
Light Loss-Less Data Compression, With GPU

Implementation

Shunji Funasaka, Koji Nakano, and Yasuaki Ito

Department of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashihiroshima 739-8527, Japan

{funasaka,nakano,yasuaki}@cs.hiroshima-u.ac.jp

Abstract. There is no doubt that data compression is very important
in computer engineering. However, most lossless data compression and
decompression algorithms are very hard to parallelize, because they use
dictionaries updated sequentially. The main contribution of this paper
is to present a new lossless data compression method that we call Light
Loss-Less (LLL) compression. It is designed so that decompression can
be highly parallelized and run very efficiently on the GPU. This makes
sense for many applications in which compressed data is read and de-
compressed many times and decompression performed more frequently
than compression. We show optimal sequential and parallel algorithms
for LLL decompression and implement them to run on Core i7-4790 CPU
and GeForce GTX 1080 GPU, respectively. To show the potentiality of
LLL compression method, we have evaluated the running time using five
images and compared with well-known compression methods LZW and
LZSS. Our GPU implementation of LLL decompression runs 91.1-176
times faster than the CPU implementation. Also, the running time on
the GPU of our experiments show that LLL decompression is 2.49-9.13
times faster than LZW decompression and 4.30-14.1 times faster that
LZSS decompression, although their compression ratios are comparable.

Keywords: data compression, parallel algorithms, GPGPU

1 Introduction

A GPU (Graphics Processing Unit) is a specialized circuit designed to accel-
erate computation for building and manipulating images [6]. Latest GPUs are
designed for general purpose computing and can perform computation in appli-
cations traditionally handled by the CPU. Hence, GPUs have recently attracted
the attention of many application developers [7, 11]. NVIDIA provides a par-
allel computing architecture called CUDA (Compute Unified Device Architec-
ture) [12], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more efficient than multi-
core processors [10], since they have thousands of processor cores and very high
memory bandwidth.



2

There is no doubt that data compression is one of the most important tasks in
the area of computer engineering. In particular, almost all image data are stored
in files as compressed data formats. There are basically two types of image
compression methods: lossy and lossless [15]. Lossy compression can generate
smaller files, but some information in original files are discarded. On the other
hand, lossless compression creates compressed files, from which we can obtain the
exactly same original files by decompression. The main contribution of this paper
is to present a novel lossless data compression method, in which decompression
can be done very fast using the GPU.

Usually, data to be compressed is a sequence of 8-bit numbers (or a string of
characters). LZSS (Lempel-Ziv-Storer-Szymanski) [16] is a well-known dictionary-
based lossless compression method, which replaces a substring appearing before
by a pair of offset and length. For example, ABCDEBCDEF is encoded into
ABCDE(1,4)F, where (1,4) is a code representing a substring of length 4 from
offset 1. LZSS decompression is performed using a buffer storing recently decoded
substring. We can think that the buffer is a dictionary and an offset/length pair
is decoded by retrieving the corresponding substring in the dictionary. For ex-
ample, the dictionary stores ABCDE when (1,4) is decoded and BCDE in a
dictionary is read and output. Since the dictionary is updated every time after
a code is decoded and output, it is very hard to parallelize LZSS compression.
To parallelize LZSS compression, the input string is partitioned into equal-sized
strips, each of which is encoded sequentially using one thread. The LZSS decom-
pression is also performed using one thread for each encoded strip. Since every
strip is encoded/decoded sequentially, we call this low parallelism strip-wise.
Strip-wise parallel LZSS compression/decompression have been implemented in
a GPU [13], but it achieves very small acceleration ratio over the sequential
implementation on the CPU.

LZW (Lempel-Ziv-Welch) is a patented lossless compression method [17] used
in Unix file compression utility “compress” and in GIF image format. Also,
LZW compression option is included in TIFF file format standard [1], which
is commonly used in the area of commercial digital printing. In LZW com-
pression/decompression, a newly appeared substring is added to the dictionary.
Hence, it is very hard to parallelize them. Parallel algorithms for LZW compres-
sion and decompression have been presented [2, 8]. However, processors perform
compression and decompression with strip-wise low parallelism. Quite recently,
we have presented GPU implementation of LZW decompression with high par-
allelism [3]. This parallel algorithm is code-wise in the sense that a thread is
arranged in each code of a compressed string. Hence, it has very high paral-
lelism and a lot of threads work in parallel. Since memory access latency of the
GPU is quite large, higher parallelism can hide large memory access latency
and can attain better performance. The experimental results in [3] show that it
achieves a speedup factor up to 69.4 over sequential CPU decompression. This
code-wise LZW decompression on the GPU is much faster than the strip-wise
LZSS decompression, although it performs complicated pointer traversing oper-
ations.



3

We present a simple lossless compression method called LLL (Light Loss-
Less) data compression that can be implemented in the GPU as code-wise. Ba-
sically, it combines run-length and LZSS encoding. In the LLL compression, each
strip is partitioned into several segments, say 16 segments of size 4096 bytes. The
previous segment is used as a dictionary when a segment is encoded/decoded. We
focus on LLL decompression in this paper, because decompression is performed
more frequently than compression in many applications. For example, an image
compressed and stored in a storage may be read and decompressed every time
when it is necessary. Thus, compression is performed once for this image, but
decompression may be performed many times. We first show a sequential LLL
decompression algorithm that computes and outputs characters corresponding
to every code one by one. This algorithm runs O(n) time, where n is the number
of output characters. Since Ω(n) time is necessary, this sequential algorithm is
optimal.

Our parallel LLL decompression algorithm has 2 stages. Stage 1 computes
some prefix-sums twice, to determine, for each code, reading offsets of the previ-
ous segment, writing offsets of the current segment, and the lengths of substrings
to be copied. Stage 2 performs, for each code, copy operations from the previ-
ous segment to the current segment. We have evaluated the performance of this
parallel algorithm using the CREW-PRAM (Concurrent Read and Exclusive
Write Parallel Random Access Machine), which is a standard theoretical paral-
lel computing model with a number of processors and the shared memory [4].
Our parallel LLL decompression algorithm runs O(k logm) time and O(n) total
work using m

logm processors on the CREW-PRAM, where m and k are the num-
ber of codes and the maximum length of all codes, respectively, and the total
work is the total number of instructions executed by all processors. Since at least
Ω(n) work is necessary, this parallel algorithm is work optimal.

We have implemented our parallel LLL decompression algorithm in the GPU.
Since the GPU can compute the prefix-sums very efficiently, our GPU implemen-
tation for LLL decompression run much faster than those for LZSS decompres-
sion and LZW decompression. The experimental results using five images show
that LLL decompression on the GPU runs 91.1-176 times faster than that on
the CPU. Also, the LLL compression method achieves comparable compression
ratio to the LZW and LZSS compression methods. Despite good compression ra-
tio, LLL decompression is 2.49-9.13 times faster than LZW decompression and
4.30-14.1 times faster than LZSS decompression on the GPU.

As far as we know, there is few published work which aims to design a
data compression method to be implemented in the GPU. In [9], a compres-
sion method for a sequence of sensing data has been presented. The idea is so
simple that it finds the maximum value of a segment and removes unnecessary
significant bits from sensing data. Hence, it does not work well for data with
high dynamic range and cannot attain good compression ratio. In [14], a bzip2-
like lossless data compression scheme and the GPU implementation have been
presented, but it did not succeed in GPU acceleration of compression.



4

This paper is organized as follows. Section 2 introduces LLL encoding and
shows sequential algorithm for LLL decompression. We then go on to show that
LLL decompression can be done in parallel by computing prefix-sums twice and
by copy operations in Section 3. We show the details of GPU implementation
of LLL decompression in Section 4. Section 5 offers various experimental results
including compression ratio, running time on the CPU and the GPU, the SSD-
GPU loading time. Section 6 concludes our work.

2 LLL: Light Loss-Less Data Compression

The main purpose of this section is to present LLL (Light Loss-Less) data com-
pression method and efficient sequential algorithms for it.

Non-dictionary Encoding

Non-dictionary has two codes, single character code and run-length code as fol-
lows:

Single Character (SC) code: A 1-byte SC code simply represents an 8-bit
character .

Run-Length (RL) code: A 2-byte RC code has two fields: an 8-bit character
field c and an 8-bit length field l. This code represents a run (or a sequence
of the same character) with l + 2 characters c.

Dictionary Encoding

Dictionary encoding has five codes: single character code (1-byte word), short
run-length code (2-byte word), long run-length code (2-byte word plus 1-byte
word), short interval code (2-byte word), and long interval code (2-byte word plus
1-byte word). A 2-byte word has two fields: 12-bit offset field t and 4-bit length
field l. Also, let c denote the value of a 1-byte word. The string corresponding a
code can be determined by the following five encoding rules:

Single Character (SC) code: If a 1-byte code is not that of a long run-length
or long interval code defined next, then it is an SC code, which represents
an 8-bit character.

Short Run-Length (SRL) code: If the offset t of the 2-byte word is 4095
(= 111111111111 in binary) and the length l is NOT 15 (= 1111 in binary)
then the 2-byte word is short run-length code and represents a run of length
l + 2 with the previous character.

Long Run-Length (LRL) code: If the offset t of the 2-byte word is 4095 and
the length l is 15 then a 1-byte word follows, and these two words constitute
a long run-length code, which represents a run of length c + 18 with the
previous character.



5

Short Interval (SI) code: If offset t of a 2-byte word is NOT 4095 and length
l is NOT 15 then the 2-byte word is short interval code and represents reading
offset t and length l + 2. The decoded string of this code is a substring of
length l + 2 in the previous segment from offset t.

Long Interval (LI) code: If offset t of a 2-byte word is NOT 4095 and the
length l is 15 then a 1-byte word must follow, and these two words constitute
a long interval code, which represents reading offset t and length c+18. The
decoded string of this code is a substring of length c + 18 in the previous
segment from offset t.

Additional Rule: Two run-length codes should not be consecutive.

The reader should refer to Table 1 that summarizes five codes. Note that,
one SI/SRL code and one SC code combined in 3 bytes can represent up to 17
characters. Thus, it is not necessary for a 3-byte LI/LRL code to support length
17.

Table 1. Rules of codes: p is the previous character and x(0)x(1) · · ·x(4095) is the
previous segment

111111111111 1111

SC
Single Character

Codes

RL
Run-Length

Non-dictionary encoding

SC
Single Character

Dictionary encoding

c

c l

c

SRL
Short Run-Length

c + 18

c + 18

1

1

l + 2

LRL
Long Run-Length

c

LI
Long Interval

SI
Short Interval

111111111111 l

words length encoded string

pp · · · p

pp · · · p

x(t) · · · x(t + l + 1)

x(t) · · ·x(t + c + 17)

c

c

cc · · · c

l + 2

l + 2

t 1111 c

t l

Fig. 1 shows examples of LLL-compressed data for two segments. We assume
that each segment has 64 characters each although it is defined to be 4096
characters. The first segment is compressed by non-dictionary encoding. The
encoded data has four RL codes and four SC codes. For example, the first RL
code with character A and length 30 corresponds to run of 30+2 = 32 A’s. Next
SC code with character B corresponds to one B.

The second segment in Fig. 1 is encoded using the first segment as a dic-
tionary. The compressed data has six 2-byte words and two 1-byte words. The
first 26 characters appear from offset 16 of the first segment. Hence, they are
encoded using one LI code with length 8 + 18 = 26. After that, six E’s follow.
Since the previous character is also E, they can be encoded using one SRL code



6

with length 2 + 4 = 6. The following string of 16 characters appears in the first
segment. It is encoded using one SI code with length 2 + 14 = 16 and one SC
code. Remaining characters can be partitioned into three strings appearing in
the first string. Hence, they are encoded using three SI codes.

0

A

4 8 12 16 20 24 28

32

B

36 40 44 48 52 56 60

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

C C D D D E E E E F F F F F

0

B30

1 2 3 4 5

1 0

F F F F F F F F F F F F F F G H I

RL

word identifiers

SC

codes A 0

1

C 1

1

D 2

1

E 17

1

F G

0

H

0

I

0

6 7 8

SC SC SCRL RL RL RL

(1) The first segment and LLL-compressed data

0

A

4 8 12 16 20 24 28

32 36 40 44 48 52 56 60

A A A A A A A A A A A A A A A B C C D D D E E E E E E E E E E

0

8 415

4095

1 0

B C B C C F F F F F F F F

1word identifiers

16

1

2

SRLLI

14

1

36 0

1

32

SI SI

1

1

32

SI

F

0

8

1

42

SISC

3

D D E E E E F F F F F F F F F F F F

4 5 6

F

codes

(2) The second segment and LLL-compressed data

Fig. 1. Examples of LLL-compressed data for two segments with 64 characters each

2.1 LLL With Segment Halving

Recall that the first segment with 4096 characters is encoded using non-dictionary
encoding, by which, we cannot expect good compression ratio. We introduce the
segment halving technique, that reduces the length of a segment compressed by
non-dictionary encoding.

In the segment halving technique, the first segment is partitioned into sub-
segments such that subsegment 0 and subsegment 1 have 512 characters, sub-
segment 2 has 1024 characters, and segment 3 has 2048 characters. Subsegment
0 is compressed using non-dictionary encoding. The remaining subsegments are
compressed using dictionary encoding.



7

2.2 LLL File Format

We will show how a large data are encoded and compressed using LLL data
compression. An input sequence is partitioned into segments of 4096 characters.
Several, say, 8 consecutive segments constitute a strip. Each strip with 32K
characters is encoded independently by the LLL compression method. Fig. 2
illustrates an example of LLL-compressed file format. It has a header, which
contains tags storing several setting data such as the number of segments per
strip and the number of strips. It also has a directory, which stores an array
of addresses pointing the heads of encoded strips. The encoded strip has two
blocks: the word identifier block and the word array block. The word identifier
block stores all word identifiers in a strip. All word identifiers of all segments are
concatenated and stored in the word identifier block. Similarly, the word arrays
of all segments are concatenated and stored in the word array block. Using this
file format, decompression of each strip can be done independently.

4096 bytes

strip

strip

strip

header

Original input

LLL-compressed file

directory

LLL-compressed strips

8 segments

segment

word identifiers

word array

Fig. 2. LLL-compressed file format

2.3 Sequential LLL Decompression Algorithm

We show a sequential LLL decompression algorithm for dictionary encoding.
Since those for non-dictionary encoding can be performed easier, we omit to
describe it.

Let x(0)x(1) · · · x(4095) be a sequence of characters in the previous segment.
Let w(0)w(1) · · · w(m− 1) bem bits of the word identifiers and b(0)b(1) · · · b(m1+
2m2 − 1) be bytes in the word array, where m, m1, and m2 be the numbers of
words, 1-byte words, and 2-byte words, respectively. Sequential LLL decompres-
sion can be done by reading the word identifiers as follows:

[Sequential LLL decompression algorithm]
j ← 0; p← NULL;
for i← 0 to m− 1 do

if(w(i) = 0) write(b(j));p← b(j); j ← j + 1;// SC code



8

else
(t, l)← the offset and the length fields of 2-byte word b(j)b(j + 1);
if(l = 15)

c← b(j + 2);
if(t = 4095) write(p) is executed c+ 18 times; // LRL code
else

write(x(t)x(t + 1) · · ·x(t+ c+ 17)); // LI code
p = x(t+ c+ 17);

j ← j + 3;
i← i+ 1;

else
if(t = 4095) write(p) is executed l + 2 times; // SRL code
else

write(x(t)x(t + 1) · · ·x(t+ l + 1)); // SI code
p = x(t+ l + 1);

j ← j + 2;
if(t = 4095) p← NULL;// run-length codes should not be consecutive

We will show theoretical analysis of the running time of sequential LLL de-
compression algorithm. To evaluate the running time using big-O notation, we
use parameter n to denote the size of each segment. The number of write oper-
ations is m and totally n characters are written. Thus, sequential LLL decom-
pression runs O(n) time and we have,

Theorem 1. Sequential LLL decompression algorithm for a segment with n
characters runs O(n) time.

Since at least n characters are output, this sequential algorithm is time optimal.

3 Parallel LLL Decompression Algorithm

This section shows a parallel LLL decompression algorithm. We focus on how
a segment compressed by dictionary encoding can be decoded. Decoding for
non-dictionary encoding can be done in a similar way. Parallel prefix-sums com-
putation is a key ingredient of LLL decompression. For later reference, we use “̂ ”
to denote the prefix-sums of a sequence of numbers. For example, the prefix-sums
of a sequence a(0), a(1), . . . are â(0), â(1), . . ., where â(i) = a(0)+a(1)+ · · ·+a(i)
for all i (≥ 0). For simplicity, let â(−1) = 0.

We assume that m-bit word identifiers w(0)w(1) · · ·w(m − 1), word array
b(0)b(1) · · · b(m1 + m2 − 1), and the previous segment x(0)x(1) · · · x(4095) are
given. Our goal is to compute the decoded string y(0)y(1) · · · y(4095) from these
given data.

Let code-type(i) (0 ≤ i ≤ m− 1) be a function returning the code type of the
i-th word, SC, SI, LI, SRL, or LRL. It also returns NULL if the i-th word is the
1-byte word of a LI/LRL code. Also, let code-length(i) be a function returning
the code length, or the number of characters corresponding to the code. Let



9

w′(i) = w(i) + 1 denote the number of bytes in word i. Since the i-th word
(0 ≤ i ≤ m− 1) is b(ŵ′(i− 1)) if 1-byte and b(ŵ′(i− 1))b(ŵ′(i− 1)+1) if 2-byte,
these functions can be computed in O(1) time after the prefix-sums ŵ′ of w′ are
computed. Our parallel LLL decompression can be done in two stages using these
functions. Let c(i) = code-length(i) be the code length of the i-th word. Clearly,
c(i) characters must be written from y(ĉ(i − 1)). If it is a run-length code, a
run with c(i) characters is written. If it is an interval code, c(i) characters from
x(t(i)) are read and written. Stage 1 computes the values of t(i) (read offset),
ĉ(i − 1) (write offset), and c(i) (code length) for all i (0 ≤ i ≤ m − 1). Stage 2
performs reading/writing operations using the values to decode all codes. The
details are spelled out as follows:

[Parallel LLL decompression algorithm]
// Stage 1: Compute t(i), c(i), and ĉ(i).

Compute the prefix-sums ŵ′(0)ŵ′(1) · · · ŵ′(m− 2) in parallel;
for i← 0 to m− 1 do in parallel

if(w(i) = 1) // 2-byte word

(t(i), l(i))← the offset and the length fields of b(ŵ′(i− 1))b(ŵ′(i− 1) + 1)
c(i)← code-length(i);

Compute the prefix-sums ĉ(0)ĉ(1) · · · ĉ(m− 2) in parallel;
// Stage 2: Write the decoded string using the values of t(i), c(i), and ĉ(i).
for i← 0 to m− 1 do in parallel

if(code-type(i)=SC) y(ĉ(i − 1))← b(ŵ′(i− 1));
else if(code-type(i)=LI or SI)

for j ← 0 to c(i)− 1 do y(ĉ(i − 1) + j)← x(t(i) + j);
for i← 0 to m− 1 do in parallel

if(code-type(i)=LRL or SRL)
for j ← 0 to c(i)− 1 do y(ĉ(i− 1) + j)← y(ĉ(i− 1)− 1);

We will show theoretical analysis of parallel LLL decompression algorithm.
We use the CREW-PRAM (Concurrent Read and Exclusive Write-Parallel Ran-
dom Access Machine), a standard theoretical model of a parallel machine with
a number of processors and the shared memory [4]. Let n and k be the size of
a segment and the maximum length of codes, respectively. The prefix-sums of
m− 1 numbers can be computed in O(logm) time using m

logm processors on the

CREW-PRAM [4]. Also both code-type(i) and code-length(i) for any i can be
computed in O(1) time using a single processor. Thus, Stage 1 can be completed
in O(logm) time using m

logm processors. Suppose that we use m processor and

each processor i (0 ≤ i ≤ m − 1) is used to decode a code for the i-th word in
Stage 2. Clearly, each processor runs at most O(k) time. Also, since n characters
are output, the total work of Stage 2 is O(n). If we use m

logm processors each of

which simulates logm processors, Stage 2 runs O(k logm) time and O(n) work.
Thus, we have,

Theorem 2. Parallel LLL decompression algorithm runs in O(k logm) time
and O(n) work using m

logm processors on the CREW-PRAM.



10

At least Ω(n) work is necessary, this parallel LLL decompression algorithm is
work optimal.

4 GPU Implementation of LLL Decompression

This section shows an efficient GPU implementation of parallel LLL decompres-
sion algorithm. We assume that a compressed file is stored in the global memory
of the GPU. Our goal is to write decompressed data in the global memory. Each
CUDA block is assigned to a compressed strip to decode it.

4.1 LLL Decompression on the GPU

We assume that a compressed file is stored in the global memory of the GPU.
Our GPU implementation decompresses it and the resulting decoded string of
characters is written in the global memory. We use CUDA blocks with 128
threads each. Each CUDA block is assigned a compressed strip to decode it.
Thus, the number of CUDA blocks is equal to the number of strip. We will show
how a CUDA block decodes an assigned compressed strip.

A CUDA block repeats decompression of 256 words of the compressed seg-
ment. It uses the shared memory in a streaming multiprocessor as follows:

Read offsets (512 bytes): an array to store the values of 256 t(i)’s
Write offsets (514 bytes): an array to store the values of 257 ĉ(i)’s
Work space (6 bytes): three short integers used for prefix-sums computation
Current segment (4096 bytes): an array to store decoded characters of a

segment with 4096 characters
Previous segment (4096 bytes): an array to store decoded characters of the

previous segment with 4096 characters

Basically, the parallel LLL decompression algorithm is used for this decompres-
sion. Stage 1 computes read offsets and write offsets, and write them in the
shared memory. Since the length can be computed from write offsets by formula
c(i) = ĉ(i)− ĉ(i− 1), it is not necessary to write the code lengths in the shared
memory. Note that, 257 values of ĉ(i)’s are necessary for computing 256 c(i)’s and
thus we use 514 bytes for the write offsets. Stage 2 writes out decoded characters
to the current segment using read and write offsets and the previous segment.
If the computation of the current segment is completed, they are written out in
the global memory.

We will show the details of Stage 1. We focus on the k-th (k ≥ 1) itera-
tion of 256-word decompression and assume the previous segment have been
already computed. A CUDA block reads 256 word identifiers w(256k), w(256k+
1), . . . , w(256k+255) in the global memory and computes the prefix-sums ŵ′(256k),
ŵ′(256k + 1), . . ., ŵ′(256k + 255) by the prefix-sums computation [5] on the
shared memory. By the values of the prefix-sums, it reads words in the word
array and determine code-type(i), code-length(i)(= c(i)), and read offset t(i) for
all i (256k ≤ i ≤ 256k+255). The prefix-sums ĉ of c are computed on the shared



11

memory, and write offsets ĉ(256k − 1), ĉ(256k), . . . ĉ(256k + 255) are written in
the shared memory. Also, read offsets t(256k), t(256k+1), . . . , t(256k+255) are
written in the shared memory.

We should note that we have optimized the prefix-sums computation for w’s
and c’s using the fact that these numbers are 16-bit unsigned short integers. The
idea is to store two 16-bit unsigned short integers in one unsigned 32-bit integer
and compute the sum of two pairs of 16-bit integers by one addition for 32-bit
integers.

Since read offsets and write offsets are stored in the shared memory, we can
execute Stage 2, which writes out decoded characters in the global memory. We
use one thread assigned to a word writes out decoded characters if the code is
SC, SRL, or SI. If the code is LRL or LI, then the code consists of two words
and two threads are assigned. Thus, two threads are used to writes out decoded
characters for LRL and LI codes in the current segment of the shared memory.
Each of them writes out a half of decoded characters of the LRL/LI codes. If
all 256 words are in the same segment, a CUDA block writes out all decoded
characters for the 256 words. If they are separated into two or more segments,
we need to perform this writing operation for each segment in turn. If all words
of a segment are obtained in the current segment of the shared memory, they
are written in the global memory. The pointers for the heads of the current
segment and the previous segment are swapped to avoid copy operation between
the current segment and the previous segment.

Let us evaluate the occupancy of a streaming multiprocessor in GeForce
GTX 1080, which has 96K-byte shared memory, 64K 32-bit registers, 2048 resi-
dent threads, and 32 resident CUDA blocks. Since a CUDA block uses 9224 bytes
in the shared memory, it can have up to � 983049224 � = 10 CUDA blocks from the
shared memory capacity. From the compiler report, each thread uses 41 32-bit
registers. Hence, 41× 128× 10 = 52480 32-bit registers are sufficient to arrange
10 CUDA blocks in a streaming multiprocessor at the same time, and the occu-
pancy is 1280

2048 = 62.5%, which is reasonably high to maximize the memory access
throughput.

5 Experimental Results

We have used GeForce GTX 1080 GPU and Core i7-4790(3.6GHz) CPU to eval-
uate the performance. GeForce GTX 1080 has 20 streaming multiprocessor with
128 cores each. We have used five gray scale images to evaluate the performance.
Three of them shown in Fig. 3 are converted from JIS X 9204-2004 standard color
image data of size 4096× 3072. We also use two gray scale images, Random and
Black with the same size. Each pixel value of Random is selected from the range
[0, 255] independently at random. Every pixel in Black takes value 0.

Each strip has 64k pixels for LLL and LZW compressions. Thus, each im-
age has 192 strips and 192 CUDA blocks are invoked for decompression. LLL
and LZW compression uses CUDA blocks with 128 and 1024 threads each, re-
spectively. To maximize the performance of LZSS, the number of strips must



12

Crafts Flowers Graph

Fig. 3. Gray scale images with 4096 × 3072 pixels used for experiments

be larger. Hence, we partition each image into 3072 strips for LZSS. Also, 48
CUDA blocks with 64 threads are invoked for LZSS decompression. Further, we
use 7-bit offset and 7-bit length for LZSS, because CULZSS [13] also uses these
parameters.

Table 2 shows the compression ratios for the five images. The size of com-
pressed image of Random is larger than the original, and that of Black is very
small. We can see that the compression ratios obtained by LZW and LLL are
almost the same. Those by LZSS are slightly worse than the others.

Table 2. Compression ratios for five images using three compression methods

Images Crafts Flowers Graph Random Black

LZSS 84.7% 80.3% 6.78% 111% 1.81%
LZW 78.3% 63.9% 3.22 % 137% 0.643 %
LLL 77.5% 65.9% 4.54% 112 % 1.21%

Table 3 shows the running time of three decompression methods on the CPU
and the GPU. The running time on the CPU are not so different. On the other
hand, the LLL decompression on the GPU attains higher acceleration ratio and
runs faster than the other decompression methods. Actually, LLL decompression
is 2.49-9.13 times faster than LZW decompression and 4.30-14.1 times faster that
LZSS decompression.

Table 4 shows the SSD-GPU loading time, which is the time necessary to
load uncompressed data in the global memory of the GPU from the SSD. We
have evaluated the SSD-GPU loading time for the following three scenarios:

Scenario A: Uncompressed data in the SSD is transferred to the global memory
of the GPU through the CPU.

Scenario B LLL-compressed data is transferred to the CPU, it is decompressed
using the CPU, and then the resulting decompressed data is copied to the
global memory of the GPU.

Scenario C LLL-compressed data is transferred to the GPU, and decompres-
sion is performed by the GPU.



13

Table 3. The running time for decompression on the CPU and on the GPU in mil-
liseconds and the speed-up ratios

Images Crafts Flowers Graph Random Black

LZSS CPU 53.0 35.9 22.2 61.5 19.1
GPU 3.00 2.98 1.67 3.19 1.90

Speed-up GPU/CPU 17.6 12.1 13.3 19.3 10.1

LZW CPU 63.1 52.1 26.0 76.9 27.1
GPU 1.81 0.912 1.09 2.00 1.23

Speed-up GPU/CPU 34.8 57.1 23.9 38.5 22

LLL CPU 56.7 40.6 28.3 67.6 23.8
GPU 0.521 0.366 0.284 0.741 0.135

Speed-up GPU/CPU 109 111 99.8 91.1 176

Speed-up LLL/LZSS 5.76 8.14 5.88 4.30 14.1
LLL/LZW 3.48 2.49 3.84 2.70 9.13

Since all images have the same size, the SSD-GPU loading times for Scenario A
are almost the same. In Scenario B, the time for CPU decompression dominates
data transfer time. Hence, it makes no sense to use CPU decompression to load
data in the GPU. The total time of Scenario C is smaller than that of Scenario A
except Random image, in which the compressed data is larger than the original
image. Hence, it makes sense to use GPU decompression to load data, even if
the storage capacity is so large that all uncompressed data can be stored.

Table 4. The SSD-GPU loading time in milliseconds using LLL decompression for
three scenarios

Images Crafts Flowers Graph Random Black

Scenario A SSD→CPU 6.38 6.39 6.38 6.39 6.39
CPU→GPU 3.84 3.85 3.84 3.85 3.91

Total 10.2 10.2 10.2 10.2 10.3

Scenario B SSD→CPU 4.92 4.19 0.290 7.06 0.152
CPU decompression 56.8 40.7 28.1 67.2 23.6

CPU→GPU 3.83 3.87 3.81 3.82 3.93
Total 65.5 48.7 32.2 78.1 27.7

Scenario C SSD→CPU 4.92 4.18 0.289 6.99 0.150
CPU→GPU 2.95 2.53 0.174 4.25 0.149

GPU decompression 0.520 0.366 0.284 0.741 0.135
Total 8.40 7.08 0.748 12.0 0.434

6 Conclusion

In this paper, we have presented a new data compression method called LLL
(Light Loss-Less) compression. Although the compression ratio is comparable,



14

the LLL decompression on the GPU is much faster than previously published
LZW decompression and LZSS decompression. We also provided the SSD-GPU
loading time using LLL decompression, which shows that our GPU LLL decom-
pression can be useful for many applications.

References

1. Adobe Developers Association: TIFF Revision 6.0 (June 1992),
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

2. Funasaka, S., Nakano, K., Ito, Y.: Fast LZW compression using a GPU. In: Proc. of
International Symposium on Computing and Networking. pp. 303–308 (Dec 2015)

3. Funasaka, S., Nakano, K., Ito, Y.: A parallel algorithm for LZW decompression,
with GPU implementation. In: Proc. of International Conference on Parallel Pro-
cessing and Applied Mathematics (LNCS9573). pp. 228–237. Springer (2015)

4. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press
(1988)

5. Harris, M., Sengupta, S., Owens, J.D.: Chapter 39. parallel prefix sum (scan) with
CUDA. In: GPU Gems 3. Addison-Wesley (2007)

6. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)
7. Kasagi, A., Nakano, K., Ito, Y.: Parallel algorithms for the summed area table

on the asynchronous hierarchical memory machine, with GPU implementations.
In: Proc. of International Conference on Parallel Processing (ICPP). pp. 251–250
(Sept 2014)

8. Klein, S.T., Wiseman, Y.: Parallel Lempel Ziv coding. Discrete Applied Mathe-
matics 146, 180 – 191 (2005)

9. Lok, U.W., Fan, G.W., Li, P.C.: Lossless compression with parallel decoder for
improving performance of a GPU-based beamformer. In: Proc. of International
Ultrasonics Symposium. pp. 561 – 564 (July 2014)

10. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a paral-
lel algorithm for computing Euclidean distance map in multicore processors and
GPUs. International Journal of Networking and Computing 1(2), 260–276 (July
2011)

11. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the
matrix chain product on the GPU. In: Proc. of International Conference on Net-
working and Computing. pp. 320–326 (Dec 2011)

12. NVIDIA Corporation: NVIDIA CUDA C programming guide version 7.0 (Mar
2015)

13. Ozsoy, A., Swany, M.: Culzss: Lzss lossless data compression on cuda. In: Proc.
International Conference on Cluster Computing. pp. 403 – 41 (Sept 2011)

14. Patel, R.A., Zhang, Y., Mak, J., Davidson, A.: Parallel lossless data compression
on the GPU. In: Proc. of Innovative Parallel Computing (InPar). pp. 1–9 (May
2012)

15. Sayood, K.: Introduction to Data Compression, Fourth Edition. Morgan Kaufmann
(2012)

16. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal
of the ACM 29(4), 928–951 (Oct 1982)

17. Welch, T.: High speed data compression and decompression apparatus and method.
US patent 4558302 (Dec 1985)


