
Fast LZW
ompression using a GPU

Abstra
t�The LZW
ompression is a well known patented

lossless
ompression method used in Unix �le
ompression utility

�
ompress� and in GIF and TIFF image formats. It
onverts

an input string of
hara
ters into a string of
odes using a

ode table (or di
tionary) that maps strings into
odes. It is

Sin
e the
ode table is generated by adding newly appeared

substrings during the
onversion, it is very hard to parallelize

it. The main purpose of this paper is to develop a

elerate

LZW
ompression for TIFF images using a CUDA-enabled

GPU. We have implemented LZW
ompression algorithm using

several a

eleration te
hniques using CUDA. Suppose that a GPU

generates a resulting image generated by a
omputer graphi
s

or image pro
essing program and we want to store it as a

LZW-
ompressed TIFF image in the SSD
onne
ted to the host

PC. We fo
used on two s
enarios: S
enario 1: the resulting

image is
ompressed using a GPU and written in the SSD

through the host PC, and S
enario 2: it is transferred to the

host PC, and
ompressed and written in the SSD using a CPU.

The experimental results using GeFor
e GTX 980 and Intel

Corei7 4790 show that S
enario 1 using our LZW
ompression

implemented in a GPU is about 3 times faster than S
enario 2.

From this fa
t, it makes sense to
ompress images using a GPU

to ar
hive them in the SSD. Keywords�ata
ompression, big data,

parallel algorithm, GPU, CUDAata
ompression, big data, parallel

algorithm, GPU, CUDAD

I. INTRODUCTION

A GPU (Graphi
s Pro
essing Unit) is a spe
ialized
ir
uit

designed to a

elerate
omputation for building and manip-

ulating images [1℄. Latest GPUs are designed for general

purpose
omputing and
an perform
omputation in appli
a-

tions traditionally handled by the CPU. Hen
e, GPUs have

re
ently attra
ted the attention of many appli
ation developers.

NVIDIA provides a parallel
omputing ar
hite
ture
alled

CUDA (Compute Uni�ed Devi
e Ar
hite
ture) [2℄, the
om-

puting engine for NVIDIA GPUs. CUDA gives developers

a

ess to the virtual instru
tion set and memory of the parallel

omputational elements in NVIDIA GPUs.

CUDA uses two types of memories in the NVIDIA GPUs:

the shared memory and the global memory [2℄. The shared

memory is an extremely fast on-
hip memory with lower
a-

pa
ity, say, 16-64K bytes. The global memory is implemented

as an off-
hip DRAM, and thus, it has large
apa
ity, say, 1.5-

12 Gbytes, but its a

ess laten
y is very long. The ef�
ient

usage of the shared memory and the global memory is a

key for CUDA developers to a

elerate appli
ations using

GPUs. In parti
ular, we need to
onsider bank
on�i
ts of the

shared memory a

ess and
oales
ing of the global memory

a

ess [3℄�[5℄. The address spa
e of the shared memory is

mapped into several physi
al memory banks. If two or more

threads a

ess the same memory banks at the same time, the

a

ess requests are pro
essed in turn. Hen
e, to maximize the

shared memory a

ess performan
e, threads of CUDA should

a

ess distin
t memory banks to avoid the bank
on�i
ts of

the memory a

esses. To maximize the throughput between

the GPU and the DRAM
hips, the
onse
utive addresses of

the global memory must be a

essed at the same time. Thus,

CUDA threads should perform
oales
ed a

ess when they

a

ess the global memory. Also, the laten
y of the global

memory a

ess is several hundred
lo
k
y
les, while that

of the shared memory a

ess is quite small [2℄. Hen
e, we

should minimize the memory a

ess to the global memory to

maximize the performan
e.

There is no doubt that data
ompression is one of the

most important tasks in the area of
omputer engineering.

In parti
ular, almost all image data are stored in �les as

ompressed data formats. There are basi
ally two types of

image
ompression methods: lossy and lossless [6℄. Lossy

ompression
an generate smaller �les, but some information

in original �les are dis
arded. Hen
e, de
ompression of lossy

ompressed images does not generate �les identi
al to the orig-

inal images. On the other hand, lossless
ompression
reates

ompressed �les, from whi
h we
an obtain the exa
tly same

original �les by de
ompression. Hen
e, lossless
ompression

an be used far more than images. In this paper, we fo
us on

LZW (Lempel-Ziv & Wel
h) [7℄
ompression, whi
h is one of

the most well known patented lossless
ompression method [8℄

used in Unix �le
ompression utility �
ompress� and in GIF

image format. Also, LZW
ompression option is in
luded in

TIFF �le format standard [9℄, whi
h is
ommonly used in the

area of
ommer
ial digital printing.

The LZW
ompression algorithm
onverts an input string

of
hara
ters into a string of
odes using a
ode table (or a

di
tionary) that maps strings into
odes. In LZW
ompression

in TIFF �le format,
hara
ters are 8-bit unsigned integers

representing intensity levels of gray-s
ale images, and
odes

are 12-bit unsigned integers. During the
onversion, the
ode

table is generated by adding new substrings. Hen
e, it is

very had to parallelize the LZW
ompression, be
ause the

addition of new substrings is performed sequentially. However,

LZW
ompression and de
ompression are hard to parallelize,

be
ause they use di
tionary tables
reated by reading input

data one by on
e. In [10℄, a CUDA implementation of LZW

ompression has been mentioned, but the paper is very poorly

written and it is not possible to understand their results.

Also, several GPU implementations of some di
tionary based

ompression methods have been presented [11℄, [12℄. As far

as we know, no paper has presented the details of LZW

implementations for GPUs.

Quite re
ently, we have presented a GPU implementation

for LZW de
ompression [13℄. The LZW de
ompression al-

gorithm
onverts an input string of
odes into a string of

hara
ters, that is, it is the inverse of the LZW
ompression.

GPU CPU

ompress

S
enario 1

S
enario 2

SSD

GPU CPU

ompress

SSD

Fig. 1. Two s
enarios to store the LZW-
ompressed image in the SSD

Similarly, during the
onversion, the
ode table is generated

one by one. However, unlike the LZW
ompression, the LZW

de
ompression
an be highly parallelized. The idea of parallel

LZW de
ompression is to generate the
ode table from the

input string of
odes in parallel. After that, the input string

of
odes are
onverted into the output string of
hara
ters.

These two steps
an be done in parallel using one thread to

ea
h
ode. On the other hand, it is not possible to generate

the
ode table from the input string of
hara
ters in parallel.

Hen
e, it is very hard to parallelize LZW
ompression.

Our idea for LZW
ompression is to use an idea of bulk

exe
ution of the same sequential
omputation that have been

show in our previous papers [14℄, [15℄. In Tiff LZW
ompres-

sion, an input image to be LZW
ompressed is partitioned into

stripes, ea
h of whi
h
onsists of one or more rows. Sin
e ea
h

strip is LZW
ompressed in dependently, we assign one thread

to ea
h strip for this task. For the
oales
ed memory a

ess,

we have transposed the image. Sin
e the memory a

ess is

To show the bene�t of LZW
ompression using the GPU,

we have
ompared two s
enarios: S
enario 1: An image is

stored

II. LZW COMPRESSION

The main purpose of this se
tion is to review LZW

ompression/de
ompression algorithms. Please see Se
tion 13

in [9℄ for the details.

The LZW
ompression algorithm
onverts an input string

of
hara
ters into a string of
odes using a
ode table (or a

di
tionary) that maps strings into
odes. If the input is an image

or plain ASCII text,
hara
ters may be 8-bit unsigned integers.

It reads
hara
ters in an input string one by one and adds an

entry in a
ode table. In the same time, it writes an output string

of
odes by looking up the
ode table. Let X = x0x1 · · ·xn−1

be an input string of
hara
ters and Y = y0y1 · · · ym−1 be

an output string of
odes. When we show examples of LZW

ompression, we use an input string with 4
hara
ters a, b, c,
and d, whi
h
an be mapped to 2-bit unsigned integers, 0, 1,

2, and 3. Let C be a
ode table, whi
h determines a mapping

of a
ode to a string, where
odes are non-negative integers.

Initially, C(0) = a, C(1) = b, C(2) = c, and C(3) = d.
By pro
edure AddTable, new
ode is assigned to a string. For

example, if AddTable(cb) is exe
uted after initialization of C,

we have C(4) = cb. We also use symbol C to denote a set of

odes in a
ode table C, that is, C = {C(0), C(1), · · ·} if it
is
lear from the
ontext.

The LZW
ompression algorithm �nds the longest pre�x

Ω of the
urrent input that is in the
ode table, and outputs the

ode of Ω. Let x be the following
hara
ter of Ω in the
urrent

input. Sin
e Ω·x is not in the table, it is added to the
ode table,

where �·� denotes the
on
atenation of strings/
hara
ters. The
same pro
edure is repeated from x. The LZW
ompression

algorithm is formally des
ribed as follows:

[LZW
ompression algorithm℄

1 Ω← x0;

2 for i← 1 to n− 1 do

3 if(Ω · xi is in C)

4 Ω← Ω · xi;

5 else

6 Output(C−1(Ω)); AddTable(Ω · xi); Ω← xi;

7 Output(C−1(Ω));

Table I shows the
ompression pro
ess and the
ode table

C for an input string cbcbcbcda. First, Ω ← x0(= c) is

performed. Next, sin
e Ω·x1 = cb is not in C, Output(C−1(c))
and AddTable(cb) are performed. More spe
i�
ally, C−1(c) =
2 is output and we have C(4) = cb. Also, Ω ← x1(= b) is

performed. By repeating the same pro
edure, we
an
on�rm

that 214630 is output by this algorithm.

Let us dis
uss implementations of
ode table C. The

following operations for a string Ω of
hara
ters must be

supported for LZW
ompression.

• determine if Ω · xi is in C,

• return the value of C−1(Ω),

• perform AddTable(Ω · xi).

A straightforward implementation of a
ode table C, whi
h

uses an array su
h that ea
h i-th (i ≥ 0) element stores C(i),
is not ef�
ient. All values of C(i) may be a

essed to
ompute
C−1(Ω). We may use an asso
iative array with keys C(i) and
values i, whi
h
an be implemented by a balan
ed binary tree

or a hash table. However, these operations takes more than

O(|Ω|) time. If the
ompression ratio is high, Ω may be a

long string. Hen
e, it is not a good idea to use a
onventional

asso
iative array to implement C.

We will use a pointer-
hara
ter table shown in Table II

to implement a
ode table C. In the pointer-
hara
ter table,

a pointer p(j) and a
hara
ter c(j) are stored for ea
h
ode

j. Also, a ba
k-pointer q(j, x) for every
ode j and
hara
ter

x is used. Ba
k-pointer table q
an be implemented using an

asso
iative array. We will dis
uss implementations of a ba
k-

pointer later. We
an obtain a string C(j) by traversing p until

we rea
h NULL . More spe
i�
ally, C(j)
an be obtained

from p and c by the following de�nition:

C(j) = c(j) if p(j) = NULL

= C(p(j)) · c(j) otherwise.

For example, in Table II, we have C(6) = C(4) · c = C(2) ·
bc = cbc. A ba
k-pointer q(j, x) takes value k if p(k) = j
and c(k) = x. If there exists no k su
h that p(k) = j, then

TABLE I. CODE TABLE C , STRING STORED IN Ω, AND OUTPUT STRING Y FORX = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -

xi c b c b c b c d a

Ω - c b c cb c cb cbc d a

C - 4 : cb 5 : bc - 6 : cbc - - 7 : cbcd 8 : da -

Y - 2 1 - 4 - - 6 3 0

TABLE II. A POINTER-CHARACTER TABLE AND A BACK-POINTER TABLE TO IMPLEMENT CODE TABLE C

j 0 1 2 3 4 5 6 7 8 9

p(j) NULL NULL NULL NULL 2 1 4 6 3 0

c(j) a b c d b c c d a -

q(j, a) NULL NULL NULL 8 NULL NULL NULL NULL NULL NULL

q(j, b) NULL NULL 4 NULL NULL NULL NULL NULL NULL NULL

q(j, c) NULL 5 NULL NULL 6 NULL NULL NULL NULL NULL

q(j, d) NULL NULL NULL NULL NULL 7 NULL NULL NULL NULL

C(j) a b c d cb bc cbc cbcd da -

q(j, k) = NULL. It is used to perform the three operations

above ef�
iently.

We implement pro
edure AddTable(Ω · xi) for
ode table

C as a pro
edure AddTable(j, xi) for the pointer-
ode table.

If AddTable(j, xi) is performed, new available entry k with

p(k) = q and c(k) = xi is added to the pointer-
hara
ter

table. Also, the value k is written in q(j, xi). Using the pointer-

hara
ter table, we
an rewrite LZW
ompression algorithm

as follows:

[LZW
ompression algorithm℄

1 j ← c−1(x0);
2 for i← 1 to n− 1 do

3 if(q(j, xi) 6= NULL)
4 j ← q(j, xi);
5 else

6 Output(j); AddTable(j, xi); j ← c−1(xi);
7 Output(j);

Note that, c−1(x) for a
hara
ter x
an be
omputed very

easily. Usually, a set of all 8-bit unsigned integer are used,

and c−1(x) = x holds for every
hara
ter x. Let us see how a

table II is
reated by this algorithm. First, j ← C−1(x0) = 2 is
performed. Next, sin
e q(j, x1) = q(2, b) is NULL, Output(2)
and AddTable(2,b) are performed. The pointer-
hara
ter table

has new entry p(4) = 2 and c(4) = b. Also, 4 is stored in

q(2, b). Continuing similarly, we
an
on�rm that the algorithm

reates the pointer-
hara
ter table and outputs 214630.

III. GPU IMPLEMENTATION FOR LZW COMPRESSION

FOR TIFF IMAGES

We fo
us on LZW
ompression of an image into a TIFF

image �le. We assume a gray s
ale image with 8-bit depth, that

is, ea
h pixel has intensity represented by an 8-bit unsigned

integer. Sin
e ea
h of RGB or CMYK
olor planes
an be

handled as a gray s
ale image, it is obvious to modify gray

s
ale LZW
ompression for
olor image
ompression.

As illustrated in Figure 2, a TIFF �le has an image header

ontaining mis
ellaneous information su
h as ImageLength

(the number of rows), ImageWidth (the number of
olumns),

ompression method, depth of pixels, et
 [9℄. It also has an

image dire
tory
ontaining pointers to the a
tual image data.

For LZW
ompression, an original 8-bit gray-s
ale image

is partitioned into strips, ea
h of whi
h has one or several

onse
utive rows. The number of rows per strip is stored in

the image �le header with tag RowsPerStrip. Ea
h Strip is

ompressed independently, and stored as the image data. The

image dire
tory has pointers to the image data for all strips.

Next, we will show how ea
h strip is
ompressed. Sin
e

every pixel has an 8-bit intensity level, we
an think that

an input string of an integer in the range [0, 255]. Hen
e,

odes from 0 to 255 are assigned to these integers. Code 256

(ClearCode) is reserved to
lear the
ode table. Also,
ode

257 (EndOfInformation) is used to spe
ify the end of the data.

Thus, AddTable operations assign
odes to strings from
ode

258. While the entry of the
ode table is less than 512,
odes

are represented as 9-bit integer. After adding
ode table entry

511, we swit
h to 10-bit
odes. Similarly, after adding
ode

table entry 1023 and 2037, 11-bit
odes and 12-bit
odes are

used, respe
tively. As soon as
ode table entry 4094 is added,

ClearCode is output. After that, the
ode table is re-initialized

and AddTable operations use
odes from 258 again. The same

pro
edure is repeated until all pixels in a strip are
onverted

into
odes. After the
ode for the last pixel in a strip is output,

EndOfInformation is written out. We
an think that a
ode

string for a parti
ular strip is separated by ClearCode. We
all

ea
h of them a
ode segment. Ex
ept the last one, ea
h
ode

segment has 4094 − 511 + 1 = 3584
odes. The last
ode

segment for a strip may have
odes less than that.

Let us dis
uss the implementation of ba
k-pointer q for

TIFF LZW
ompression. Sin
e
odes have up to 12 bits and

hara
ters are 8 bits, we
an implement q as a table wit has

212× 28 = 220 entries. Sin
e the value of ba
k-pointer q(i, x)
takes value up to 12 bits, ea
h entry
an be be 2 bytes. Hen
e, a

ba
k pointer
an be implemented in 221 = 2Mbytes. However,

this straightforward implementation has large overhead due to

the
a
he miss. Hen
e we will use a hash table to implement

ba
k-pointer q.

Let h(i, x) be a hash fun
tion returning a 14-bit number,

where i and x are 12 bits and 8 bits respe
tively. In the

experiment that we will show later, we have used the following

hash fun
tion h to spe
ify a 14-bit number.

h(i, x) = (i⊕ (x << 10)⊕ (x >> 4)) ∧ 0x3FFF,

We use an array of 214 elements with 2 bytes ea
h to store the

14-bit values of ba
k pointers q(i, x). When we write the value

of ba
k pointer in address h(i, x), it may already be used. If

this is the
ase, the
urrent value of ea
h address (h(i, x) +

ImageWidth

ImageLength

RowsPerStrip

Image

TIFF �le

image header

image dire
tory

image data

ompression

strip

Fig. 2. An image and TIFF image �le

501i)∧0x3FFF is read for i = 1, 2, . . . until an unused address
is found. Sin
e at most 3584 elements are added, the hash table

of size 214 = 16384 is good enough.

After ClearCode is output, we need to initialize the hash

table. However, it is too
ostly to
lear all elements in the

hash table. Hen
e, we use the time-stamp te
hnique as follows:

Sin
e the value of ea
h q(i, x) has 12 bits is stored in 2 byte

element, the remaining 4 bits are used as a time stamp. The

time stamp takes value from 0 to 24 − 1 = 15. Initially, the
time stamp is 0 and in
remented after ClearCode is output.

When the new entry is added to and some value is written in

q(i, x), the
urrent time stamp is written with it. Using the time
stamp, one
an determine if the value stored in ea
h q(i, x) is
valid. When the time stamp is in
remented 16 times, it is set

to 0 and the values of all addresses are initialized by 0. Note

that the size of the hash table is 214 · 2 = 32K bytes, whi
h is

mu
h smaller than the straightforward implementation.

We are now in a position of our implementation of LZW

ompression using a CUDA-enabled GPU. We assume that

an 8-bit gray s
ale image to be LZW-
ompressed is stored in

the global memory of the GPU. Our implementation performs

LZW
ompression and the resulting image is stored in the

global memory using a TIFF format. To maximize parallelism,

we set RowsPerStrip= 1, that is, ea
h strip has one row of

the gray-s
ale image. We assign ea
h thread to one strip,

whi
h perform LZW
ompression of it independently. Ea
h

thread uses the lo
al memory, whi
h is mapped in the global

memory of the GPU, to store the pointer-
hara
ter table and

the hash table. The details of our implementation is spelled out

as follows: [LZW
ompression using a CUDA-enabled GPU℄

Step 1: Transpose the gray-s
ale image su
h that ea
h row of

the image is in a
olumn.

Step 2: Ea
h thread performs the LZW
ompression and the

resulting sequen
e of LZW
odes are written in the global

memory.

Step 3: The pre�x-sums of the lengths of the resulting se-

quen
es of LZW
odes.

Step 4: The resulting LZW
odes are
on
atenated into one

to �t a TIFF format using the pre�x-sums.

One CUDA kernel is invoked for ea
h of the three steps.

Step 1
an be done by an algorithm for matrix transposi-

tion [16℄. After the transposing, ea
h row of the image is

arranged in a
olumn. Sin
e every thread a

ess to the same

position of a
olumn, a

ess to the image performed in Step 2

is
oales
ed. After Step 2, the resulting sequen
es of LZW

odes generated by all threads are separated. To
onvert it in

a TIFF format, they must be
on
atenated. For
on
atenation,

the pre�x-sums of the lengths of all resulting sequen
es of

LZW
odes are
omputed in Step 3. More spe
i�
ally, let

l0, l1, l2, . . . be the lengths of all resulting sequen
es. The

pre�x-sums l0, l0+l1, l0+l1+l2, . . . are
omputed. The pre�x-
sums
an be
omputed by a GPU very ef�
iently [17℄, [18℄

From the pre�x-sums, we
an determine the position in the

TIFF format where ea
h resulting sequen
e must be
opied.

Step 4 performs this
opy operation in an obvious way.

IV. EXPERIMENTAL RESULTS

We have used Nvidia GeFor
e GTX 980 whi
h has 16

streaming multipro
essors with 128 pro
essor
ores ea
h to

implement parallel LZW de
ompression algorithm. We also

use Intel Corei7 4790 (3.6GHz) to evaluate the running time

of sequential LZW de
ompression.

We have used three gray s
ale images with 4096 × 3072
pixels (Figure 3), whi
h are
onverted from JIS X 9204-

2004 standard
olor image data. We set RowsPerStrip= 1,
and so ea
h image has 3072 strips with 4096 pixels ea
h.

We invoked a CUDA kernel with

4096
32 = 128 CUDA blo
ks

of 32 threads ea
h for de
ompression. the
ompression ratio,

that is, �original image size:
ompressed image size.� We
an

see that �Graph� has high
ompression ratio be
ause it has

large areas with
onstant intensity levels. On the other hand,

the
ompression ratio of �Crafts� is small be
ause of the

small details. Table III also shows the running time of LZW

de
ompression using a CPU and a GPU. In the table, T1 and

T are the time for
onstru
ting tables and the total
omputing

time, respe
tively. To evaluate time T1 of sequential LZW

de
ompression, OUTPUT in lines 4 and 6 are removed. Also,

to evaluate time T1 of parallel LZW de
ompression on the

GPU, the CUDA kernel
all is terminated without
omputing

the pre�x-sums and writing resulting
hara
ters in the global

memory. Hen
e, we
an think that T − T1
orresponds to the

time for for generating the original string using the tables.

Clearly, sequential/parallel LZW de
ompression algorithms

take more time to
reate tables for images with small
ompres-

sion ratio be
ause they have many segments and need to
reate

tables many times. Also, the time for
reating tables dominates

the
omputing time of sequential LZW de
ompression, while

that for writing out
hara
ters dominates in parallel LZW

de
ompression. This is be
ause the overhead of the parallel

pre�x-sums
omputation is not small. From the table, we
an

see that LZW de
ompression for �Flowers� using GPU is 69.4

times faster than that using CPU.

We have evaluated the running time of two s
enarios that

may be used in real life appli
ations. Suppose that, some

GPU
omputation generated a gray-s
ale image in the global

memory of the GPU. What we want to do is to store it using

LZW-
ompressed TIFF format in the SSD (Solid State Drive)

onne
ted to the host PC. We
ompare the following two

s
enarios:

S
enario 1: The gray-s
ale image is
ompressed and
onverted

into an TIFF image by our implementation on the GPU. After

that, the resulting LZW-
ompressed TIFF image is transferred

to the host PC and written in the SSD.

S
enario 1: The gray-s
ale image is transferred to the host PC

and
ompressed using a CPU. After that, the resulting LZW-

ompressed TIFF image is written in the SSD.

Table ??

V. CONCLUSION

In this paper, we have presented a parallel LZW de-

ompression algorithm and implemented in the GPU. The

experimental results show that, it a
hieves a speedup fa
tor up

to 69.4. Also, LZW de
ompression in the GPU
an be used to

a

elerate the query pro
essing for a lot of
ompressed images

in the storage.

REFERENCES

[1℄ W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan

Kaufmann, 2011.

[2℄ NVIDIA Corporation, �NVIDIA CUDA C programming guide version

7.0,� Mar 2015.

[3℄ A. Kasagi, K. Nakano, and Y. Ito, �Of�ine permutation algorithms

on the dis
rete memory ma
hine with performan
e evaluation on the

GPU,� IEICE Transa
tions on Information and Systems, vol. Vol. E96-

D, no. 12, pp. 2617�2625, De
. 2013.

[4℄ ��, �An optimal of�ine permutation algorithm on the hierar
hi
al

memory ma
hine, with the GPU implementation,� in Pro
. of Interna-

tional Conferen
e on Parallel Pro
essing (ICPP), O
t. 2013, pp. 1�10.

[5℄ NVIDIA Corporation, �NVIDIA CUDA C best pra
ti
e guide version

3.1,� 2010.

[6℄ K. Sayood, Introdu
tion to Data Compression, Fourth Edition. Morgan

Kaufmann, 2012.

[7℄ T. A. Wel
h, �A te
hnique for high-performan
e data
ompression,�

IEEE Computer, vol. 17, no. 6, pp. 8�19, June 1984.

[8℄ T. Wel
h, �High speed data
ompression and de
ompression apparatus

and method,� US patent 4558302, De
. 1985.

[9℄ Adobe Developers Asso
iation, TIFF Revision 6.0, June 1992. [Online℄.

Available: http://partners.adobe.
om/publi
/developer/en/tiff/TIFF6.pdf

[10℄ K. Shyni and K. V. M. Kumar, �Lossless LZW data
ompression

algorithm on CUDA,� IOSR Journal of Computer Engineering, pp. 122�

127, 2013.

[11℄ A. L. V. Ni
olaisen, �Algorithms for
ompression on GPUs,� Ph.D.

dissertation, Te
ni
al University of Denmark, Aug. 2015.

[12℄ A. Ozsoy and M. Swany, �CULZSS: LZSS lossless data
ompression

on CUDA,� in Pro
. of International Conferen
e on Cluster Computing,

Sept. 2011, pp. 403�411.

[13℄ S. Funasaka, K. Nakano, and Y. Ito, �A parallel algorithm for LZW

de
ompression, with GPU implementation,� in to appear in Pro
. of

International Conferen
e on Parallel Pro
essing and Applied Mathe-

mati
s, 2015.

[14℄ D. Takafuji, K. Nakano, and Y. Ito, �A CUDA C program generator

for bulk exe
ution of a sequential algorithm,� in Pro
. of International

Conferen
e on Algorithms and Ar
hite
tures for Parallel Pro
essing,

Aug. 2014, pp. 178�191.

[15℄ K. Tani, D. Takafuji, K. Nakano, and Y. Ito, �Bulk exe
ution of

oblivious algorithms on the uni�ed memory ma
hine, with GPU

implementation,� in Pro
. of International Parallel and Distributed

Pro
essing Symposium Workshops, May 2014, pp. 586�595.

[16℄ K. Nakano, �Simple memory ma
hine models for GPUs,� International

Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1,

pp. 17�37, 2014.

[17℄ M. Harris, S. Sengupta, and J. D. Owens, �Chapter 39. parallel pre�x

sum (s
an) with CUDA,� in GPU Gems 3. Addison-Wesley, 2007.

[18℄ K. Nakano, �Optimal parallel algorithms for
omputing the sum, the

pre�x-sums, and the summed area table on the memory ma
hine

models,� IEICE Trans. on Information and Systems, vol. E96-D, no. 12,

pp. 2626�2634, 2013.

�Crafts� �Flowers� �Graph�

Fig. 3. Three gray s
ale image with 4096 × 3072 pixels used for experiments

TABLE III. THE RUNNING TIME (IN MILLISECONDS) OF LZW COMPRESSION USING A GPU AND A CPU FOR THREE IMAGES

Images
ompression GPU CPU Speed-up

ratio Step 1 Step 2 Step 3 Step 4 All Our

�Crafts� 1.23 : 1 0.32 29.3 0.015 0.17 29.3 92.8 3.2

�Flowers� 1.44 : 1 0.40 23.8 0.015 0.16 22.2 65.4 2.9

�Graph� 10.8 : 1 0.36 11.0 0.017 0.14 11.0 33.3 3.0

TABLE IV. THE RUNNING TIME (IN MILLISECONDS) OF TWO SCENARIOS USING OUR GPU AND CPU IMPLEMENTATIONS AND LIBTIFF LIBRARY FOR

THREE IMAGES

S
enario 1 S
enario 2 S
enario 2

Images Compress Transfer Writing All Transfer Compress Writing All libTiff

on GPU GPU→ CPU CPU→SSD GPU→ CPU on CPU CPU→SSD

�Crafts� 29.3 2.34 3.85 35.2 3.84 92.8 3.84 100.4 118.6

�Flowers� 22.23 1.44 2.80 26.0 3.82 65.4 2.74 71.9 105.0

�Graph� 10.99 0.40 0.38 11.3 3.88 33.3 0.28 37.5 46.1

