
Fast LZW ompression using a GPU

Abstrat�The LZW ompression is a well known patented

lossless ompression method used in Unix �le ompression utility

�ompress� and in GIF and TIFF image formats. It onverts

an input string of haraters into a string of odes using a

ode table (or ditionary) that maps strings into odes. It is

Sine the ode table is generated by adding newly appeared

substrings during the onversion, it is very hard to parallelize

it. The main purpose of this paper is to develop aelerate

LZW ompression for TIFF images using a CUDA-enabled

GPU. We have implemented LZW ompression algorithm using

several aeleration tehniques using CUDA. Suppose that a GPU

generates a resulting image generated by a omputer graphis

or image proessing program and we want to store it as a

LZW-ompressed TIFF image in the SSD onneted to the host

PC. We foused on two senarios: Senario 1: the resulting

image is ompressed using a GPU and written in the SSD

through the host PC, and Senario 2: it is transferred to the

host PC, and ompressed and written in the SSD using a CPU.

The experimental results using GeFore GTX 980 and Intel

Corei7 4790 show that Senario 1 using our LZW ompression

implemented in a GPU is about 3 times faster than Senario 2.

From this fat, it makes sense to ompress images using a GPU

to arhive them in the SSD. Keywords�ata ompression, big data,

parallel algorithm, GPU, CUDAata ompression, big data, parallel

algorithm, GPU, CUDAD

I. INTRODUCTION

A GPU (Graphis Proessing Unit) is a speialized iruit

designed to aelerate omputation for building and manip-

ulating images [1℄. Latest GPUs are designed for general

purpose omputing and an perform omputation in applia-

tions traditionally handled by the CPU. Hene, GPUs have

reently attrated the attention of many appliation developers.

NVIDIA provides a parallel omputing arhiteture alled

CUDA (Compute Uni�ed Devie Arhiteture) [2℄, the om-

puting engine for NVIDIA GPUs. CUDA gives developers

aess to the virtual instrution set and memory of the parallel

omputational elements in NVIDIA GPUs.

CUDA uses two types of memories in the NVIDIA GPUs:

the shared memory and the global memory [2℄. The shared

memory is an extremely fast on-hip memory with lower a-

paity, say, 16-64K bytes. The global memory is implemented

as an off-hip DRAM, and thus, it has large apaity, say, 1.5-

12 Gbytes, but its aess lateny is very long. The ef�ient

usage of the shared memory and the global memory is a

key for CUDA developers to aelerate appliations using

GPUs. In partiular, we need to onsider bank on�its of the

shared memory aess and oalesing of the global memory

aess [3℄�[5℄. The address spae of the shared memory is

mapped into several physial memory banks. If two or more

threads aess the same memory banks at the same time, the

aess requests are proessed in turn. Hene, to maximize the

shared memory aess performane, threads of CUDA should

aess distint memory banks to avoid the bank on�its of

the memory aesses. To maximize the throughput between

the GPU and the DRAM hips, the onseutive addresses of

the global memory must be aessed at the same time. Thus,

CUDA threads should perform oalesed aess when they

aess the global memory. Also, the lateny of the global

memory aess is several hundred lok yles, while that

of the shared memory aess is quite small [2℄. Hene, we

should minimize the memory aess to the global memory to

maximize the performane.

There is no doubt that data ompression is one of the

most important tasks in the area of omputer engineering.

In partiular, almost all image data are stored in �les as

ompressed data formats. There are basially two types of

image ompression methods: lossy and lossless [6℄. Lossy

ompression an generate smaller �les, but some information

in original �les are disarded. Hene, deompression of lossy

ompressed images does not generate �les idential to the orig-

inal images. On the other hand, lossless ompression reates

ompressed �les, from whih we an obtain the exatly same

original �les by deompression. Hene, lossless ompression

an be used far more than images. In this paper, we fous on

LZW (Lempel-Ziv & Welh) [7℄ ompression, whih is one of

the most well known patented lossless ompression method [8℄

used in Unix �le ompression utility �ompress� and in GIF

image format. Also, LZW ompression option is inluded in

TIFF �le format standard [9℄, whih is ommonly used in the

area of ommerial digital printing.

The LZW ompression algorithm onverts an input string

of haraters into a string of odes using a ode table (or a

ditionary) that maps strings into odes. In LZW ompression

in TIFF �le format, haraters are 8-bit unsigned integers

representing intensity levels of gray-sale images, and odes

are 12-bit unsigned integers. During the onversion, the ode

table is generated by adding new substrings. Hene, it is

very had to parallelize the LZW ompression, beause the

addition of new substrings is performed sequentially. However,

LZW ompression and deompression are hard to parallelize,

beause they use ditionary tables reated by reading input

data one by one. In [10℄, a CUDA implementation of LZW

ompression has been mentioned, but the paper is very poorly

written and it is not possible to understand their results.

Also, several GPU implementations of some ditionary based

ompression methods have been presented [11℄, [12℄. As far

as we know, no paper has presented the details of LZW

implementations for GPUs.

Quite reently, we have presented a GPU implementation

for LZW deompression [13℄. The LZW deompression al-

gorithm onverts an input string of odes into a string of

haraters, that is, it is the inverse of the LZW ompression.

GPU CPU

ompress

Senario 1

Senario 2

SSD

GPU CPU

ompress

SSD

Fig. 1. Two senarios to store the LZW-ompressed image in the SSD

Similarly, during the onversion, the ode table is generated

one by one. However, unlike the LZW ompression, the LZW

deompression an be highly parallelized. The idea of parallel

LZW deompression is to generate the ode table from the

input string of odes in parallel. After that, the input string

of odes are onverted into the output string of haraters.

These two steps an be done in parallel using one thread to

eah ode. On the other hand, it is not possible to generate

the ode table from the input string of haraters in parallel.

Hene, it is very hard to parallelize LZW ompression.

Our idea for LZW ompression is to use an idea of bulk

exeution of the same sequential omputation that have been

show in our previous papers [14℄, [15℄. In Tiff LZW ompres-

sion, an input image to be LZW ompressed is partitioned into

stripes, eah of whih onsists of one or more rows. Sine eah

strip is LZW ompressed in dependently, we assign one thread

to eah strip for this task. For the oalesed memory aess,

we have transposed the image. Sine the memory aess is

To show the bene�t of LZW ompression using the GPU,

we have ompared two senarios: Senario 1: An image is

stored

II. LZW COMPRESSION

The main purpose of this setion is to review LZW

ompression/deompression algorithms. Please see Setion 13

in [9℄ for the details.

The LZW ompression algorithm onverts an input string

of haraters into a string of odes using a ode table (or a

ditionary) that maps strings into odes. If the input is an image

or plain ASCII text, haraters may be 8-bit unsigned integers.

It reads haraters in an input string one by one and adds an

entry in a ode table. In the same time, it writes an output string

of odes by looking up the ode table. Let X = x0x1 · · ·xn−1

be an input string of haraters and Y = y0y1 · · · ym−1 be

an output string of odes. When we show examples of LZW

ompression, we use an input string with 4 haraters a, b, c,
and d, whih an be mapped to 2-bit unsigned integers, 0, 1,

2, and 3. Let C be a ode table, whih determines a mapping

of a ode to a string, where odes are non-negative integers.

Initially, C(0) = a, C(1) = b, C(2) = c, and C(3) = d.
By proedure AddTable, new ode is assigned to a string. For

example, if AddTable(cb) is exeuted after initialization of C,

we have C(4) = cb. We also use symbol C to denote a set of

odes in a ode table C, that is, C = {C(0), C(1), · · ·} if it
is lear from the ontext.

The LZW ompression algorithm �nds the longest pre�x

Ω of the urrent input that is in the ode table, and outputs the

ode of Ω. Let x be the following harater of Ω in the urrent

input. Sine Ω·x is not in the table, it is added to the ode table,

where �·� denotes the onatenation of strings/haraters. The
same proedure is repeated from x. The LZW ompression

algorithm is formally desribed as follows:

[LZW ompression algorithm℄

1 Ω← x0;

2 for i← 1 to n− 1 do

3 if(Ω · xi is in C)

4 Ω← Ω · xi;

5 else

6 Output(C−1(Ω)); AddTable(Ω · xi); Ω← xi;

7 Output(C−1(Ω));

Table I shows the ompression proess and the ode table

C for an input string cbcbcbcda. First, Ω ← x0(= c) is

performed. Next, sine Ω·x1 = cb is not in C, Output(C−1(c))
and AddTable(cb) are performed. More spei�ally, C−1(c) =
2 is output and we have C(4) = cb. Also, Ω ← x1(= b) is

performed. By repeating the same proedure, we an on�rm

that 214630 is output by this algorithm.

Let us disuss implementations of ode table C. The

following operations for a string Ω of haraters must be

supported for LZW ompression.

• determine if Ω · xi is in C,

• return the value of C−1(Ω),

• perform AddTable(Ω · xi).

A straightforward implementation of a ode table C, whih

uses an array suh that eah i-th (i ≥ 0) element stores C(i),
is not ef�ient. All values of C(i) may be aessed to ompute
C−1(Ω). We may use an assoiative array with keys C(i) and
values i, whih an be implemented by a balaned binary tree

or a hash table. However, these operations takes more than

O(|Ω|) time. If the ompression ratio is high, Ω may be a

long string. Hene, it is not a good idea to use a onventional

assoiative array to implement C.

We will use a pointer-harater table shown in Table II

to implement a ode table C. In the pointer-harater table,

a pointer p(j) and a harater c(j) are stored for eah ode

j. Also, a bak-pointer q(j, x) for every ode j and harater

x is used. Bak-pointer table q an be implemented using an

assoiative array. We will disuss implementations of a bak-

pointer later. We an obtain a string C(j) by traversing p until

we reah NULL . More spei�ally, C(j) an be obtained

from p and c by the following de�nition:

C(j) = c(j) if p(j) = NULL

= C(p(j)) · c(j) otherwise.

For example, in Table II, we have C(6) = C(4) · c = C(2) ·
bc = cbc. A bak-pointer q(j, x) takes value k if p(k) = j
and c(k) = x. If there exists no k suh that p(k) = j, then

TABLE I. CODE TABLE C , STRING STORED IN Ω, AND OUTPUT STRING Y FORX = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -

xi c b c b c b c d a

Ω - c b c cb c cb cbc d a

C - 4 : cb 5 : bc - 6 : cbc - - 7 : cbcd 8 : da -

Y - 2 1 - 4 - - 6 3 0

TABLE II. A POINTER-CHARACTER TABLE AND A BACK-POINTER TABLE TO IMPLEMENT CODE TABLE C

j 0 1 2 3 4 5 6 7 8 9

p(j) NULL NULL NULL NULL 2 1 4 6 3 0

c(j) a b c d b c c d a -

q(j, a) NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL

q(j, b) NULL NULL 4 NULL NULL NULL NULL NULL NULL NULL

q(j, c) NULL 5 NULL NULL 6 NULL NULL NULL NULL NULL

q(j, d) NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL

C(j) a b c d cb bc cbc cbcd da -

q(j, k) = NULL. It is used to perform the three operations

above ef�iently.

We implement proedure AddTable(Ω · xi) for ode table

C as a proedure AddTable(j, xi) for the pointer-ode table.

If AddTable(j, xi) is performed, new available entry k with

p(k) = q and c(k) = xi is added to the pointer-harater

table. Also, the value k is written in q(j, xi). Using the pointer-
harater table, we an rewrite LZW ompression algorithm

as follows:

[LZW ompression algorithm℄

1 j ← c−1(x0);
2 for i← 1 to n− 1 do

3 if(q(j, xi) 6= NULL)
4 j ← q(j, xi);
5 else

6 Output(j); AddTable(j, xi); j ← c−1(xi);
7 Output(j);

Note that, c−1(x) for a harater x an be omputed very

easily. Usually, a set of all 8-bit unsigned integer are used,

and c−1(x) = x holds for every harater x. Let us see how a

table II is reated by this algorithm. First, j ← C−1(x0) = 2 is
performed. Next, sine q(j, x1) = q(2, b) is NULL, Output(2)
and AddTable(2,b) are performed. The pointer-harater table

has new entry p(4) = 2 and c(4) = b. Also, 4 is stored in

q(2, b). Continuing similarly, we an on�rm that the algorithm

reates the pointer-harater table and outputs 214630.

III. GPU IMPLEMENTATION FOR LZW COMPRESSION

FOR TIFF IMAGES

We fous on LZW ompression of an image into a TIFF

image �le. We assume a gray sale image with 8-bit depth, that

is, eah pixel has intensity represented by an 8-bit unsigned

integer. Sine eah of RGB or CMYK olor planes an be

handled as a gray sale image, it is obvious to modify gray

sale LZW ompression for olor image ompression.

As illustrated in Figure 2, a TIFF �le has an image header

ontaining misellaneous information suh as ImageLength

(the number of rows), ImageWidth (the number of olumns),

ompression method, depth of pixels, et [9℄. It also has an

image diretory ontaining pointers to the atual image data.

For LZW ompression, an original 8-bit gray-sale image

is partitioned into strips, eah of whih has one or several

onseutive rows. The number of rows per strip is stored in

the image �le header with tag RowsPerStrip. Eah Strip is

ompressed independently, and stored as the image data. The

image diretory has pointers to the image data for all strips.

Next, we will show how eah strip is ompressed. Sine

every pixel has an 8-bit intensity level, we an think that

an input string of an integer in the range [0, 255]. Hene,
odes from 0 to 255 are assigned to these integers. Code 256

(ClearCode) is reserved to lear the ode table. Also, ode

257 (EndOfInformation) is used to speify the end of the data.

Thus, AddTable operations assign odes to strings from ode

258. While the entry of the ode table is less than 512, odes

are represented as 9-bit integer. After adding ode table entry

511, we swith to 10-bit odes. Similarly, after adding ode

table entry 1023 and 2037, 11-bit odes and 12-bit odes are

used, respetively. As soon as ode table entry 4094 is added,

ClearCode is output. After that, the ode table is re-initialized

and AddTable operations use odes from 258 again. The same

proedure is repeated until all pixels in a strip are onverted

into odes. After the ode for the last pixel in a strip is output,

EndOfInformation is written out. We an think that a ode

string for a partiular strip is separated by ClearCode. We all

eah of them a ode segment. Exept the last one, eah ode

segment has 4094 − 511 + 1 = 3584 odes. The last ode

segment for a strip may have odes less than that.

Let us disuss the implementation of bak-pointer q for

TIFF LZW ompression. Sine odes have up to 12 bits and

haraters are 8 bits, we an implement q as a table wit has

212× 28 = 220 entries. Sine the value of bak-pointer q(i, x)
takes value up to 12 bits, eah entry an be be 2 bytes. Hene, a

bak pointer an be implemented in 221 = 2Mbytes. However,

this straightforward implementation has large overhead due to

the ahe miss. Hene we will use a hash table to implement

bak-pointer q.

Let h(i, x) be a hash funtion returning a 14-bit number,

where i and x are 12 bits and 8 bits respetively. In the

experiment that we will show later, we have used the following

hash funtion h to speify a 14-bit number.

h(i, x) = (i⊕ (x << 10)⊕ (x >> 4)) ∧ 0x3FFF,

We use an array of 214 elements with 2 bytes eah to store the

14-bit values of bak pointers q(i, x). When we write the value

of bak pointer in address h(i, x), it may already be used. If

this is the ase, the urrent value of eah address (h(i, x) +

ImageWidth

ImageLength

RowsPerStrip

Image

TIFF �le

image header

image diretory

image data

ompression

strip

Fig. 2. An image and TIFF image �le

501i)∧0x3FFF is read for i = 1, 2, . . . until an unused address
is found. Sine at most 3584 elements are added, the hash table

of size 214 = 16384 is good enough.

After ClearCode is output, we need to initialize the hash

table. However, it is too ostly to lear all elements in the

hash table. Hene, we use the time-stamp tehnique as follows:

Sine the value of eah q(i, x) has 12 bits is stored in 2 byte

element, the remaining 4 bits are used as a time stamp. The

time stamp takes value from 0 to 24 − 1 = 15. Initially, the
time stamp is 0 and inremented after ClearCode is output.

When the new entry is added to and some value is written in

q(i, x), the urrent time stamp is written with it. Using the time
stamp, one an determine if the value stored in eah q(i, x) is
valid. When the time stamp is inremented 16 times, it is set

to 0 and the values of all addresses are initialized by 0. Note

that the size of the hash table is 214 · 2 = 32K bytes, whih is

muh smaller than the straightforward implementation.

We are now in a position of our implementation of LZW

ompression using a CUDA-enabled GPU. We assume that

an 8-bit gray sale image to be LZW-ompressed is stored in

the global memory of the GPU. Our implementation performs

LZW ompression and the resulting image is stored in the

global memory using a TIFF format. To maximize parallelism,

we set RowsPerStrip= 1, that is, eah strip has one row of

the gray-sale image. We assign eah thread to one strip,

whih perform LZW ompression of it independently. Eah

thread uses the loal memory, whih is mapped in the global

memory of the GPU, to store the pointer-harater table and

the hash table. The details of our implementation is spelled out

as follows: [LZW ompression using a CUDA-enabled GPU℄

Step 1: Transpose the gray-sale image suh that eah row of

the image is in a olumn.

Step 2: Eah thread performs the LZW ompression and the

resulting sequene of LZW odes are written in the global

memory.

Step 3: The pre�x-sums of the lengths of the resulting se-

quenes of LZW odes.

Step 4: The resulting LZW odes are onatenated into one

to �t a TIFF format using the pre�x-sums.

One CUDA kernel is invoked for eah of the three steps.

Step 1 an be done by an algorithm for matrix transposi-

tion [16℄. After the transposing, eah row of the image is

arranged in a olumn. Sine every thread aess to the same

position of a olumn, aess to the image performed in Step 2

is oalesed. After Step 2, the resulting sequenes of LZW

odes generated by all threads are separated. To onvert it in

a TIFF format, they must be onatenated. For onatenation,

the pre�x-sums of the lengths of all resulting sequenes of

LZW odes are omputed in Step 3. More spei�ally, let

l0, l1, l2, . . . be the lengths of all resulting sequenes. The

pre�x-sums l0, l0+l1, l0+l1+l2, . . . are omputed. The pre�x-
sums an be omputed by a GPU very ef�iently [17℄, [18℄

From the pre�x-sums, we an determine the position in the

TIFF format where eah resulting sequene must be opied.

Step 4 performs this opy operation in an obvious way.

IV. EXPERIMENTAL RESULTS

We have used Nvidia GeFore GTX 980 whih has 16

streaming multiproessors with 128 proessor ores eah to

implement parallel LZW deompression algorithm. We also

use Intel Corei7 4790 (3.6GHz) to evaluate the running time

of sequential LZW deompression.

We have used three gray sale images with 4096 × 3072
pixels (Figure 3), whih are onverted from JIS X 9204-

2004 standard olor image data. We set RowsPerStrip= 1,
and so eah image has 3072 strips with 4096 pixels eah.

We invoked a CUDA kernel with

4096
32 = 128 CUDA bloks

of 32 threads eah for deompression. the ompression ratio,

that is, �original image size: ompressed image size.� We an

see that �Graph� has high ompression ratio beause it has

large areas with onstant intensity levels. On the other hand,

the ompression ratio of �Crafts� is small beause of the

small details. Table III also shows the running time of LZW

deompression using a CPU and a GPU. In the table, T1 and

T are the time for onstruting tables and the total omputing

time, respetively. To evaluate time T1 of sequential LZW

deompression, OUTPUT in lines 4 and 6 are removed. Also,

to evaluate time T1 of parallel LZW deompression on the

GPU, the CUDA kernel all is terminated without omputing

the pre�x-sums and writing resulting haraters in the global

memory. Hene, we an think that T − T1 orresponds to the

time for for generating the original string using the tables.

Clearly, sequential/parallel LZW deompression algorithms

take more time to reate tables for images with small ompres-

sion ratio beause they have many segments and need to reate

tables many times. Also, the time for reating tables dominates

the omputing time of sequential LZW deompression, while

that for writing out haraters dominates in parallel LZW

deompression. This is beause the overhead of the parallel

pre�x-sums omputation is not small. From the table, we an

see that LZW deompression for �Flowers� using GPU is 69.4

times faster than that using CPU.

We have evaluated the running time of two senarios that

may be used in real life appliations. Suppose that, some

GPU omputation generated a gray-sale image in the global

memory of the GPU. What we want to do is to store it using

LZW-ompressed TIFF format in the SSD (Solid State Drive)

onneted to the host PC. We ompare the following two

senarios:

Senario 1: The gray-sale image is ompressed and onverted

into an TIFF image by our implementation on the GPU. After

that, the resulting LZW-ompressed TIFF image is transferred

to the host PC and written in the SSD.

Senario 1: The gray-sale image is transferred to the host PC

and ompressed using a CPU. After that, the resulting LZW-

ompressed TIFF image is written in the SSD.

Table ??

V. CONCLUSION

In this paper, we have presented a parallel LZW de-

ompression algorithm and implemented in the GPU. The

experimental results show that, it ahieves a speedup fator up

to 69.4. Also, LZW deompression in the GPU an be used to

aelerate the query proessing for a lot of ompressed images

in the storage.

REFERENCES

[1℄ W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan

Kaufmann, 2011.

[2℄ NVIDIA Corporation, �NVIDIA CUDA C programming guide version

7.0,� Mar 2015.

[3℄ A. Kasagi, K. Nakano, and Y. Ito, �Of�ine permutation algorithms

on the disrete memory mahine with performane evaluation on the

GPU,� IEICE Transations on Information and Systems, vol. Vol. E96-

D, no. 12, pp. 2617�2625, De. 2013.

[4℄ ��, �An optimal of�ine permutation algorithm on the hierarhial

memory mahine, with the GPU implementation,� in Pro. of Interna-

tional Conferene on Parallel Proessing (ICPP), Ot. 2013, pp. 1�10.

[5℄ NVIDIA Corporation, �NVIDIA CUDA C best pratie guide version

3.1,� 2010.

[6℄ K. Sayood, Introdution to Data Compression, Fourth Edition. Morgan

Kaufmann, 2012.

[7℄ T. A. Welh, �A tehnique for high-performane data ompression,�

IEEE Computer, vol. 17, no. 6, pp. 8�19, June 1984.

[8℄ T. Welh, �High speed data ompression and deompression apparatus

and method,� US patent 4558302, De. 1985.

[9℄ Adobe Developers Assoiation, TIFF Revision 6.0, June 1992. [Online℄.

Available: http://partners.adobe.om/publi/developer/en/tiff/TIFF6.pdf

[10℄ K. Shyni and K. V. M. Kumar, �Lossless LZW data ompression

algorithm on CUDA,� IOSR Journal of Computer Engineering, pp. 122�

127, 2013.

[11℄ A. L. V. Niolaisen, �Algorithms for ompression on GPUs,� Ph.D.

dissertation, Tenial University of Denmark, Aug. 2015.

[12℄ A. Ozsoy and M. Swany, �CULZSS: LZSS lossless data ompression

on CUDA,� in Pro. of International Conferene on Cluster Computing,

Sept. 2011, pp. 403�411.

[13℄ S. Funasaka, K. Nakano, and Y. Ito, �A parallel algorithm for LZW

deompression, with GPU implementation,� in to appear in Pro. of

International Conferene on Parallel Proessing and Applied Mathe-

matis, 2015.

[14℄ D. Takafuji, K. Nakano, and Y. Ito, �A CUDA C program generator

for bulk exeution of a sequential algorithm,� in Pro. of International

Conferene on Algorithms and Arhitetures for Parallel Proessing,

Aug. 2014, pp. 178�191.

[15℄ K. Tani, D. Takafuji, K. Nakano, and Y. Ito, �Bulk exeution of

oblivious algorithms on the uni�ed memory mahine, with GPU

implementation,� in Pro. of International Parallel and Distributed

Proessing Symposium Workshops, May 2014, pp. 586�595.

[16℄ K. Nakano, �Simple memory mahine models for GPUs,� International

Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1,

pp. 17�37, 2014.

[17℄ M. Harris, S. Sengupta, and J. D. Owens, �Chapter 39. parallel pre�x

sum (san) with CUDA,� in GPU Gems 3. Addison-Wesley, 2007.

[18℄ K. Nakano, �Optimal parallel algorithms for omputing the sum, the

pre�x-sums, and the summed area table on the memory mahine

models,� IEICE Trans. on Information and Systems, vol. E96-D, no. 12,

pp. 2626�2634, 2013.

�Crafts� �Flowers� �Graph�

Fig. 3. Three gray sale image with 4096 × 3072 pixels used for experiments

TABLE III. THE RUNNING TIME (IN MILLISECONDS) OF LZW COMPRESSION USING A GPU AND A CPU FOR THREE IMAGES

Images ompression GPU CPU Speed-up

ratio Step 1 Step 2 Step 3 Step 4 All Our

�Crafts� 1.23 : 1 0.32 29.3 0.015 0.17 29.3 92.8 3.2

�Flowers� 1.44 : 1 0.40 23.8 0.015 0.16 22.2 65.4 2.9

�Graph� 10.8 : 1 0.36 11.0 0.017 0.14 11.0 33.3 3.0

TABLE IV. THE RUNNING TIME (IN MILLISECONDS) OF TWO SCENARIOS USING OUR GPU AND CPU IMPLEMENTATIONS AND LIBTIFF LIBRARY FOR

THREE IMAGES

Senario 1 Senario 2 Senario 2

Images Compress Transfer Writing All Transfer Compress Writing All libTiff

on GPU GPU→ CPU CPU→SSD GPU→ CPU on CPU CPU→SSD

�Crafts� 29.3 2.34 3.85 35.2 3.84 92.8 3.84 100.4 118.6

�Flowers� 22.23 1.44 2.80 26.0 3.82 65.4 2.74 71.9 105.0

�Graph� 10.99 0.40 0.38 11.3 3.88 33.3 0.28 37.5 46.1

