
Fast LZW compression using a GPU

Shunji Funasaka, Koji Nakano and Yasuaki Ito
Department of Information Engineering

Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The LZW compression is a well known patented
lossless compression method used in Unix file compression utility
“compress” and in GIF and TIFF image formats. It converts
an input string of characters (or 8-bit unsigned integers) into
a string of codes using a code table (or dictionary) that maps
strings into codes. Since the code table is generated by repeatedly
adding newly appeared substrings during the conversion, it is very
hard to parallelize LZW compression. The main purpose of this
paper is to accelerate LZW compression for TIFF images using a
CUDA-enabled GPU. Our goal is to implement LZW compression
algorithm using several acceleration techniques using CUDA,
although it is a very hard task. Suppose that a GPU generates
a resulting image generated by a computer graphics or image
processing CUDA program and we want to archive it as a
LZW-compressed TIFF image in the SSD connected to the host
PC. We focused on the following two scenarios. Scenario 1: the
resulting image is compressed using a GPU and written in the
SSD through the host PC, and Scenario 2: it is transferred to
the host PC, and compressed and written in the SSD using a
CPU. The experimental results using NVIDIA GeForce GTX 980
and Intel Core i7 4790 show that Scenario 1 using our LZW
compression implemented in a GPU is about 3 times faster than
Scenario 2. From this fact, we can say that it makes sense to
compress images using a GPU to archive them in the SSD.

Keywords—Data compression, big data, parallel algorithms,
GPU, CUDA

I. INTRODUCTION

A GPU (Graphics Processing Unit) is a specialized cir-
cuit designed to accelerate computation for building and
manipulating images [1]–[3] Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application de-
velopers. NVIDIA provides a parallel computing architecture
called CUDA (Compute Unified Device Architecture) [4], the
computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel
computational elements in NVIDIA GPUs.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [4]. The shared
memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-64K bytes. The global memory is implemented
as an off-chip DRAM, and thus, it has large capacity, say, 1.5-
12 Gbytes, but its access latency is very long. The efficient
usage of the shared memory and the global memory is a
key for CUDA developers to accelerate applications using
GPUs. In particular, we need to consider bank conflicts of the
shared memory access and coalescing of the global memory
access [5]–[14]. The address space of the shared memory is
mapped into several physical memory banks. If two or more

threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize the
shared memory access performance, threads of CUDA should
access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the throughput between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory.

There is no doubt that data compression is one of the
most important tasks in the area of computer engineering.
In particular, almost all image data are stored in files as
compressed data formats. There are basically two types of
image compression methods: lossy and lossless [15]. Lossy
compression can generate smaller files, but some information
in original files are discarded. Hence, decompression of lossy
compressed images does not generate files identical to the
original images. On the other hand, lossless compression
creates compressed files, from which we can obtain the exactly
same original files by decompression. In this paper, we focus
on LZW (Lempel-Ziv & Welch) [16] compression, which is
one of the most well known patented lossless compression
method [17] used in Unix file compression utility “compress”
and in GIF image format. Also, LZW compression option is
included in TIFF file format standard [18], which is commonly
used in the area of commercial digital printing.

The LZW compression algorithm converts an input string
of characters into a string of codes using a code table (or
a dictionary) that maps strings into codes. In LZW com-
pression in TIFF file format, characters are 8-bit unsigned
integers representing intensity levels of gray-scale images, and
codes are 12-bit unsigned integers. During the conversion, the
code table is generated by adding new substrings. However,
LZW compression is hard to parallelize, because they use
dictionary tables created by reading input data one by one.
In [19], a CUDA implementation of LZW compression has
been mentioned, but the paper is very poorly written and
it is not possible to understand their results. Also, several
GPU implementations of some dictionary based compression
methods have been presented [20], [21]. As far as we know,
no paper has presented the details of LZW implementations
for GPUs.

Quite recently, we have presented a GPU implementation
for LZW decompression [22]. The LZW decompression al-
gorithm converts an input string of codes into a string of
characters, that is, it is the inverse of the LZW compression.
Similarly, during the conversion, the code table is generated
one by one. However, unlike the LZW compression, the LZW
decompression can be highly parallelized. The idea of parallel

2015 Third International Symposium on Computing and Networking

2379-1896/15 $31.00 © 2015 IEEE

DOI 10.1109/CANDAR.2015.20

303

GPU

Scenario 1

Scenario 2

SSD

GPU CPU

compress

SSD

CPU

compress

Fig. 1. Two scenarios to archive an LZW-compressed image in the SSD

LZW decompression is to generate the code table from the
input string of codes in parallel. After that, the input string
of codes are converted into the output string of characters.
These two steps can be done in parallel using one thread to
each code. On the other hand, it is not possible to generate
the code table from the input string of characters in parallel.
Hence, it is very hard to parallelize LZW compression.

Our idea for LZW compression is to use an idea of bulk
execution of the same sequential computation that have been
show in our previous papers [23]–[25]. We have proved and
showed that bulk execution of a sequential algorithm can be
implemented very efficiently if it is oblivious in the sense that
memory access is independent of the values of the input. If
each thread performs one execution of bulk executions, we can
guarantee that memory access is coalesced. In TIFF LZW com-
pression, an input image to be LZW compressed is partitioned
into stripes, each of which consists of one or more rows. Since
each strip is LZW compressed independently, we assign one
thread to each strip for this task. Our implementation for LZW
compression performs bulk execution of LZW compression
using one thread for each strip. Using this idea, memory
access to the input string of codes is oblivious. However,
the memory access to the code table is not coalesced. In
particular, reading operations for the code table are performed
to random addresses. Thus, we should minimize the space for
the code table to reduce the miss rate of the memory cache.
Straightforward implementation for the code table needs at
least 2Mbytes. We have reduced it to 32Kbytes using a hash
table designed carefully.

To show the benefit of LZW compression using the GPU,
we have compared two scenarios as illustrated in Figure 1.
Suppose that some GPU computation generated an image in
the global memory of the GPU and we want to archive it in
the SSD. Scenario 1: a generated image is LZW compressed
using the GPU, and the resulting compressed image is stored
in the SSD through the CPU. Scenario 2: a generated image
is transferred to the main memory of the CPU, and it is
compressed and stored in the SSD by the CPU. We will show
that Scenario 1 is approximately 3 times faster than Scenario 2.
From this fact, we can say that it makes sense to compress
images using a GPU to archive them in the SSD.

This paper is organized as follows. Section II reviews LZW
compression algorithm. We also present that the code table
can be implemented using a pointer-character table efficiently.

In Section III, we present our GPU implementation of LZW
compression for TIFF images. We show experimental results
using GeForce GTX 980 and Core i7 4790. Finally, Section V
concludes our work.

II. LZW COMPRESSION ALGORITHM

The main purpose of this section is to review LZW
compression/decompression algorithms. Please see Section 13
in [18] for the details.

The LZW compression algorithm converts an input string
of characters into a string of codes using a code table (or a
dictionary) that maps strings into codes. If the input is an image
or plain ASCII text, characters may be 8-bit unsigned integers.
It reads characters in an input string one by one and adds an
entry in a code table. In the same time, it writes an output string
of codes by looking up the code table. Let X = x0x1 · · ·xn−1

be an input string of characters and Y = y0y1 · · · ym−1 be
an output string of codes. When we show examples of LZW
compression, we use an input string with 4 characters a, b, c,
and d, which can be mapped to 2-bit unsigned integers, 0, 1, 2,
and 3. For convenience, we assume that characters a, b, c, and d
take integer values 0, 1, 2, and 3, if they are used in the context
of integers. Let C be a code table, which determines a mapping
of a code to a string, where codes are non-negative integers.
Initially, C(0) = a, C(1) = b, C(2) = c, and C(3) = d.
By procedure AddTable, new code is assigned to a string. For
example, if AddTable(cb) is executed after initialization of C,
we have C(4) = cb. We also use symbol C to denote a set of
codes in a code table C, that is, C = {C(0), C(1), . . .} if it
is clear from the context.

The LZW compression algorithm finds the longest prefix
Ω of the current input that is in the code table, and outputs the
code of Ω. Let x be the following character of Ω in the current
input. Since Ω·x is not in the table, it is added to the code table,
where “·” denotes the concatenation of strings/characters. The
same procedure is repeated from x. Let C−1(Ω) denote the
index of C where Ω is stored. For example, when C(3) = d,
C−1(d) = 3. The LZW compression algorithm is formally
described as follows:

[LZW compression algorithm]
1 Ω← x0;
2 for i← 1 to n− 1 do
3 if(Ω · xi is in C)
4 Ω← Ω · xi;
5 else
6 Output(C−1(Ω)); AddTable(Ω · xi); Ω← xi;
7 Output(C−1(Ω));

Table I shows the compression process and the code table
C for an input string cbcbcbcda. First, Ω ← x0(= c) is
performed. Next, since Ω·x1 = cb is not in C, Output(C−1(c))
and AddTable(cb) are performed. More specifically, C−1(c) =
2 is output and we have C(4) = cb. Also, Ω ← x1(= b) is
performed. By repeating the same procedure, we can confirm
that 214630 is output by this algorithm.

Let us discuss implementations of code table C. The
following operations for a string Ω of characters must be
supported for LZW compression.

304

TABLE I. CODE TABLE C , STRING STORED IN Ω, AND OUTPUT STRING Y FOR X = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -
xi c b c b c b c d a
Ω - c b c cb c cb cbc d a
C - 4 : cb 5 : bc - 6 : cbc - - 7 : cbcd 8 : da -
Y - 2 1 - 4 - - 6 3 0

• determine if Ω · xi is in C,

• return the value of C−1(Ω),

• perform AddTable(Ω · xi).

A straightforward implementation of a code table C, which
uses an array such that each i-th (i ≥ 0) element stores C(i),
is not efficient. All values of C(i) may be accessed to compute
C−1(Ω). We may use an associative array with keys C(i)
and values i, which can be implemented by a balanced binary
tree or a hash table. However, these operations take more than
O(|Ω|) time. If the compression ratio is high, Ω may be a
long string. Hence, it is not a good idea to use a conventional
associative array to implement C.

We will use a pointer-character table shown in Table II
to implement a code table C. In the pointer-character table,
a pointer p(j) and a character c(j) are stored for each code
j. Also, a back-pointer q(j, x) for every code j and character
x is used. Back-pointer table q can be implemented using an
associative array. We will discuss implementations of a back-
pointer later. We can obtain a string C(j) by traversing p until
we reach NULL. More specifically, C(j) can be obtained from
p and c by the following definition:

C(j) = c(j) if p(j) = NULL

= C(p(j)) · c(j) otherwise.

For example, in Table II, we have C(6) = C(4) · c = C(2) ·
bc = cbc. A back-pointer q(j, x) takes value k if p(k) = j
and c(k) = x. If there exists no k such that p(k) = j, then
q(j, k) = NULL. It is used to perform the three operations
above efficiently.

We implement procedure AddTable(Ω · xi) for code table
C as a procedure AddTable(j, xi) for the pointer-code table.
If AddTable(j, xi) is performed, a new available entry k with
p(k) = j and c(k) = xi is added to the pointer-character
table. Also, the value k is written in q(j, xi). Using the pointer-
character table, we can rewrite LZW compression algorithm
as follows:

[LZW compression algorithm]
1 j ← c−1(x0);
2 for i← 1 to n− 1 do
3 if(q(j, xi) �= NULL)
4 j ← q(j, xi);
5 else
6 Output(j); AddTable(j, xi); j ← xi;
7 Output(j);

Note that, when j ← xi is executed, xi represents the integer
value of xi. Let us see how Table II is created by this
algorithm. First, j ← c−1(x0) = 2 is performed. Next, since
q(j, x1) = q(2, b) is NULL, Output(2) and AddTable(2, b) are
performed. The pointer-character table has new entry p(4) = 2

and c(4) = b. Also, 4 is stored in q(2, b). Continuing similarly,
we can confirm that the algorithm creates the pointer-character
table and outputs 214630.

III. GPU IMPLEMENTATION OF LZW COMPRESSION FOR

TIFF IMAGES

We focus on LZW compression of an image into a TIFF
image file. We assume a gray scale image with 8-bit depth, that
is, each pixel has intensity represented by an 8-bit unsigned
integer. Since each of RGB or CMYK color planes can be
handled as a gray scale image, it is obvious to modify gray
scale LZW compression for color image compression.

As illustrated in Figure 2, a TIFF file has an image header
containing miscellaneous information such as ImageLength
(the number of rows), ImageWidth (the number of columns),
compression method, depth of pixels, etc [18]. It also has
an image directory containing pointers to the actual image
data. For LZW compression, an original 8-bit gray-scale image
is partitioned into strips, each of which has one or several
consecutive rows. The number of rows per strip is stored in
the image file header with tag RowsPerStrip. Each strip is
compressed independently, and stored as the image data. The
image directory has pointers to the image data for all strips.

Next, we will show how each strip is compressed. Since
every pixel has an 8-bit intensity level, we can think that
an input string of an integer in the range [0, 255]. Hence,
codes from 0 to 255 are assigned to these integers. Code 256
(ClearCode) is reserved to clear the code table. Also, code
257 (EndOfInformation) is used to specify the end of the data.
Thus, AddTable operations assign codes to strings from code
258. While the entry of the code table is less than 512, codes
are represented as 9-bit integer. After adding code table entry
511, we switch to 10-bit codes. Similarly, after adding code
table entry 1023 and 2037, 11-bit codes and 12-bit codes are
used, respectively. As soon as code table entry 4094 is added,
ClearCode is output. After that, the code table is re-initialized
and AddTable operations use codes from 258 again. The same
procedure is repeated until all pixels in a strip are converted
into codes. After the code for the last pixel in a strip is output,
EndOfInformation is written out. We can think that a code
string for a particular strip is separated by ClearCode. We call
each of them a code segment. Except the last one, each code
segment has 4094 − 257 + 1 = 3838 codes. The last code
segment for a strip may have codes less than that.

Let us discuss the implementation of back-pointer q for
TIFF LZW compression. Since codes have up to 12 bits and
characters are 8 bits, we can implement q as a table which has
212× 28 = 220 entries. Since the value of back-pointer q(i, x)
takes value up to 12 bits, each entry can be 2 bytes. Hence, a
back pointer can be implemented in 221 = 2Mbytes. However,
this straightforward implementation has large overhead due to

305

TABLE II. A POINTER-CHARACTER TABLE AND A BACK-POINTER TABLE TO IMPLEMENT CODE TABLE C

j 0 1 2 3 4 5 6 7 8 9

p(j) NULL NULL NULL NULL 2 1 4 6 3 0
c(j) a b c d b c c d a -

q(j, a) NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL
q(j, b) NULL NULL 4 NULL NULL NULL NULL NULL NULL NULL
q(j, c) NULL 5 NULL NULL 6 NULL NULL NULL NULL NULL
q(j, d) NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL

C(j) a b c d cb bc cbc cbcd da -

ImageWidth

ImageLength

RowsPerStrip

Image TIFF file

image header

image directory

image data

compressionstrip

Fig. 2. An image and TIFF image file

the cache miss. Hence we will use a hash table to implement
back-pointer q.

Let h(i, x) be a hash function returning a 14-bit number,
where i and x are 12 bits and 8 bits, respectively. In the
experiment that we will show later, we have used the following
hash function h to specify a 14-bit number.

h(i, x) = (i⊕ (x << 10)⊕ (x >> 4)) ∧ 0x3FFF,

We use an array of 214 elements with 2 bytes each to store the
14-bit values of back pointers q(i, x). When we write the value
of back pointer in address h(i, x), it may already be used. If
this is the case, the current value of each address (h(i, x) +
501i)∧0x3FFF is read for i = 1, 2, . . . until an unused address
is found. Since at most 3838 elements are added, the hash table
of size 214 = 16384 is good enough.

After ClearCode is output, we need to initialize the hash
table. However, it is too costly to clear all elements in the
hash table. Hence, we use the time-stamp technique as follows:
Since the value of each q(i, x) has 12 bits is stored in 2 byte
element, the remaining 4 bits are used as a time stamp. The
time stamp takes value from 0 to 24−1 = 15. Initially, the time
stamp is 0 and incremented after ClearCode is output. When
the new entry is added to and some value is written in q(i, x),
the current time stamp is written with it. Using the time stamp,
one can determine if the value stored in each q(i, x) is valid.
When the time stamp is incremented 16 times, it is set to 0
and the values of all addresses are initialized by 0. Note that
the size of the hash table is 214 ·2 = 32K bytes, which is much
smaller than the straightforward implementation. However, the
hash table of size 32K bytes is too large to store it in the shared
memory, we use the CUDA local memory, which is arranged

in the global memory.

We are now in a position of our implementation of LZW
compression using a CUDA-enabled GPU. We assume that
an 8-bit gray scale image to be LZW-compressed is stored in
the global memory of the GPU. Our implementation performs
LZW compression and the resulting image is stored in the
global memory using a TIFF format. To maximize parallelism,
we set RowsPerStrip= 1, that is, each strip has one row of
the gray-scale image. We assign each thread to one strip,
which perform LZW compression of it independently. Each
thread uses the local memory, which is mapped in the global
memory of the GPU, to store the pointer-character table and
the hash table. The details of our implementation is spelled
out as follows:
[LZW compression using a CUDA-enabled GPU]
Step 1: The gray-scale image is transposed such that each row
of the image is in a column.
Step 2: Each thread performs the LZW compression and the
resulting sequence of LZW codes is written in the global
memory.
Step 3: The prefix-sums of the lengths of the resulting se-
quences of LZW codes are computed.
Step 4: The resulting LZW codes are concatenated into one
to fit a TIFF format using the prefix-sums.

One CUDA kernel is invoked for each of the three steps.
Step 1 can be done by an algorithm for matrix transposi-
tion [26]. After the transposing, each row of the image is
arranged in a column. Since every thread accesses the same
position of a column, access to the image performed in Step 2
is coalesced. After Step 2, the resulting sequences of LZW
codes generated by all threads are separated. To convert it in

306

“Crafts” “Flowers” “Graph”

Fig. 3. Three gray scale image with 4096× 3072 pixels used for experiments

a TIFF format, they must be concatenated. For concatenation,
the prefix-sums of the lengths of all resulting sequences of
LZW codes are computed in Step 3. More specifically, let
l0, l1, l2, . . . be the lengths of all resulting sequences. The
prefix-sums l0, l0+l1, l0+l1+l2, . . . are computed. The prefix-
sums can be computed by a GPU very efficiently [9], [27]
From the prefix-sums, we can determine the position in the
TIFF format where each resulting sequence must be copied.
Step 4 performs this copy operation in an obvious way.

IV. EXPERIMENTAL RESULTS

We have used NVIDIA GeForce GTX 980 which has 16
streaming multiprocessors with 128 processor cores each to
implement our parallel LZW compression algorithm. We also
use Intel Core i7 4790 (3.6GHz) to evaluate the running time
of sequential LZW compression.

We have used three gray scale images with 4096 × 3072
pixels (Figure 3), which are converted from JIS X 9204-2004
standard color image data. We set RowsPerStrip= 1, and so
each image has 3072 strips with 4096 pixels each. We invoked
a CUDA kernel with 4096

32 = 128 CUDA blocks of 32 threads
each for compression. Table III shows the compression ratio,
that is, “original image size: compressed image size.” We
can see that “Graph” has high compression ratio because it
has large areas with constant intensity levels. On the other
hand, the compression ratio of “Crafts” is small because
of the small details. Table III also shows the running time
for LZW compression using a GPU and a CPU. It shows
the running time of each step of GPU LZW compression.
Clearly, Step 2 dominates the total computing time. The time
for transposition, prefix-sum computation, concatenating LZW
codes is negligible. The table also shows the running time of
our GPU implementation for all steps. Since the sum of the
running times of all steps is a little larger than that for all steps,
the running time of each step includes overhead for measuring
the running time. We can see that our GPU implementations
is about three times faster than the CPU implementation. The
last column shows the running time of Step 2 for the case
that the input image is not transposed. Note that if memory
access to the image is not coalesced if this is the case. Since
the running time is rather longer than Step 2 with transpose,
we should perform Step 1 beforehand.

We have evaluated the running time of two scenarios that
may be used in real life applications. What we want to do
is to store it using LZW-compressed TIFF format in the SSD

(Solid State Drive) connected to the host PC. We compare the
following two scenarios as shown in Figure 1
Scenario 1: The gray-scale image is compressed and converted
into a TIFF image by our implementation on the GPU. After
that, the resulting LZW-compressed TIFF image is transferred
to the host PC and written in the SSD.
Scenario 2: The gray-scale image is transferred to the host PC
and compressed using a CPU. After that, the resulting LZW-
compressed TIFF image is written in the SSD.
Table IV shows the running time of each scenario. The
compression time is much larger than the data transfer time
both for Scenarios 1 and 2. Similarly, the time for all pro-
cedures is a little smaller than the sum of the running time
of three procedures because of the overhead for measuring
the running time. We can see that the Scenario 1 is about
three times faster than Scenario 2. The readers may think that
our CPU implementation is not efficient. Hence, we have also
used libTIFF, which is a standard library for handling TIFF
images [28]. The last column shows the time of Scenario 2
using libTIFF. Clearly, it is not faster than that of our CPU
implementation.

Considering practical cases, some application may LZW-
compress multiple images successively. Therefore, we evaluate
the running time of LZW compression for multiple images.
Table V shows the running time (in milliseconds) of LZW
compression for multiple TIFF images of “Crafts” using
our proposed GPU implementation. To utilize computation
resources of the GPU as possible, we use CUDA stream [4]
to execute kernels concurrently. We can see that the running
time for multiple images is shorter than that for one image
since kernels are invoked asynchronously and overhead due
to invoking kernels is hidden. According to the table, when
16 or more images are LZW-compressed, the running time
per image does not change. Also, the running time per image
for 64 images is 1.38 times shorter than that for one image.
Therefore, to increase the throughput of the execution, multiple
images should be LZW-compressed.

V. CONCLUSION

In this paper, we have presented an implementation of LZW
compression in a CUDA-enabled GPU. We have compared
two scenarios to archive LZW-compressed TIFF images in the
SSD. The scenario that uses a GPU for LZW compression is
about three times faster than that uses a CPU. From this fact,

307

TABLE III. THE RUNNING TIME (IN MILLISECONDS) OF LZW COMPRESSION USING A GPU AND A CPU FOR THREE IMAGES

Images
compression GPU (transposed)

CPU Speed-up
GPU (non-transpose)

ratio Step 1 Step 2 Step 3 Step 4 All Step 2

“Crafts” 1.23 : 1 0.32 29.3 0.015 0.17 29.3 92.8 3.2 40.4
“Flowers” 1.44 : 1 0.40 23.8 0.015 0.16 22.2 65.4 2.9 33.0
“Graph” 10.8 : 1 0.36 11.0 0.017 0.14 11.0 33.3 3.0 13.2

TABLE IV. THE RUNNING TIME (IN MILLISECONDS) OF TWO SCENARIOS USING OUR GPU AND CPU IMPLEMENTATIONS AND LIBTIFF LIBRARY FOR

THREE IMAGES

Scenario 1 Scenario 2
Speed-up

Scenario 2
Images Compress Transfer Writing

All
Transfer Compress Writing

All libTIFF
on GPU GPU→ CPU CPU→SSD GPU→ CPU on CPU CPU→SSD

“Crafts” 29.3 2.34 3.85 35.2 3.84 92.8 3.84 100.4 2.9 118.6
“Flowers” 22.23 1.44 2.80 26.0 3.82 65.4 2.74 71.9 2.8 105.0
“Graph” 10.99 0.40 0.38 11.3 3.88 33.3 0.28 37.5 3.3 46.1

TABLE V. THE RUNNING TIME (IN MILLISECONDS) OF LZW COMPRESSION FOR MULTIPLE IMAGES OF “CRAFTS” USING A GPU

Number of images 1 2 4 8 16 32 64

Running time 29.83 49.98 93.46 176.95 348.32 691.65 1380.68
Running time per image 29.83 24.99 23.37 22.12 21.77 21.64 21.57

we can say that it makes sense to compress images using a
GPU to archive them in the SSD.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan
Kaufmann, 2011.

[2] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of
computing Euclidean distance map with efficient memory access,” in
Proc. of International Conference on Networking and Computing, Dec.
2011, pp. 68–76.

[3] Y. Takeuchi, D. Takafuji, Y. Ito, and K. Nakano, “Ascii art generation
using the local exhaustive search on the GPU,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 194–200.

[4] NVIDIA Corporation, “NVIDIA CUDA C programming guide version
7.0,” Mar 2015.

[5] A. Kasagi, K. Nakano, and Y. Ito, “Offline permutation algorithms
on the discrete memory machine with performance evaluation on the
GPU,” IEICE Transactions on Information and Systems, vol. Vol. E96-
D, no. 12, pp. 2617–2625, Dec. 2013.

[6] ——, “An optimal offline permutation algorithm on the hierarchical
memory machine, with the GPU implementation,” in Proc. of Interna-
tional Conference on Parallel Processing (ICPP), Oct. 2013, pp. 1–10.

[7] NVIDIA Corporation, “NVIDIA CUDA C best practice guide version
7.0,” 2015.

[8] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations
of a parallel algorithm for computing Euclidean distance map in
multicore processors and GPUs,” International Journal of Networking
and Computing, vol. 1, no. 2, pp. 260–276, July 2011.

[9] K. Nakano, “Optimal parallel algorithms for computing the sum, the
prefix-sums, and the summed area table on the memory machine
models,” IEICE Trans. on Information and Systems, vol. E96-D, no. 12,
pp. 2626–2634, 2013.

[10] K. Nakano, S. Matsumae, and Y. Ito, “The random address shift to
reduce the memory access congestion on the discrete memory machine,”
in Proc. of International Symposium on Computing and Networking,
Dec. 2013, pp. 95–103.

[11] A. Kasagi, K. Nakano, and Y. Ito, “Parallel algorithms for the summed
area table on the asynchronous hierarchical memory machine, with
GPU implementations,” in Proc. of International Conference on Parallel
Processing (ICPP), Sept. 2014, pp. 251–250.

[12] Y. Ito and K. Nakano, “A GPU implementation of dynamic program-
ming for the optimal polygon triangulation,” IEICE Transactions on
Information and Systems, vol. E96-D, no. 12, pp. 2596–2603, Dec.
2013.

[13] H. Kouge, Y. Ito, and K. Nakano, “A GPU implementation of clipping-
free halftoning using the direct binary search,” in Proc. of International
Conference on Algorithms and Architectures for Parallel Processing
(LNCS 8630), Aug. 2014, pp. 57–70.

[14] Y. Ito, K. Ogawa, and K. Nakano, “Fast ellipse detection algorithm using
Hough transform on the GPU,” in Proc. of International Conference on
Networking and Computing. IEEE CS Press, Dec. 2011, pp. 313–319.

[15] K. Sayood, Introduction to Data Compression, Fourth Edition. Morgan
Kaufmann, 2012.

[16] T. A. Welch, “A technique for high-performance data compression,”
IEEE Computer, vol. 17, no. 6, pp. 8–19, June 1984.

[17] T. Welch, “High speed data compression and decompression apparatus
and method,” US patent 4558302, Dec. 1985.

[18] Adobe Developers Association, TIFF Revision 6.0, June 1992. [Online].
Available: http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

[19] K. Shyni and K. V. M. Kumar, “Lossless LZW data compression
algorithm on CUDA,” IOSR Journal of Computer Engineering, pp. 122–
127, 2013.

[20] A. L. V. Nicolaisen, “Algorithms for compression on GPUs,” Ph.D.
dissertation, Technical University of Denmark, Aug. 2015.

[21] A. Ozsoy and M. Swany, “CULZSS: LZSS lossless data compression
on CUDA,” in Proc. of International Conference on Cluster Computing,
Sept. 2011, pp. 403–411.

[22] S. Funasaka, K. Nakano, and Y. Ito, “A parallel algorithm for LZW
decompression, with GPU implementation,” in to appear in Proc. of
International Conference on Parallel Processing and Applied Mathe-
matics, 2015.

[23] D. Takafuji, K. Nakano, and Y. Ito, “A CUDA C program generator
for bulk execution of a sequential algorithm,” in Proc. of International
Conference on Algorithms and Architectures for Parallel Processing,
Aug. 2014, pp. 178–191.

[24] K. Tani, D. Takafuji, K. Nakano, and Y. Ito, “Bulk execution of
oblivious algorithms on the unified memory machine, with GPU
implementation,” in Proc. of International Parallel and Distributed
Processing Symposium Workshops, May 2014, pp. 586–595.

[25] T. Fujita, K. Nakano, and Y. Ito, “Bulk gcd computation using a gpu to
break weak rsa keys,” in Proc. of International Parallel and Distributed
Processing Symposium Workshops, May 2015, pp. 385–394.

[26] K. Nakano, “Simple memory machine models for GPUs,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1,
pp. 17–37, 2014.

[27] M. Harris, S. Sengupta, and J. D. Owens, “Chapter 39. parallel prefix
sum (scan) with CUDA,” in GPU Gems 3. Addison-Wesley, 2007.

[28] libTIFF - TIFF Library and Utilities. [Online]. Available: http:
//www.remotesensing.org/libtiff/

308

