed at the same time. Hence, threads in a CUDA block

should perform coalesced access when they access the global memory [8, 15]. Since

the shared memory consists of 32 memory banks, memory access by 32 threads

in a warp must be destined for distinct memory banks. In other words, bank con-

flicts [10, 15, 21] by a warp should be avoided to maximize the shared memory access

performance.

The communication between threads can be done through the global memory

or the shared memory. Note that the communication between threads in different

CUDA blocks in the same CUDA kernel call is not possible, because CUDA blocks

may be dispatched to SMs in an arbitrary order. What threads in a CUDA kernel

can do is to send data to threads in the following CUDA kernel by reading/writing

the global memory.

CUDA compute capability 3.0 and later supports warp shuffle instructions that

permit exchanging of data stored in registers in threads in a warp. The data ex-

change occurs at the same time for all active threads in a warp. For example, if

shfl(a, i) is executed by a CUDA block with a warp of 32 threads, the value of

register a of thread i is returned. Since the data size for warp shuffle instructions

must be 32 bits, two separate invocations are necessary to exchange 64-bit data.

Warp shuffle instructions are more efficient than a conventional data exchanging

method using write/read operations to the shared memory.

3. Conway’s Game of Life and a conventional implementation

The universe of Conway’s Game of Life is a 2-dimensional array of cells, each of

which takes one of two states, 1 (alive) or 0 (dead). For simplicity, we assume that

the size of the array is
√
n×√n. Let u0, u1, . . . denote the states of the universe such

that universe u0 stores the initial states, and each ut (t ≥ 1) is the states after t-step

transition. Let ut(i, j) denote the state of a cell at position (i, j) (0 ≤ i, j ≤ √n−1).

For simplicity, we assume that the universe is wrapped around to handle the state of

cells outside of the array. For example, the value of ut(i,−1) is that of ut(i,
√
n−1).

Let st(i, j) be the number of alive cells in eight neighbors of cell (i, j) defined as

follows:

st(i, j) = ut(i− 1, j − 1) + ut(i− 1, j) + ut(i− 1, j + 1) + ut(i, j − 1)

+ut(i, j + 1) + ut(i + 1, j − 1) + ut(i+ 1, j) + ut(i+ 1, j + 1). (1)
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The state ut(i, j) (0 ≤ i, j ≤ √n− 1) is determined by the following formula:

ut(i, j) = 1 (alive) if st−1(i, j) = 3 or (ut−1(i, j) = 1 and st−1(i, j) = 2),

= 0 (dead) otherwise.

Hence, we can compute the value of ut(i, j) by the following Boolean formula:

ut(i, j) = (st−1(i, j) = 3) ∨ (ut−1(i, j) = 1 ∧ st−1(i, j) = 2) (2)

We have two arrangements, the word-per-cell and the bit-per-cell arrangements

for simulating the Game of Life not only on the GPU but also on the CPU. The

word-per-cell arrangement is a conventional arrangement in which the state of each

cell is stored in a word of the memory, such as a 32-bit integer or an 8-bit character.

For example, we can store the states u0(i, j) (0 ≤ i, j ≤ √n−1) of cells in a
√
n×√n

2-dimensional array of 8-bit characters. For more storage-efficient implementation of

2-dimensional array of cells, we can use the bit-per-cell arrangement, which arranges

each cell to a bit of a word. For example, we use a 32-bit unsigned integer to store

the states of consecutive 32 cells. In general, d consecutive cells in the same row

are stored in a d-bit word and thus n cells are stored in a
√
n×

√
n
d array of d-bit

words. As illustrated in Figure 3, consecutive 32 cells in the same row is arranged

in a 32-bit word. Since a square block of 32 × 32 cells are arranged in consecutive

address, we use column-major order addressing as shown in the figure.

32

0 128 256 384

1 129 257 385

2 130 258 386

125 253 381 509

126 254 382 510

127 255 383 511

128

128

Fig. 3. Bit-per-cell arrangement of 128 × 128 universe of 32-bit words with column-major order
arrangement

Let us see a straightforward GPU implementation for the Game of Life using the

word-per-cell arrangement. We assume that the initial states of cells are stored in



May 17, 2016 14:11 WSPC/INSTRUCTION FILE life-ijfcs˙revised

Fast Simulation of Conway’s Game of Life using Bitwise Parallel Bulk Computation on a GPU 9

the global memory of the GPU. We use a CUDA kernel with n threads to compute

the next states u1(i, j). For example, a CUDA kernel invokes n
32 CUDA blocks

with 32 threads each. Each thread is assigned to a cell, and computes the next

state u1(i, j) and write it in the global memory. Note that it is not possible to

compute u2(i, j) by the same CUDA kernel, because threads in different CUDA

blocks cannot communicate with each other. Thus, after a thread computes and

writes u1(i, j), it must terminate. A CUDA kernel terminates when all threads

complete the computation of next states of cells. After that, the same CUDA kernel

to compute u2(i, j) is invoked. In other words, one CUDA kernel call is necessary

to simulate one-step transition and thus, T CUDA kernel calls are performed for

T -step simulation.

4. Bitwise Parallel Bulk Computation (BPBC) technique and

application to the Game of Life

The main purpose of this section is to show the idea of Bitwise Parallel Bulk Compu-

tation (BPBC). This idea works well not only for a multi-core machine but also for

a single CPU. We also show how the BPBC technique can be applied to simulation

of the Game of Life.

Let f : {0, 1}m → {0, 1}n be a function with m input bits and n output bits.

Since f is a function, there exists a combinational logic circuit that computes f .

Let X0, X1, . . . , Xd−1 be d inputs of m bits each. Suppose that we want to com-

pute f(X0), f(X1), . . . , f(Xd−1). We can evaluate these values one by one using a

single CPU. Also, we can use d processor cores and compute f(Xi) for each Xi

(0 ≤ i ≤ d − 1) using one processor each. The Bitwise Parallel Bulk Computation

(BPBC) technique can perform this computation much faster than these straightfor-

ward sequential and parallel algorithms simulating the combinational logic circuit

independently for all inputs.

As an example of application of the BPBC technique, we show the bitwise sum-

ming technique, which compute the bitwise sums. Let xi,0xi,1 · · ·xi,m−1 denote m

bits of each Xi (0 ≤ i ≤ d−1). Further, let x0,jx1,j · · ·xd−1,j be Xj (0 ≤ j ≤ m−1).

We assume that CPU can handle d-bit word and each Xj is stored in a d-bit word.

By bitwise logic operations for Xj , we can simulate a combinational logic circuit for

computing f , and can obtain the values of f(X0), f(X1), . . . , f(Xd−1) at the same

time. For example, let f(a, b, c) = (y, z) such that y = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)

and z = a⊕ b⊕ c. In other words, f is a function simulating a full adder. Also, let

aibici denotes three bits of each Xi (0 ≤ i ≤ d− 1). We assume that we have three

d-bit words A = a0a1 · · · ad−1, B = b0b1 · · · bd−1, and C = c0c1 · · · cd−1. We want to

compute Y = y0y1 · · · yd−1 and Z = z0z1 · · · zd−1 such that (yi, zi) = f(ai, bi, ci) for

all i (0 ≤ i ≤ d− 1). Two words Y and Z can be computed simply by bitwise XOR

(⊕), bitwise AND (∧), and bitwise OR (∨) as follows:
Y ← (A ∧B) ∨ (B ∧ C) ∨ (C ∧A),

Z ← A⊕B ⊕ C.
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Hence, we can compute Y and Z in 7 bitwise binary operations. For later reference,

we show that Y and Z can be computed in 5 bitwise binary operations using a

temporal word T as follows:

T ← A⊕B,

Z ← T ⊕ C,

Y ← (A ∧B) ∨ (T ∧C).

We use this technique to compute the number of alive cells using fewer bitwise

operations.

To simulate the Game of Life stored in the bit-per-cell arrangements, we can

retrieve the state of an individual cell by bitwise AND operation, compute the sum of

neighbors by formulas (1) and (2), and write the next state by bitwise OR operation.

However, this straightforward implementation of the bit-per-cell arrangement is not

efficient. We should use the bitwise summing technique, which computes the bitwise

sum of words by the BPBC technique. The original idea using the bitwise summing

technique has been shown in [26].

To compute the next states of d cells stored in a d-bit word, the states of

2d + 6 neighboring cells are necessary. For example, Figure 4 shows the compu-

tation to obtain the next states of 4 cells in I. We need 2 · 4 + 6 = 14 neigh-

boring cells are necessary for this computation. We first store neighboring cells in

eight 4-bit words A,B, . . . , H as illustrated in Figure 4. After that, we compute

the bitwise sums as shown in Figure 4 and obtain two words I2 and I3, where

each bit of I2 and I3 is 1 if and only if the number of 1’s in the correspond-

ing position of eight words A,B, . . . , H is 2 and 3, respectively. Clearly, using I2,

I3, and the current value of I, we can compute the next state of all cells in I

by evaluating (I ∧ I2) ∨ I3. Next, we will show how I2 and I3 are computed. Let

([A-H ]3, [A-H ]2, [A-H ]1, [A-H ]0) denote the bitwise sums of each bit of A,B, . . . , H .

Also, let [A-H ]23 = [A-H ]2 ∨ [A-H ]3. Clearly, I2 = 1 if ([A-H ]23, [A-H ]1, [A-H ]0) =

(0, 1, 0) and I3 = 1 if ([A-H ]23, [A-H ]1, [A-H ]0) = (0, 1, 1). Hence, we can compute

I2 and I3 from ([A-H ]23, [A-H ]1, [A-H ]0).

We will show Algorithm SINGLE-WORD that computes the next states of I

using this idea. We first compute the bitwise sums of each of four pairs of two

words. For example, by computing ([AB]1, [AB]0) ← (A ∧ B,A ⊕ B), we obtain

two bits ([AB]1, [AB]0) which represent the sum of A and B. Similarly, we can

obtain ([CD]1, [CD]0), ([EF ]1, [EF ]0), and ([GH ]1, [GH ]0). After that, we com-

pute the sum of pairs ([AB]1, [AB]0) and ([CD]1, [CD]0), and obtain three bits

([A-D]2, [A-D]1, [A-D]0). This can be done by computing the sums from the least

significant bit. Similarly, we obtain the sum ([E-H ]2, [E-H ]1, [E-H ]0). Finally, we

compute the sum of ([A-D]2, [A-D]1, [A-D]0) and ([EH ]2, [EH ]1, [EH ]0) and ob-

tain three bits ([AH ]23, [AH ]1, [AH ]0). From these three bits, the values of I2 and

I3 can be obtained and then, the next states of I can be computed. The details of

an algorithm, Algorithm SINGLE-WORD that computes I2, I3, and the next state
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Fig. 4. The computation of the next states of 4 cells in a 4-bit word by Algorithm SINGLE-WORD

of I are as follows:

[Algorithm SINGLE-WORD]

1. ([AB]1, [AB]0)← (A ∧B,A⊕B)

2. ([CD]1, [CD]0)← (C ∧D,C ⊕D)

3. ([EF ]1, [EF ]0)← (E ∧ F,E ⊕ F )

4. ([GH ]1, [GH ]0)← (G ∧H,G⊕H)

// ([A-D]2, [A-D]1, [A-D]0)← ([AB]1, [AB]0) + ([CD]1, [CD]0)

5. [A-D]0 ← [AB]0 ⊕ [CD]0
6. [A-D]1 ← [AB]1 ⊕ [CD]1 ⊕ ([AB]0 ∧ [CD]0)

7. [A-D]2 ← [AB]1 ∧ [CD]1
// ([E-H ]2, [E-H ]1, [E-H ]0)← ([EF ]1, [EF ]0) + ([GH ]1, [GH ]0)

8. [EH ]0 ← [EF ]0 ⊕ [GH0]

9. [EH ]1 ← [EF ]1 ⊕ [GH ]1 ⊕ ([EF ]0 ∧ [GH ]0)

10. [EH ]2 ← [EF ]1 ∧ [GH ]1
// ([A-H ]23, [A-H ]1, [A-H ]0)← ([A-D]2, [A-D]1, [A-D]0) + ([E-H ]2, [E-H ]1, [E-H ]0)

11. [A-H ]0 ← [A-D]0 ⊕ [E-H ]0
12. X ← [A-D]0 ∧ [E-H ]0
13. Y ← [A-D]1 ⊕ [E-H ]1
14. [A-H ]1 ← X ⊕ Y
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15. [A-H ]23 ← [A-D]2 ∨ [E-H ]2 ∨ ([A-D]1 ∧ [E-H ]1) ∨ (X ∧ Y )

// (I, I2, I3)← (I, [A-H ]23, [A-H ]1, [A-H ]0)

17. Z ← [A-H ]23 ∧ [A-H ]1
18. I2 ← [A-H ]0 ∧ Z

19. I3 ← [A-H ]0 ∧ Z

20. I ← (I ∧ I2) ∨ I3

Note that, when we compute ([A-D]2, [A-D]1, [A-D]0) ← ([AB]1, [AB]0) +

([CD]1, [CD]0), the values of ([AB]1, [AB]0) and ([CD]1, [CD]0) can not be (1, 1).

Hence, [A-D]2 can be computed by formula [AB]1 ∧ [CD]1.

Let us evaluate the total number of binary operations and unary opera-

tions performed in this algorithm for bit-per-cell arrangement. For computing

([AB]1, [AB]0) ← (A ∧ B,A ⊕ B), two binary operations are performed. Thus,

the sums of four pairs can be computed by 8 binary operations. Five binary opera-

tions are performed for computing the sum of two bits, ([A-D]2, [A-D]1, [A-D]0)←
([AB]1, [AB]0) + ([CD]1, [CD]0). This computation is executed twice, and thus, 10

binary operations are performed. For computing ([A-H ]23, [A-H ]1, [A-H ]0), 9 binary

operations are performed. Finally, (I, I2, I3) is computed in 5 binary operations and

2 unary operations. Thus, the total number of operations is 4×2+2×5+9+5+2 = 34.

Hence we have,

Lemma 1. The next states of cells stored in a word by the bit-per-cell arrangement

can be computed in 34 operations.

Let us implement bitwise summing technique in the GPU. Since CUDA supports

32-bit and 64-bit bitwise operations, it makes sense to use a 32-bit or 64-bit integer

to store 32 or 64 cells. Suppose that we use 64-bit integers to store cells. Each

thread is assigned a word storing 64 cells, and it is responsible for computing the

next states of these cells. We can invoke a CUDA kernel with n
64·32 CUDA blocks

with 32 threads each for n cells. Each word with 64 cells and 8 neighboring words

are read by a thread assigned to it. The thread computes 8 words A,B, . . . , H

from these words, and computes the next state of I by 34 operations. After that, it

writes the resulting next states of I in the global memory and terminates. After all

threads terminate, the CUDA kernel terminates. In this way, one-step simulation is

performed by a single CUDA kernel call. The same CUDA kernel call is repeatedly

performed T times to complete the T -step simulation.

5. Bitwise summing technique for two words

We can reduce the number of operations if next states of cells in two words are com-

puted at the same time. If we just execute Algorithm SINGLE-WORD twice, we

need 68 operations. We will show that it can be reduced to 59 operations by sharing

the computation for two words. For this purpose, we partition the cells as illustrated

in Figure 5. We compute the next states of cells in two wordsK and L in the figure at
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the same time. For updating K, the sum of words A,B,C,D,E, I, J, L is computed.

Also, the sum of D,E, F,G,H, I, J,K is computed for word L. More specifically,

we compute ([A-EIJL]23, [A-EIJL]1, [A-EIJL]0) and ([D-K]23, [D-K]1, [D-K]0).

Clearly, four words D,E, I, J are included in both sets of words. Hence, by com-

puting the sum of these words first, we can reduce the total number of oper-

ations. Once we have (K, [A-EIJL]23, [A-EIJL]1, [A-EIJL]0), we can compute

(K,K2,K3) where K stores next states of K, and each bit of K2 and K3 is 1

if and only if the number of 1’s in the corresponding position of eight words

A,B,C,D,E, I, J, L is 2 and 3, respectively. Similarly, we can obtain (L,L2, L3)

using (L, [D-K]23, [D-K]1, [D-K]0).
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010011
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0 1 00 0 1

1 0
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00 0 1

1 0 1 0

010 0

0100
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1 1 0 1
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Fig. 5. Illustrating 12 words for computing next states of cells in two words by Algorithm DOUBLE-
WORD

Using this idea, next states of cells in two words can be computed by Algorithm

DOUBLE-WORD as follows:

[Algorithm DOUBLE-WORD]

1. ([DE]1, [DE]0)← (D ∧ E,D ⊕ E)

2. ([IJ ]1, [IJ ]0)← (I ∧ J, I ⊕ J)

3. ([AB]1, [AB]0)← (A ∧B,A⊕B)

4. ([CL]1, [CL]0)← (C ∧ L,C ⊕ L)

5. ([FG]1, [FG]0)← (F ∧G,F ⊕G)

6. ([HK]1, [HK]0)← (H ∧K,H ⊕K)

7. ([DEIJ ]2, [DEIJ ]1, [DEIJ ]0)← ([DE]1, [DE]0) + ([IJ ]1, [IJ ]0)
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8. ([ABCL]2, [ABCL]1, [ABCL]0)← ([AB]1, [AB]0) + ([CL]1, [CL]0)

9. ([FGHK]2, [FGHK]1, [FGHK]0)← ([FG]1, [FG]0) + ([HK]1, [HK]0)

10. ([A-EIJL]23, [A-EIJL]1, [A-EIJL]0)

← ([ABCL]2, [ABCL]1, [ABCL]0) + ([DEIJ ]2, [DEIJ ]1, [DEIJ ]0)

11. ([D-K]23, [D-K]1, [D-K]0)

← ([FGHK]2, [FGHK]1, [FGHK]0) + ([DEIJ ]2, [DEIJ ]1, [DEIJ ]0)

12. (K,K2,K3)← (K, [A-EIJL]23, [A-EIJL]1, [A-EIJL]0)

13. (L,L2, L3)← (L, [D-K]23, [D-K]1, [D-K]0)

Let us evaluate the total number of operations. Each of Lines 1-6 can be done in

two binary operations. Lines 7-9 can be done in 5 binary operations each. Lines 10

and 11 can be performed in 9 binary operations each. Finally, lines 12 and 13 takes

5 binary operations and two unary operations. Thus, the total number of operations

is 6× 2 + 3× 5 + 2× 9 + 2× 7 = 59, and we have,

Lemma 2. The next states of cells stored in two words by the bit-per-cell arrange-

ment can be computed in 59 operations

Similarly to the GPU implementation using the global memory, we can imple-

ment the algorithm for Lemma 2 in CUDA programming model. For example, a

CUDA kernel with n
(64·32·2) CUDA blocks with 32 threads each is repeatedly in-

voked. Each thread is responsible for computing the next states of two words. Since

the memory access to the global memory can be shared for updating two words, we

can further accelerate the computation.

6. Multiple-step simulation using the shared memory

We can accelerate the computation if multiple steps simulation is performed on the

shared memory. More specifically, a CUDA block is assigned to multiple words, say,

32 words. It copies words storing the cell states to the shared memory and simulates

multiple steps on the shared memory. The resulting states are copied to the global

memory.

If multiple-step simulation is performed in a block of the universe, cells in the

boundary of the block may not have correct states. More specifically, suppose that

we have a block of d × d cells in a large 2-dimensional array of cells. Since we do

not have the states of cells outside of the block, we simply assume that those cells

always take state 0.

We can say that the boundary cells are dirty after one-step simulation in the

sense that their states may not be correct, because at least one of neighboring cells

of each boundary cell is not taken into account. Also, cells inside the boundary are

clean in the sense that their states are guaranteed to be correct. After another step

simulation, neighboring cells of the dirty cells, that is, the boundary cells of clean

cells become dirty. In general, cells in the distance t from the boundary become dirty

after t-step simulation and m×m cells are clean, where m = d − 2t, as illustrated

Figure 6.
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dirty cells
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Fig. 6. Clean and dirty cells

To simulate multiple steps of all cells, the
√
n×√n 2-dimensional array in the

global memory is partitioned into
√
n

m ×
√
n

m patches of size m×m each as illustrated

in Figure 7. Each patch is expanded by t cells for every direction, and we obtain a

d × d block. A CUDA block is assigned to a block and performs t-step simulation

using the shared memory. For this purpose, it copies the states of d × d cells in

a block to the shared memory. Note that each row of d × d cells is stored in one

or two d-bit words. Thus, we read at most 2d words to copy d × d cells from the

global memory. In the shared memory, t-step simulation is performed. After that,

the resulting states in the m×m patch are written in the global memory. Similarly,

we need to perform write operations for at most 2m words to the global memory.

Since this t-step simulation for all blocks must be completed before the next t-step

simulation is performed. Hence, each t-step simulation must be performed by one

CUDA kernel call and thus T -step simulation can be done by T
t CUDA kernel calls.

We can observe that, we should select an appropriate value of t (1 ≤ t <
d
2 ) for fixed n and d that minimizes the running time. For simplicity, we assume

that the cost for computing the next state of d cells stored in a word is one unit.

Also, let c be the cost of miscellaneous overhead for dispatching CUDA blocks and

reading/writing the states of d cells in the global memory. Under this assumption,

we can write that the cost of t-step simulation of a patch of size m ×m is t + c.

Hence, the cost of T -step simulation of
√
n×√n cells is:

T

t
× n

m2
× (t+ c) =

nT (t+ c)

t(d− 2t)2



May 17, 2016 14:11 WSPC/INSTRUCTION FILE life-ijfcs˙revised

16 Toru Fujita, Koji Nakano, and Yasuaki Ito

mt t

m

t

t

d

d

block

patch

Fig. 7. A d× d patch and an m ×m block in a large 2-dimensional array

This cost is minimized when 4t2 + 6ct− dc = 0, that is,

t =

√
9c2 + 4dc− 3c

4
.

Clearly, t is an increasing function of c. Intuitively, this is reasonable because the

number T
t of CUDA kernel calls should be smaller when the overhead c is larger.

If Algorithm DOUBLE-WORD is implemented using the shared memory as it is,

memory access to the shared memory has bank conflicts. In Algorithm DOUBLE-

WORD, a block of 64×64 cells stored in 64 64-bit words are updated by 32 threads

as illustrated in Figure 8. For example thread 1 is responsible for updating 128 cells

in rows 2 and 3. For this purpose, it accesses cells in rows 1, 2, 3, and 4. Thus,

threads 0, 1, 2, . . ., 31 may access words k+0, k+2, k+4, . . ., k+62 at the same

time for each k = −1, 0, 1, 2. Note that dummy rows -1 and 64 can be arranged in

the shared memory to avoid out-of-bound memory access.

The shared memory of Maxwell GPU architecture has 32 memory banks with

32-bit width [19]. If we store 64-bit data in the shared memory, each of them are

stored in two adjacent banks. In other words, a pair of two adjacent banks are

used to store a 64-bit number. Hence, we can think that the shared memory has

16 memory banks, bank 0, 1, . . ., 15 with 64-bit width. If 64 cells are arranged as

it is, memory access has bank conflicts as illustrated in Figure 9 (1). If 32 threads

access rows 2, 4, 6, . . ., 32, then two memory access operations are performed to the

same bank as illustrated in the Figure. To avoid such bank conflicts, we use shift

arrangement as illustrated in Figure 9 (2), in which elements are shifted by one in

every two rows.
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Fig. 8. Words accessed by threads executing Algorithm DOUBLE-WORD
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Fig. 9. Regular arrangement and shift arrangement

7. Further acceleration using warp shuffle

The memory access latency of the shared memory is not small [21]. Hence, if we can

implement words of cells as registers, we can further accelerate the computation.

We will show that t-step simulation can be done using registers without using the
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shared memory.

The algorithm is almost the same as in Section 6, which uses the shared memory

for t-step simulation. Instead of using the shared memory, we use registers which

can be accessed faster than the shared memory. However, registers are assigned to a

thread, and they can be accessed only by the assigned thread. Hence, we use a warp

shuffle instruction, which copies registers of threads in the same warp, as illustrated

in Figure 10. First, each thread copies two words storing cells from the global

memory. For one-step simulation, each thread copies registers of two neighboring

threads. After that, one-step simulation is performed for two words. This operation

is repeated t times for t-step simulation. The resulting states of cells are copied from

the registers to the global memory.

warp shuffleregisters in threads
registers in threads

thread

thread

thread

thread

Fig. 10. Copying words storing cells using a warp shuffle instruction

8. Simulation of a very large universe

This section shows how we perform simulation of Conway’s Game of Life for a

universe so large that it cannot be stored in the global memory of the GPU and

in the main memory of the host PC. Consider that a very large universe of size√
N ×√N is stored in the SSD connected to the host PC. Our goal is to simulate

the Game of Life for a large universe and store the resulting states after T -step

simulation in the SSD.

To complete T -step simulation, we partition the universe into B sub-universes
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of size
√

N
B ×

√
N
B each and perform t-step simulation T

t times. For this purpose,

similarly to multi-step simulation shown in Section 6, we extend the sub-universe

by T cells for each direction such that it has (
√

N
B + 2T ) × (

√
N
B + 2T ) cells.

Using the GPU, t-step simulation of every sub-universe is performed in turn. More

specifically, each extended sub-universe is copied from the SSD to the main memory

of the host PC. The host PC performs T -step simulation using the GPU. Clearly,

the resulting sub-universe has
√

N
B ×

√
N
B clean cells. These clean cells are copied

to the corresponding sub-universe in the SSD. This operation for every extended

sub-universe is repeated T
t times to complete T -step simulation.

√
N
B

√
N
B

T T

T

T

Fig. 11. Partition of a large universe of size
√
N ×√

N into B sub-universes of size
√

N
B

×
√

N
B

9. Experimental results

The main purpose of this section to show the performance of algorithms for Game of

Life. We have used GeForce GTX TITAN X and Intel Core i7-4790 CPU (3.66GHz)

for the experiment. GeForce GTX TITAN X has 24 streaming multiprocessors with

128 cores each.

We have evaluated the running time of straightforward implementations for 1K-

step (210-step) simulation for a 16K × 16K (214 × 214) array. In the word-per-cell,

we have used 8-bit unsigned characters to store the states cells. In other words,

a 2-dimensional array of 16K × 16K unsigned characters are used and evaluated

formulas (1) and (2) to obtain the next states. The CPU implementation of the

word-per-cell is obvious; the next state of every cell is computed one by one. To

implement the word-per-cell in the GPU, each cell is assigned one thread. More
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specifically, a CUDA kernel computing 1-step transition invokes 223 CUDA blocks

with 32 threads each. The 2-dimensional array storing the states of cells are ar-

ranged in the global memory. Each thread reads the current states of cells necessary

compute the next state of an assigned cell. It computes the next states of cells by

formulas (1) and (2) and writes the resulting state in the global memory. Note that,

a CUDA kernel call can compute only 1-step transition and thus 1024 CUDA kernel

calls are necessary to compute the states after 1024 steps. Table 1 shows the per-

formance of these straightforward implementations. The performance is evaluated

by the number of updates per second. For example, the CPU implementation runs

921.7 seconds for 1K-step simulation for 16K × 16K cells. Thus, the performance

is 1K · 16K · 16K/921.7 ≈ 0.298× 109 updates per second.

Table 1. The performance (109 updates per second) of CPU implementation and GPU implemen-
tation (global memory)

word-per-cell bit-per-cell

SINGLE-WORD DOUBLE-WORD

CPU 0.298 7.71 10.9

GPU 14.8 478 398

speed-up 49.7 62.0 36.5

From Table 1, we can see that the bit-per-cell arrangement is much more effi-

cient than the word-per-cell arrangement. Since the state of one cell is stored using

8 bits in the word-per-cell, we can expect that an implementation of the bit-per-cell

is 8 times faster than that of the word-per-cell. Quite surprisingly, the bit-per-cell

implementation can be more than 30 times faster than the word-per-cell imple-

mentation. This is because memory access to 8-bit words is not efficient in 64-bit

processor architecture. Thus, we should not use word-per-cell arrangement and must

use bit-per-cell arrangement for 64-bit words. Further, we can see that Algorithm

DOUBLE-WORD on the CPU is much faster than Algorithm SINGLE-WORD.

On the other hand, Algorithm DOUBLE-WORD on the GPU does not achieve an

improvement over Algorithm SINGLE-WORD. This is because a straightforward

implementation of Algorithm DOUBLE-WORD involves stride memory access to

the global memory, while that of Algorithm SINGLE-WORD does not.

For further acceleration, we have implemented multiple-step simulation with bit-

per-cell arrangement using the shared memory and the registers on the GPU. Since

we want to avoid barrier synchronization using syncthreads(), we use CUDA

blocks with a single warp of 32 threads each. Also, we implemented simulation of

the Game of Life for a block with 32× 32 cells and with 64× 64 cells as follows:

32 × 32 block: A block of size 32 × 32 is implemented using 32 32-bit unsigned

integers, each of which stores the states of 32 cells. A CUDA block with 32 threads

is assigned 32 × 32 cells. Each thread computes t-step transition of 32 cells stored
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in a 32-bit unsigned integer by repeating Algorithm SINGLE-WORD.

64×64 block: A block of size 64×64 is implemented using 64 64-bit unsigned long

long integers, each of which stores the states of 64 cells. Since a warp of 32 threads

is used for 64 words, we execute SINGLE-WORD twice or DOUBLE-WORD once

to compute 1-step transition. Each thread repeats this t times to complete a t-step

transition.

To find the best value of the number t of steps computed by a single CUDA

kernel call, we evaluated the running time for t = 2, 4, 8, and 16. Recall that the

2-dimensional array of size 16K×16K is partitioned into 16K
m × 16K

m patches of size

m×m each where m = d− 2t and d = 32 for 32× 32 blocks and d = 64 for 64× 64

blocks. Hence, it makes no sense to perform 16-step simulation for 32× 32 blocks,

because m = d− 2t = 0.

Table 2. The performance (109 updates per second) of GPU implementations of multiple-step
simulation

GPU (shared memory) GPU (register+warp shuffle)

32× 32 64× 64 32× 32 64× 64

steps SINGLE SINGLE DOUBLE SINGLE SINGLE DOUBLE

2 451 586 768 489 672 692

4 535 808 1370 659 1330 1510

8 322 720 1560 487 1510 1990

16 - 359 873 - 790 1120

Table 2 shows the performance (109 updates per second) of 1K-step simulation of

the Game of Life with 16K × 16K cells. In most cases, implementations of 64× 64

blocks are faster than that of 32 × 32 blocks, because 64-bit memory access can

maximize the memory access bandwidth for the global memory and the shared

memory. Also, implementations using Algorithm DOUBLE-WORD are faster than

the corresponding implementations of Algorithm SINGLE-WORD. From the table,

8-step simulation with 64 × 64 block using Algorithm DOUBLE-WORD performs

1990 × 109 updates per second, which is the maximum over all implementations

that we have developed. Also, the straightforward GPU implementation using the

global memory performs 478× 109 updates per second (Table 1). Hence, multi-step

simulation by the GPU can accelerate the computation by a speedup factor of 3.

Table 3 shows the running time for 16K-step simulation of 512K×512K cells. The

universe of 256G cells (that is, 32Gbytes) is stored in the SSD. We have partitioned

the universe into 16 sub-universes of size 128K×128K cells each, and T -step simu-

lation for extended sub-universe is performed using the GPU. Since 16K-step sim-

ulation for the universe is performed, T -step simulation for extended sub-universe

is executed 16K·16
T = 256K

T times on the GPU. For T -step simulation of extended

sub-universe stored in the global memory, we have executed 8-step, 64× 64 block,

DOUBLE-WORD algorithm, which is the best configuration from Table 2. Simula-
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tion takes more time for larger T , because extended sub-universe is larger. Also, the

time for SSD read/write is inversely proportional to T . From the table, we can see

that the running time is minimized when T = 8K. We have evaluated the running

time for 16K-step simulation of 512K× 512K cells using a Core i7 CPU for T -step

simulation. We found that the total running time is minimized when T = 128 using

Algorithm DOUBLE-WORD, and the performance is 13.4×109 updates per second.
Therefore, the speedup of the GPU implementation over the CPU implementation

is about 1350/13.4 ≈ 100.

Table 3. The running time (in seconds and 109 updates per second) for 16K-step simulation of
512K× 512K cells using the GPU

T SSD read/write simulation total (sec) total (109 updates)

1K 2470/1390 2360 6230 722

2K 1210/662 2330 4210 1070

4K 591/323 2510 3430 1310

8K 310/170 2860 3340 1350

16K 159/86.0 3550 3800 1190

10. Conclusion

This paper presented several techniques for accelerating the simulation of Conway’s

Game of Life. In particular, we have presented techniques of (1) the states of 32/64

cells in 32/64-bit word (integers) and the next states are computed by the Bitwise

Parallel Bulk Computation (BPBC) technique, (2) the states of cells stored in 2

words are updated at the same time by a thread, (3) warp shuffle instruction is used

to transfer the current states, and (4) multi-step simulation is performed to reduce

the overhead of data transfer and invoking CUDA kernel. The experimental results

show that the simulation of Conway’s Game of Life is efficiently accelerated using

these techniques. Further, we have presented an implementation for the simulation

of a very large universe stored in the SSD.
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