Fast LZW compression using a GPU

Abstract—The LZW compression is a well known patented
lossless compression method used in Unix file compression utility
“compress” and in GIF and TIFF image formats. It converts
an input string of characters into a string of codes using a
code table (or dictionary) that maps strings into codes. It is
Since the code table is generated by adding newly appeared
substrings during the conversion, it is very hard to parallelize
it. The main purpose of this paper is to develop accelerate
LZW compression for TIFF images using a CUDA-enabled
GPU. We have implemented LZW compression algorithm using
several acceleration techniques using CUDA. Suppose that a GPU
generates a resulting image generated by a computer graphics
or image processing program and we want to store it as a
LZW-compressed TIFF image in the SSD connected to the host
PC. We focused on two scenarios: Scenario 1: the resulting
image is compressed using a GPU and written in the SSD
through the host PC, and Scenario 2: it is transferred to the
host PC, and compressed and written in the SSD using a CPU.
The experimental results using GeForce GTX 980 and Intel
Corei7 4790 show that Scenario 1 using our LZW compression
implemented in a GPU is about 3 times faster than Scenario 2.
From this fact, it makes sense to compress images using a GPU
to archive them in the SSD. Keywords—ata compression, big data,
parallel algorithm, GPU, CUDAata compression, big data, parallel
algorithm, GPU, CUDAD

I. INTRODUCTION

A GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [1]. Latest GPUs are designed for general
purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application developers.
NVIDIA provides a parallel computing architecture called
CUDA (Compute Unified Device Architecture) [2], the com-
puting engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel
computational elements in NVIDIA GPUs.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [2]. The shared
memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-64K bytes. The global memory is implemented
as an off-chip DRAM, and thus, it has large capacity, say, 1.5-
12 Gbytes, but its access latency is very long. The efficient
usage of the shared memory and the global memory is a
key for CUDA developers to accelerate applications using
GPUgs. In particular, we need to consider bank conflicts of the
shared memory access and coalescing of the global memory
access [3]-[5]. The address space of the shared memory is
mapped into several physical memory banks. If two or more
threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize the
shared memory access performance, threads of CUDA should

access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the throughput between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory. Also, the latency of the global
memory access is several hundred clock cycles, while that
of the shared memory access is quite small [2]. Hence, we
should minimize the memory access to the global memory to
maximize the performance.

There is no doubt that data compression is one of the
most important tasks in the area of computer engineering.
In particular, almost all image data are stored in files as
compressed data formats. There are basically two types of
image compression methods: lossy and lossless [6]. Lossy
compression can generate smaller files, but some information
in original files are discarded. Hence, decompression of lossy
compressed images does not generate files identical to the orig-
inal images. On the other hand, lossless compression creates
compressed files, from which we can obtain the exactly same
original files by decompression. Hence, lossless compression
can be used far more than images. In this paper, we focus on
LZW (Lempel-Ziv & Welch) [7] compression, which is one of
the most well known patented lossless compression method [8]
used in Unix file compression utility “compress” and in GIF
image format. Also, LZW compression option is included in
TIFF file format standard [9], which is commonly used in the
area of commercial digital printing.

The LZW compression algorithm converts an input string
of characters into a string of codes using a code table (or a
dictionary) that maps strings into codes. In LZW compression
in TIFF file format, characters are 8-bit unsigned integers
representing intensity levels of gray-scale images, and codes
are 12-bit unsigned integers. During the conversion, the code
table is generated by adding new substrings. Hence, it is
very had to parallelize the LZW compression, because the
addition of new substrings is performed sequentially. However,
LZW compression and decompression are hard to parallelize,
because they use dictionary tables created by reading input
data one by once. In [10], a CUDA implementation of LZW
compression has been mentioned, but the paper is very poorly
written and it is not possible to understand their results.
Also, several GPU implementations of some dictionary based
compression methods have been presented [11], [12]. As far
as we know, no paper has presented the details of LZW
implementations for GPUs.

Quite recently, we have presented a GPU implementation
for LZW decompression [13]. The LZW decompression al-
gorithm converts an input string of codes into a string of
characters, that is, it is the inverse of the LZW compression.

GPU CPU SSD

—
compress
 S—
Scenario 1
GPU CPU SSD
—
— %
compress
S—
Scenario 2

Fig. 1. Two scenarios to store the LZW-compressed image in the SSD

Similarly, during the conversion, the code table is generated
one by one. However, unlike the LZW compression, the LZW
decompression can be highly parallelized. The idea of parallel
LZW decompression is to generate the code table from the
input string of codes in parallel. After that, the input string
of codes are converted into the output string of characters.
These two steps can be done in parallel using one thread to
each code. On the other hand, it is not possible to generate
the code table from the input string of characters in parallel.
Hence, it is very hard to parallelize LZW compression.

Our idea for LZW compression is to use an idea of bulk
execution of the same sequential computation that have been
show in our previous papers [14], [15]. In Tiff LZW compres-
sion, an input image to be LZW compressed is partitioned into
stripes, each of which consists of one or more rows. Since each
strip is LZW compressed in dependently, we assign one thread
to each strip for this task. For the coalesced memory access,
we have transposed the image. Since the memory access is

To show the benefit of LZW compression using the GPU,
we have compared two scenarios: Scenario 1: An image is
stored

1I. LZW COMPRESSION

The main purpose of this section is to review LZW
compression/decompression algorithms. Please see Section 13
in [9] for the details.

The LZW compression algorithm converts an input string
of characters into a string of codes using a code table (or a
dictionary) that maps strings into codes. If the input is an image
or plain ASCII text, characters may be 8-bit unsigned integers.
It reads characters in an input string one by one and adds an
entry in a code table. In the same time, it writes an output string
of codes by looking up the code table. Let X = zox1 - Tp—1
be an input string of characters and Y = yoy1 -+ ym—1 be
an output string of codes. When we show examples of LZW
compression, we use an input string with 4 characters a, b, c,
and d, which can be mapped to 2-bit unsigned integers, 0, 1,
2, and 3. Let C be a code table, which determines a mapping
of a code to a string, where codes are non-negative integers.
Initially, C(0) = a, C(1) = b, C(2) = ¢, and C(3) = d.
By procedure AddTable, new code is assigned to a string. For
example, if AddTable(cd) is executed after initialization of C,
we have C(4) = c¢b. We also use symbol C' to denote a set of

codes in a code table C, that is, C = {C(0),C(1),--
is clear from the context.

Jif it

The LZW compression algorithm finds the longest prefix
Q of the current input that is in the code table, and outputs the
code of Q. Let x be the following character of €2 in the current
input. Since -z is not in the table, it is added to the code table,
where “-” denotes the concatenation of strings/characters. The
same procedure is repeated from z. The LZW compression
algorithm is formally described as follows:

[LZW compression algorithm]
1 Q« xo,

2 fori<-1ton—1do

3 if(Q2- z; is in C)

5 else
6 Output(C~(Q)); AddTable(2 - z;); Q < x;;
7 Output(C~1(Q));

Table I shows the compression process and the code table
C for an input string cbcbcbeda. First, Q < zo(= ¢) is
performed. Next, since -1 = cb is not in C, Output(C'~(c))
and AddTable(cb) are performed. More specifically, C~1(c) =
2 is output and we have C'(4) = cb. Also, 2 « z1(=b) is
performed. By repeating the same procedure, we can confirm
that 214630 is output by this algorithm.

Let us discuss implementations of code table C. The
following operations for a string €2 of characters must be
supported for LZW compression.

e determine if € - x; is in C,
e return the value of C~1(€Q),

e perform AddTable(f) - ;).

A straightforward implementation of a code table C, which
uses an array such that each i-th (i > 0) element stores C(i),
is not efficient. All values of C(i) may be accessed to compute
C~1(2). We may use an associative array with keys C(i) and
values ¢, which can be implemented by a balanced binary tree
or a hash table. However, these operations takes more than
O(]€?]) time. If the compression ratio is high, may be a
long string. Hence, it is not a good idea to use a conventional
associative array to implement C',

We will use a pointer-character table shown in Table II
to implement a code table C. In the pointer-character table,
a pointer p(j) and a character c(j) are stored for each code
j. Also, a back-pointer ¢(j, z) for every code j and character
x is used. Back-pointer table ¢ can be implemented using an
associative array. We will discuss implementations of a back-
pointer later. We can obtain a string C(j) by traversing p until
we reach NULL . More specifically, C'(j) can be obtained
from p and ¢ by the following definition:

CG) = «c(f) ifp(j)=NULL
= Cp()) - cd)

For example, in Table II, we have C'(6) = C'(4) - ¢ = C(2) -
bc = cbe. A back-pointer ¢(j, x) takes value k if p(k) = j
and c(k) = x. If there exists no k such that p(k) = j, then

otherwise.

TABLE L.

CODE TABLE C', STRING STORED IN €2, AND OUTPUT STRING Y FOR X = cbcbebeda

i 0 1 2 3 4 5 6 7 8

T; ‘ c b c b c b c d a

Q c b c cb c cb cbe d a

C 4:chb 5: be 6 : cbc - 7 : cbed 8:da -

Y 2 1 4 6 3 0

TABLE II. A POINTER-CHARACTER TABLE AND A BACK-POINTER TABLE TO IMPLEMENT CODE TABLE C'

g 0 1 2 3 4 5 6 7 8 9
p(Jj) NULL NULL NULL NULL 2 1 4 6 3 0
c(j) a b c d b c c d a -

q(j, a) NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL
q(4,b) NULL NULL 4 NULL NULL NULL NULL NULL NULL NULL
q(4, c) NULL 5 NULL NULL 6 NULL NULL NULL NULL NULL
q(4,d) NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL
C(j) a b c d cb be cbe cbed da -

q(j, k) = NULL. It is used to perform the three operations
above efficiently.

We implement procedure AddTable(€) - x;) for code table
C as a procedure AddTable(j, x;) for the pointer-code table.
If AddTable(j, z;) is performed, new available entry k& with
p(k) = ¢q and ¢(k) = x; is added to the pointer-character
table. Also, the value k is written in ¢(j, x;). Using the pointer-
character table, we can rewrite LZW compression algorithm
as follows:

[LZW compression algorithm]
1 j<+ c o)
2 fori<1ton—1do
if(q(j, ;) # NULL)
j — q(]a Ii);
else
Output(j); AddTable(j, z;); j + ¢ *(z4);
Output();

NN R W

Note that, ¢~ () for a character z can be computed very
easily. Usually, a set of all 8-bit unsigned integer are used,
and ¢~ (x) = 2 holds for every character x. Let us see how a
table 11 is created by this algorithm. First, j < C~1(zg) = 21is
performed. Next, since ¢(j, 1) = ¢(2,b) is NULL, Output(2)
and AddTable(2,b) are performed. The pointer-character table
has new entry p(4) = 2 and ¢(4) = b. Also, 4 is stored in
q(2,b). Continuing similarly, we can confirm that the algorithm
creates the pointer-character table and outputs 214630.

III. GPU IMPLEMENTATION FOR LZW COMPRESSION

FOR TIFF IMAGES

We focus on LZW compression of an image into a TIFF
image file. We assume a gray scale image with 8-bit depth, that
is, each pixel has intensity represented by an 8-bit unsigned
integer. Since each of RGB or CMYK color planes can be
handled as a gray scale image, it is obvious to modify gray
scale LZW compression for color image compression.

As illustrated in Figure 2, a TIFF file has an image header
containing miscellaneous information such as ImageLength
(the number of rows), ImageWidth (the number of columns),
compression method, depth of pixels, etc [9]. It also has an
image directory containing pointers to the actual image data.
For LZW compression, an original 8-bit gray-scale image
is partitioned into strips, each of which has one or several

consecutive rows. The number of rows per strip is stored in
the image file header with tag RowsPerStrip. Each Strip is
compressed independently, and stored as the image data. The
image directory has pointers to the image data for all strips.

Next, we will show how each strip is compressed. Since
every pixel has an 8-bit intensity level, we can think that
an input string of an integer in the range [0,255]. Hence,
codes from O to 255 are assigned to these integers. Code 256
(ClearCode) is reserved to clear the code table. Also, code
257 (EndOfInformation) is used to specify the end of the data.
Thus, AddTable operations assign codes to strings from code
258. While the entry of the code table is less than 512, codes
are represented as 9-bit integer. After adding code table entry
511, we switch to 10-bit codes. Similarly, after adding code
table entry 1023 and 2037, 11-bit codes and 12-bit codes are
used, respectively. As soon as code table entry 4094 is added,
ClearCode is output. After that, the code table is re-initialized
and AddTable operations use codes from 258 again. The same
procedure is repeated until all pixels in a strip are converted
into codes. After the code for the last pixel in a strip is output,
EndOfInformation is written out. We can think that a code
string for a particular strip is separated by ClearCode. We call
each of them a code segment. Except the last one, each code
segment has 4094 — 511 + 1 = 3584 codes. The last code
segment for a strip may have codes less than that.

Let us discuss the implementation of back-pointer g for
TIFF LZW compression. Since codes have up to 12 bits and
characters are 8 bits, we can implement g as a table wit has
212 x 28 = 220 entries. Since the value of back-pointer ¢(i,)
takes value up to 12 bits, each entry can be be 2 bytes. Hence, a
back pointer can be implemented in 22! = 2Mbytes. However,
this straightforward implementation has large overhead due to
the cache miss. Hence we will use a hash table to implement
back-pointer q.

Let h(i,z) be a hash function returning a 14-bit number,
where 7 and z are 12 bits and 8 bits respectively. In the
experiment that we will show later, we have used the following
hash function h to specify a 14-bit number.

h(i,) (i@ (x << 10) @ (z >> 4)) A 0x3FFF,

We use an array of 24 elements with 2 bytes each to store the
14-bit values of back pointers ¢(i, z). When we write the value
of back pointer in address h(i, x), it may already be used. If
this is the case, the current value of each address (h(i,x) +

ImageWidth

RowsPerStrip I

ImageLength

Image

Fig. 2. An image and TIFF image file

501¢) AOx3FFF is read for i = 1,2, ... until an unused address
is found. Since at most 3584 elements are added, the hash table
of size 2'4 = 16384 is good enough.

After ClearCode is output, we need to initialize the hash
table. However, it is too costly to clear all elements in the
hash table. Hence, we use the time-stamp technique as follows:
Since the value of each ¢(i,«) has 12 bits is stored in 2 byte
element, the remaining 4 bits are used as a time stamp. The
time stamp takes value from O to 2* — 1 = 15. Initially, the
time stamp is 0 and incremented after ClearCode is output.
When the new entry is added to and some value is written in
q(%,), the current time stamp is written with it. Using the time
stamp, one can determine if the value stored in each ¢(i,x) is
valid. When the time stamp is incremented 16 times, it is set
to 0 and the values of all addresses are initialized by 0. Note
that the size of the hash table is 24 .2 = 32K bytes, which is
much smaller than the straightforward implementation.

We are now in a position of our implementation of LZW
compression using a CUDA-enabled GPU. We assume that
an 8-bit gray scale image to be LZW-compressed is stored in
the global memory of the GPU. Our implementation performs
LZW compression and the resulting image is stored in the
global memory using a TIFF format. To maximize parallelism,
we set RowsPerStrip= 1, that is, each strip has one row of
the gray-scale image. We assign each thread to one strip,
which perform LZW compression of it independently. Each
thread uses the local memory, which is mapped in the global
memory of the GPU, to store the pointer-character table and
the hash table. The details of our implementation is spelled out
as follows: [LZW compression using a CUDA-enabled GPU]
Step 1: Transpose the gray-scale image such that each row of
the image is in a column.

Step 2: Each thread performs the LZW compression and the
resulting sequence of LZW codes are written in the global
memory.

Step 3: The prefix-sums of the lengths of the resulting se-
quences of LZW codes.

Step 4: The resulting LZW codes are concatenated into one
to fit a TIFF format using the prefix-sums.

One CUDA kernel is invoked for each of the three steps.

compression image header

image directory

image data

TIFF file

Step 1 can be done by an algorithm for matrix transposi-
tion [16]. After the transposing, each row of the image is
arranged in a column. Since every thread access to the same
position of a column, access to the image performed in Step 2
is coalesced. After Step 2, the resulting sequences of LZW
codes generated by all threads are separated. To convert it in
a TIFF format, they must be concatenated. For concatenation,
the prefix-sums of the lengths of all resulting sequences of
LZW codes are computed in Step 3. More specifically, let
lo, 11,12, ... be the lengths of all resulting sequences. The
prefix-sums lg, lo+11,log+11+12, . . . are computed. The prefix-
sums can be computed by a GPU very efficiently [17], [18]
From the prefix-sums, we can determine the position in the
TIFF format where each resulting sequence must be copied.
Step 4 performs this copy operation in an obvious way.

1V. EXPERIMENTAL RESULTS

We have used Nvidia GeForce GTX 980 which has 16
streaming multiprocessors with 128 processor cores each to
implement parallel LZW decompression algorithm. We also
use Intel Corei7 4790 (3.6GHz) to evaluate the running time
of sequential LZW decompression.

We have used three gray scale images with 4096 x 3072
pixels (Figure 3), which are converted from JIS X 9204-
2004 standard color image data. We set RowsPerStrip= 1,
and so each image has 3072 strips with 4096 pixels each.
We invoked a CUDA kernel with 43% = 128 CUDA blocks
of 32 threads each for decompression. the compression ratio,
that is, “original image size: compressed image size.” We can
see that “Graph” has high compression ratio because it has
large areas with constant intensity levels. On the other hand,
the compression ratio of “Crafts” is small because of the
small details. Table III also shows the running time of LZW
decompression using a CPU and a GPU. In the table, 77 and
T are the time for constructing tables and the total computing
time, respectively. To evaluate time T; of sequential LZW
decompression, OUTPUT in lines 4 and 6 are removed. Also,
to evaluate time 7 of parallel LZW decompression on the
GPU, the CUDA kernel call is terminated without computing
the prefix-sums and writing resulting characters in the global
memory. Hence, we can think that 7" — T corresponds to the

time for for generating the original string using the tables.
Clearly, sequential/parallel LZW decompression algorithms
take more time to create tables for images with small compres-
sion ratio because they have many segments and need to create
tables many times. Also, the time for creating tables dominates
the computing time of sequential LZW decompression, while
that for writing out characters dominates in parallel LZW
decompression. This is because the overhead of the parallel
prefix-sums computation is not small. From the table, we can
see that LZW decompression for “Flowers” using GPU is 69.4
times faster than that using CPU.

We have evaluated the running time of two scenarios that
may be used in real life applications. Suppose that, some
GPU computation generated a gray-scale image in the global
memory of the GPU. What we want to do is to store it using
LZW-compressed TIFF format in the SSD (Solid State Drive)
connected to the host PC. We compare the following two
scenarios:

Scenario 1: The gray-scale image is compressed and converted
into an TIFF image by our implementation on the GPU. After
that, the resulting LZW-compressed TIFF image is transferred
to the host PC and written in the SSD.

Scenario 1: The gray-scale image is transferred to the host PC
and compressed using a CPU. After that, the resulting LZW-
compressed TIFF image is written in the SSD.

Table 2?

V. CONCLUSION

In this paper, we have presented a parallel LZW de-
compression algorithm and implemented in the GPU. The
experimental results show that, it achieves a speedup factor up
to 69.4. Also, LZW decompression in the GPU can be used to
accelerate the query processing for a lot of compressed images
in the storage.

REFERENCES

[11 W. W. Hwu, GPU Computing Gems Emerald Edition.
Kaufmann, 2011.

[2] NVIDIA Corporation, “NVIDIA CUDA C programming guide version
7.0,” Mar 2015.

[3] A. Kasagi, K. Nakano, and Y. Ito, “Offline permutation algorithms
on the discrete memory machine with performance evaluation on the
GPU,” [EICE Transactions on Information and Systems, vol. Vol. E96-
D, no. 12, pp. 2617-2625, Dec. 2013.

[4] ——, “An optimal offline permutation algorithm on the hierarchical
memory machine, with the GPU implementation,” in Proc. of Interna-
tional Conference on Parallel Processing (ICPP), Oct. 2013, pp. 1-10.

[5] NVIDIA Corporation, “NVIDIA CUDA C best practice guide version
3.1,7 2010.

[6] K. Sayood, Introduction to Data Compression, Fourth Edition. Morgan
Kaufmann, 2012.

[71 T. A. Welch, “A technique for high-performance data compression,”
IEEE Computer, vol. 17, no. 6, pp. 8-19, June 1984.

[8] T. Welch, “High speed data compression and decompression apparatus
and method,” US patent 4558302, Dec. 1985.

[91 Adobe Developers Association, TTFF Revision 6.0, June 1992. [Online].
Available: http:/partners.adobe.com/public/developer/en/tiff/ TIFF6.pdf

[10] K. Shyni and K. V. M. Kumar, “Lossless LZW data compression
algorithm on CUDA,” IOSR Journal of Computer Engineering, pp. 122—
127, 2013.

[11] A. L. V. Nicolaisen, “Algorithms for compression on GPUs,” Ph.D.
dissertation, Tecnical University of Denmark, Aug. 2015.

Morgan

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Ozsoy and M. Swany, “CULZSS: LZSS lossless data compression
on CUDA,” in Proc. of International Conference on Cluster Computing,
Sept. 2011, pp. 403-411.

S. Funasaka, K. Nakano, and Y. Ito, “A parallel algorithm for LZW
decompression, with GPU implementation,” in to appear in Proc. of
International Conference on Parallel Processing and Applied Mathe-
matics, 2015.

D. Takafuji, K. Nakano, and Y. Ito, “A CUDA C program generator
for bulk execution of a sequential algorithm,” in Proc. of International
Conference on Algorithms and Architectures for Parallel Processing,
Aug. 2014, pp. 178-191.

K. Tani, D. Takafuji, K. Nakano, and Y. Ito, “Bulk execution of
oblivious algorithms on the unified memory machine, with GPU
implementation,” in Proc. of International Parallel and Distributed
Processing Symposium Workshops, May 2014, pp. 586-595.

K. Nakano, “Simple memory machine models for GPUS,” International

Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1,
pp. 17-37, 2014,

M. Harris, S. Sengupta, and J. D. Owens, “Chapter 39. parallel prefix
sum (scan) with CUDA,” in GPU Gems 3. Addison-Wesley, 2007.

K. Nakano, “Optimal parallel algorithms for computing the sum, the
prefix-sums, and the summed area table on the memory machine
models,” IEICE Trans. on Information and Systems, vol. E96-D, no. 12,
pp. 2626-2634, 2013.

PRINTER
SALES

Monochrome

“Crafts” “Flowers” “Graph”

Fig. 3. Three gray scale image with 4096 x 3072 pixels used for experiments

TABLE III. THE RUNNING TIME (IN MILLISECONDS) OF LZW COMPRESSION USING A GPU AND A CPU FOR THREE IMAGES
Images compression GPU CPU Speed-up
ratio Step 1 Step 2 Step 3 Step 4 All Our
“Crafts” 1.23:1 0.32 29.3 0.015 0.17 29.3 92.8 3.2
“Flowers” 1.44:1 0.40 23.8 0.015 0.16 222 65.4 29
“Graph” 10.8:1 0.36 11.0 0.017 0.14 11.0 333 3.0

TABLE IV. THE RUNNING TIME (IN MILLISECONDS) OF TWO SCENARIOS USING OUR GPU AND CPU IMPLEMENTATIONS AND LIBTIFF LIBRARY FOR
THREE IMAGES

Scenario 1 Scenario 2 Scenario 2
Images Compress Transfer Writing All Transfer Compress Writing All libTiff
on GPU GPU— CPU CPU—SSD GPU— CPU on CPU CPU—SSD
“Crafts” 293 2.34 3.85 35.2 3.84 92.8 3.84 100.4 118.6
“Flowers” 22.23 1.44 2.80 26.0 3.82 65.4 2.74 71.9 105.0
“Graph” 10.99 0.40 0.38 11.3 3.88 33.3 0.28 37.5 46.1

