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Abstract—LZW algorithm is one of the most famous
dictionary-based compression and decompression algorithms.
The main contribution of this paper is to present a hardware
LZW decompression algorithm and to implement it in an
FPGA. The experimental results show that one proposed
module on Virtex-7 family FPGA XC7VX485T-2 runs up to
2.16 times faster than sequential LZW decompression on a
single CPU, where the frequency of FPGA is 301.02MHz. Since
the proposed module is compactly designed and uses a few
resources of the FPGA, we have succeeded to implement 150
identical modules which works in parallel on the FPGA, where
the frequency of FPGA is 245.4MHz. In other words, our
implementation runs up to 264 times faster than a sequential
implementation on a single CPU.
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I. INTRODUCTION

Data compression is one of the most important tasks in the
area of computer engineering. It is always used to improve
the efficiency of data transmission and save the storage of
data. Data compression includes two basic methods, lossy
compression and lossless compression. Lossy compression
uses the fact that human are not sensitive to some frequency
ingredients of image or sound. Some information of the
original data are discarded in lossy compression. Thus,
the decompressed data are not identical to the original
data. On the other hand, lossless compression preserves
all information of the original data. In other words, the
decompression of lossless compression creates exactly the
same data with the original data.

Some famous compression algorithm are proposed such
as LZ77 [1], LZ78 [2] and LZW [3]. LZ77 algorithm uses
two buffers such as dictionary buffer and preview buffer.
Dictionary buffer includes the processed data and preview
buffer stores the pending data. In LZ77 algorithm, the
longest string of preview buffer matching to the string of
dictionary buffer is converted to a code that corresponds to
the index of dictionary buffer. However, it is not suitable
to hardware implementation since it needs a large dictio-
nary buffer and preview buffer. LZ78 algorithm creates a
dictionary table and finds the longest matched string in
the dictionary table. If there is no matched string in the
dictionary table, it outputs the index of dictionary table and
the last character of the unmatched string. LZW algorithm
is a variant of LZ78 algorithm that outputs only the index of
matched string of dictionary table. In this paper, we focus on
LZW compression which is used in Unix utility “compress”

and in GIF image format. LZW compression is included
in TIFF standard [4], which is widely used in the area
of commercial digital printing. Since dictionary tables are
created by reading input data one by one, LZW compression
and decompression are hard to parallelize. A high-definition
image or video is compressed to a file once, and stored
to the server of a commerical organization to be acessed
by users in different regions or countries. The compressed
file is transferred to users through the network, and then is
decompressed locally. Hence, decompression is performed
more frequently than compression. The main goal of this
paper is to develop an efficient hardware architecture of
LZW decompression and implement it in an FPGA.

An FPGA (Field Programmable Gate Array) is an inte-
grated circuit designed to be configured by a designer after
manufacturing. It contains an array of programmable logic
blocks, and the reconfigurable interconnects allow the blocks
to be inter-wired in different configurations. Since any logic
circuits can be embedded in an FPGA, it can be used for
general-purpose parallel computing [5]. Recent FPGAs have
embedded block RAMs. As illustrated in Figure 1, the Xilinx
Virtex-7 family FPGAs have block RAMs, each of which
is an embedded dual-port memory supporting synchronized
read and write operations, and can be configured as a
36k-bit or two 18k-bit dual port RAMs [6]. Since FPGA
chips maintain relatively low price and its programmable
features, it is suitable for a hardware implementation of
image processing method to a great extent. They are widely
used in consumer and industrial products for accelerating
processor intensive algorithm [7], [8], [9], [10], [11], [12].

Numerous implementations of variety of LZW decom-
pression on FPGAs or VLSIs have been proposed to accel-
erate the computation. LZRW3 data compression core [13]
is designed by Helion technology. This data compression
core uses LZRW3 algorithm that is a variant of LZ77
algorithm, and provides a maximum decompression rate
of 180.75MBytes/s clocked at 226MHz in Xilinx Virtex-
5 FPGA. Navqi et al. [14] implemented a variant of LZW
algorithm in Xilinx Virtex-2 FPGA, where only one fixed-
length dictionary table is used. This implementation provides
a maximum decompression rate of 160MBytes/s clocked at
50MHz in Xilinx Virtex-2 FPGA. Several implementations
of data decompression are proposed based on PDLZW(Par-
allel Dictionary LZW) algorithm that is a variant of LZW
algorithm [15], [16], [17]. Instead of one variable-length
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Figure 1. The dual-port block RAM in Xilinx FPGAs

table used in LZW algorithm, multiple fixed-length tables
are used in PDLZW algorithm to accelerate the speed of
data compression and decompression. Lin implemented the
PDLZW algorithm in a VLSI that provides a maximum de-
compression rate of 45.5MBytes/s clocked at 62.5MHz [15].
Lin et al. also proposed a two stage hardware architecture
that combines PDLZW and AH(Adaptive Huffman) algo-
rithm and implement it in a VLSI [16]. By decreasing the
number of parallel dictionaries, this implementation provides
a maximum decompression rate of 83MBytes/s clocked
at 100MHz. On the other hand, there is some research
for accelerating the computation of LZW decompression
using GPUs (Graphics Processing Units) [18], [19], mul-
tiprocessor [20] and cluster systems [21]. However, as far
as we know, there is no hardware implementation of the
original LZW decompression algorithm since it is not easy
to implement it.

The main contribution of this paper is to present an
efficient hardware LZW decompression algorithm and to
implement it in an FPGA. In general, LZW decompression
uses a dictionary table which stores variable-length strings.
However, in our hardware algorithm we use two tables,
pointer table p and character table Cf which store a single
value in each entry. The algorithm consists of three steps and
these steps are concurrently executed efficiently using the
dual-port block RAMs. The proposed module of hardware
LZW decompression algorithm in Virtex-7 family FPGA
uses 278 slice registers, 307 slice LUTs and 13 block RAMs
with 18k-bit, where the frequency of FPGA is 301.02MHz.
The running time of proposed module attains a speed up fac-
tor that surpasses 2.16 times over a sequential algorithm on a
single CPU. Since the decompression rate is data dependent,
according to the experimental results, the decompression
rate of our module is about 280.17MBytes/s while the
compression ratio of input file is extremely high. Even in the
worst condition, the decompression rate of proposed module
is about 143.54MBytes/s. Since the proposed FPGA module
is compactly designed, we have succeeded to implement
150 same modules in an FPGA, where all modules works
in parallel clocked at 245.4MHz. Calculated simply, the
implementation with 150 paralleled modules can run up to

264 times faster than the sequential algorithm on a single
CPU.

This paper is organized as follows. Section II reviews the
LZW compression and decompression algorithms. We show
a new hardware LZW decompression algorithm which is
suitable to be implemented in an FPGA in Section III .
In Section IV, we show an efficient FPGA implementation
of the hardware LZW decompression algorithm. Section V
shows the experimental results of the performance of the
hardware LZW decompression algorithm. Finally, we con-
clude this paper in Section VI.

II. LZW COMPRESSION AND DECOMPRESSION

The main purpose of this section is to review LZW
compression and decompression algorithms. For details of
the algorithms, the interested reader may refer to Section 13
in [4].

The LZW (Lempei-Ziv-Welch) [3] lossless data com-
pression algorithm always gives competitive compression
efficiency. In this algorithm, an input string of characters
is compressed into a series of codes using a dictionary
table that maps strings into codes. If the input is an image,
characters may be 8-bit integers. It reads characters in an
input image string one by one and adds an entry in a
string table (or a dictionary). In the same time, it writes
an output string of codes by looking up the string table.
Let X = x0x1 · · ·xn−1 be an input string of characters
and Y = y0y1 · · · ym−1 be an output string of codes. For
simplicity of handling the boundary case, we assume that
an input string is a string of 4 characters a, b, c and d. Let
S be a string table, which determines a mapping of a string
to a code, where codes are non-negative integers. Initially,
S(a) = 0, S(b) = 1, S(c) = 2 and S(d) = 3. By procedure
AddTable, new code is assigned to a string. For example, if
AddTable(cb) is executed after initialization of S, we have
S(cb) = 4. The LZW compression algorithm is described
as follows:

[LZW compression algorithm]
Ω ← φ
for i← 0 to n− 1 do

if(Ω · xi is in S)
Ω ← Ω · xi;

else Output(S(Ω)); AddTable(Ω · xi); Ω ← xi;
Output(S(Ω));

where “·” denotes the concatenation of characters and Ω
denotes a string.

Table I shows the compression flow of an input string
“cbcbcbcda”. First, since Ω · x0 = c in S, Ω ← c is
performed. Next, since Ω · x1 = cb is not in S, S(c) = 2
is output and we have S(cb) = 4. Also, Ω ← x1 = b is
performed. It should have no difficult to confirm that 214630
is output by this algorithm.



Table I
LZW COMPRESSION FLOW FOR INPUT STRING X = cbcbcbcda

i xi Ω S Y
0 c - - -
1 b c cb(4) 2
2 c b bc(5) 1
3 b c - -
4 c cb cbc(6) 4
5 b c - -
6 c cb - -
7 d cbc cbcd(7) 6
8 a d da(8) 3
- - a - 0

Table II
CODE TABLE C AND THE OUTPUT STRING FOR 214630

i yi C X
0 2 - c
1 1 cb(4) b
2 4 bc(5) cb
3 6 cbc(6) cbc
4 3 cbcd(7) d
5 0 da(8) a

Next, let us show LZW decompression algorithm. Let C
be the code table, the inverse of string table S. For example
if S(cb) = 4 then C(4) = cb. Initially, C(0) = a, C(1) = b,
C(2) = c, and C(3) = d. Also, let C1(i) denote the first
character of code i. For example C1(4) = c if C(4) =
cb. Similarly to LZW compression, the LZW decompression
algorithm reads a string Y of codes one by one and adds an
entry of a code table. In the same time, it writes a string X of
characters. The LZW decompression algorithm is described
as follows:

[LZW decompression algorithm]
Output(C(y0));
for i← 1 to n− 1 do

if(yi is in C)
Output(C(yi)); AddTable(C(yi−1) · C1(yi));

else
Output(C(yi−1) · C1(yi−1)); AddTable(C(yi−1) · C1(yi−1));

Table II shows the decompression process for a code
string 214630. First, C(2) = c is output. Since y1 = 1
is in C, C(1) = b is output and AddTable(cb) is performed.
Hence, C(4) = cb holds. Next, since y2 = 4 is in C,
C(4) = cb is output and AddTable(bc) is performed. Thus,
C(5) = bc holds. Since y3 = 6 is not in C, C(y2)·C1(y2) =
cbc is output and AddTable(cbc) is performed. The reader
should have no difficulty to confirm that cbcbcbcda is output
by this algorithm.

Since the length of strings in C are variable, it is difficult
to implement this algorithm on hardware as it is. Therefore,
we introduce a new LZW decompression algorithm without
such dictionary table in the next section.

III. LZW DECOMPRESSION ALGORITHM FOR HARDWARE
IMPLEMENTATION

This section is to propose a new LZW decompression
algorithm for hardware implementation. The hardware algo-
rithm does not use any variable length dictionary table. In
following, we explain the details of the algorithm.

Again let X = x0x1 · · ·xn−1 be a string of characters. We
assume that characters are selected from an alphabet (or a
set) with k characters α(0), α(1), . . . , α(k−1). We use k =
4 characters α(0) = a, α(1) = b, α(2) = c, and α(3) = d,
when we show examples as before. Let Y = y0y1 · · · ym−1

denote the compressed string of codes obtained by the LZW
compression algorithm.

Before showing the LZW decompression for hardware
implementation, we define several notations. We define
pointer table p using code table Y as follows:

p(i) =

{
NULL if 0 ≤ i ≤ k − 1
yi−k if k ≤ i ≤ k +m− 1

(1)

We can traverse pointer table p until we reach NULL. Let
p0(i) = i and pj+1(i) = p(pj(i)) for all j ≥ 0. In
other words, pj(i) is the code where we reach from code
i in j pointer traversing operations. Let L(i) be an integer
satisfying pL(i)(i) = NULL and Let Cf be the character
table defined as follows:

Cf (i) =

{
α(i) if 0 ≤ i ≤ k − 1
Cf (p(i)) if k ≤ i ≤ k +m− 1

(2)

It should have no difficulty to confirm that Cf (i) represents
the first character of C(i), and L(i) is the length of C(i).
Using Cf and p, we can define the value of C(i) in
following. If 0 ≤ i ≤ k − 1, C(i) = Cf (i). On the other
hand, if k ≤ i ≤ k + m − 1, C(i) = Cf (p

L(i)−1(i)) ·
Cf (p

L(i)−2(i) + 1) · Cf (p
L(i)−3(i) + 1) · · ·Cf (p

0(i) + 1).
Table III shows the value of p, Cf , L, and C for

Y = 214630. According to the table, we can obtain
the decompressed string. Figure 2 shows an example of
obtaining the decompression string of code y3 = 6, that is
C(6), from the table. For code y3 = 6, we first read p(6) = 4
from table p. Also, we read Cf (6+1) = c from table Cf that
corresponds to the last character of C(6). Since the obtained
pointer 4 is not NULL, we continue the traversing of table.
Next, p(4) = 2 and Cf (4 + 1) = b are read from tables p
and Cf , respectively. Finally, pointer p(2) is read out, and
we stop the traversing operation for code y3 because p(2)
is NULL. Also, Cf (2) = c is read out as the first character
of the string corresponding to code y3. We note that each
character of string corresponding to a code is obtained in
reverse order.

We are now in position to show hardware LZW de-
compression. This algorithm can be done in three steps as
follows:

Step 1: Update tables p and Cf .



Table III
THE VALUES OF p, L, Cf AND C IF Y = 214630

i p(i) Cf (i) L(i) C(i)
0 NULL a 1 a
1 NULL b 1 b
2 NULL c 1 c
3 NULL d 1 d
4 2 c 2 cb
5 1 b 2 bc
6 4 c 3 cbc
7 6 c 4 cbcd
8 3 d 2 da
9 0 a - -
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Figure 2. An example of traversing tables p and Cf

Step 2: Compute partially-reversal strings of X and L
using p and Cf .

Step 3: Reorder decompression string X .
In Step 1, we initialize the values of p(i), Cf (i) for each

i (0 ≤ i ≤ k−1). After that, we compute the values of p(i)
and Cf (i) for each i (k ≤ i ≤ k +m − 1). The details of
Step 1 are spelled out as follows:

[Step 1 of hardware LZW decompression algorithm]
for i← 0 to k − 1 do

p(i)← NULL; Cf (i)← α(i);
for i← k to k +m− 1 do

p(i)← yi−k; Cf (i)← Cf (yi−k);

In Step 2 of hardware LZW decompression algorithm, for
each compressed code yi (0 ≤ i ≤ m − 1) of Y , Cr(yi)
is read from table Cf by traversing pointer table p, where
Cr(i) denotes a string obtained by reversing C(i). At the
same time, the length of string L(i) is also computed. By
traversing table Cf with table p, the reversed string is read
and temporally stored to an output buffer for each character.
Let o denote a table for storing characters of concatenation
of strings Cr(y0) · Cr(y1) · · ·Cr(ym−1). For example, if
C(7) = abc, in Step 2, we have Cr(7) = cba and L(7) =
2. The details of Step 2 of hardware LZW decompression
algorithm are shown as follows:

[Step 2 of hardware LZW decompression algorithm]
addr ← 0
for i← 0 to m− 1 do

j ← yi; L(i)← 0;
while(p(j) 6= NULL)

o(addr)← Cf (j + 1); j ← p(j);
L(i)← L(i) + 1; addr ← addr + 1;

o(addr)← Cf (j); L(i)← L(i) + 1; addr ← addr + 1;

In Step 3 of hardware LZW decompression algorithm, a
concatenated string of Cr(y0) ·Cr(y1) · · ·Cr(ym−1) stored
in output buffer o is arranged in corrected order, that is,
C(y0) ·C(y1) · · ·C(ym−1). Each ordered character is output
one by one. The algorithm code of Step 3 is shown as
follows:

[Step 3 of hardware LZW decompression algorithm]
addr ← 0;
for i← 0 to m− 1 do

l← L(i);
while(l > 0)

Output(o(addr + l − 1)); l← l − 1;
addr ← addr + L(i);

By sequentially executing Step 1, Step 2, and Step 3, LZW
decompression can be performed. In addition, the execution
of these steps can be overlapped. More specifically, after
an execution for an input code in each step is completed,
the execution for the code in the next step can be started.
Figure 3 illustrates a process of the above execution for
an input compressed code Y = y0y1 · · · ym−1. In our
FPGA implementation described in the next section, we use
block RAMs of FPGA to implement the pointer table p,
character table Cf , and output buffer o. In the utilized FPGA,
the block RAMs can be configured as a dual-port block
RAM. Since dual-port block RAM has two set of ports that
work independently, the writing and reading operations of
these tables can be performed concurrently. Using the block
RAMs efficiently, we realizes the overlapped execution of
the three steps.

IV. OUR FPGA ARCHITECTURE FOR LZW
DECOMPRESSION

This section describes our FPGA architecture of the
hardware LZW decompression algorithm using block RAMs
in Xilinx Virtex-7 FPGA. We use Xilinx Virtex-7 Family
FPGA XC7VX485T-2 as the target device [22].

In this paper, we focus on the decompression of LZW-
compressed data in a TIFF image file. We assume that
a TIFF image file contains a gray-scale image with 8-bit
depth, that is, each pixel has intensity represented by an 8-
bit unsigned integer. Since each of RGB or CMYK color
planes can be handled as a gray scale image, it is obvious
to modify gray scale image TIFF decompression for color
image decompression. For further details on a TIFF image
file, the interested reader may refer to [4].

First, we show how image data in a TIFF image file is
compressed. Since every pixel has an 8-bit intensity level,
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Figure 3. Process of our LZW decompression hardware for an input compressed code Y = y0y1 · · · ym−1

we can think that an input string of an integer in the range
[0, 255]. Hence, codes from 0 to 255 are assigned to these
integers. Code 256 (ClearCode) is reserved to clear the code
table. Code 257 (EndOfInformation) is used to specify the
end of the data. Thus, AddTable operations assign codes to
strings from code 258. While the entry of the code table is
less than 512, codes are represented as 9-bit integer. After
adding code table entry 511, we switch to 10-bit codes.
Similarly, after adding code table entry 1023 and 2037, 11-
bit codes and 12-bit codes are used, respectively. As soon as
code table entry 4094 is added, ClearCode is output. After
that, the code table is re-initialized and AddTable operations
use codes from 258 again. The same procedure is repeated
until all pixels are converted into codes. After the code for
the last pixel is output, EndOfInformation is written out. We
can think that a code string is separated by ClearCode, We
call each of them a code segment. Except the last one, each
code segment has 4094 − 257 + 1 = 3838 codes. The last
code segment may have codes less than that.

Figure 4 shows the proposed architecture of LZW de-
compression. In our implementation, the LZW-based module
decompresses all codes in a segment that are given one by
one. In order to implement pointer table p, character table
Cf , code buffer and output buffer o, the block RAMs are
used. The block RAMs are configured as dual-port mode [6]
as shown in Figure 1. A dual-port block RAM has two sets
of ports which work independently. We use these two port
to perform executions in three steps described in Section III
in parallel. For table p, as shown in the previous section,
since the values of p(i) (0 ≤ i ≤ 255) are initialized to
NULL and codes 256 and 257 are reserved codes, we do
not actually use the block RAM in that range to reduce
the memory resources as illustrated in Figure 5. Instead
of use of the block RAM, the circuit checks the value of
the address. Namely, if the address is in [0, 255], NULL is
output. Otherwise the value of p(i) is read from the block
RAM. For the same reason, table Cf do not use the block
RAM in the range. Each value of Cf (i) (0 ≤ i ≤ 255) is

initialized to an alphabet α(i). From the target application,
we can assume that α(i) = i (0 ≤ i ≤ 255) since the
alphabets correspond to pixel values. If the address is in
[0, 255], the value of the address is just output.

We can obtain a string of each code by traversing tables
p and Cf . To store the characters, an output buffer o is
used. Output buffer o is also configured as dual-port block
RAMs. Since the characters of corresponding string of a
code is reversely read out from table Cf and then written
to the output buffer for each character in reversed order, we
use table L to store the length of the string to reverse it
in the following step. Finally, we read the characters from
output buffer and reverse it with the length. Indeed, it is not
necessary to store all the values of L since the executions
of three steps described in Section III. Therefore, table L
is configured as a FIFO (First-In-First-Out). As the same
reason, we use a FIFO, which is also composed of the
block RAMs, to temporally store input codes called code
buffer. For the reader’s benefit, the behavior of the proposed
architecture for each step is described next.

Step 1: In Step 1, for tables p and Cf , one port set of
the dual-port block RAMs is used to perform the updating
operation as described in the algorithm in Section III, respec-
tively. The table update is executed for given compressed
codes yi (0 ≤ i ≤ m − 1) one by one. If an input code
yi ≤ 257 holds, it is unnecessary to update both tables
since the elements in p and Cf are constant values for
i ≤ 257. Otherwise, if yi ≥ 258, table p is updated by
writing yi to p(i + 258). The update for table p can be
easily done since yi is stored to an element at address i in
the block RAM as illustrated in Figure 5. Also, the update
operation for table Cf is performed. It takes 2 clock cycles
to read a value stored at Cf (yi−258) and write it to Cf (i).
The above operations are repeatedly executed for each input
code. Since the update operations for both tables can be
executed at the same time, it takes two clock cycles for
each input code. Since m codes are input, in total, 2m clock
cycles are necessary to perform Step 1. Recall that all each
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code segment has 3838 codes except the last one. For each
code segment that has 3838 codes, table p and Cf are full
if the update operations for all codes of one code segment
are performed. The update operation is terminated until all
codes of this segment are decompressed. For the last code
segment, if code 257 (EndOfInformation) is reached, the
update operation is terminated until all codes of the last
code segment are decompressed.

Step 2: We will show how to obtain partially-reversed
strings Cr(yi) (0 ≤ i ≤ m−1) with table p and Cf updated
in Step 1. In the following, we use another port set of the
dual-port block RAMs of tables p and Cf , respectively. As
shown in the algorithm of Step 2 in the previous section.
for each input code yi(0 ≤ i ≤ 3837), we traverse tables p
and output characters of Cr(yi) in table Cf . Since it takes
one clock cycle to read an element in tables p and Cr(yi),
respectively, two clock cycles are necessary to output a
character in Cr(yi). However, the access to tables p and Cf

can be performed currently. We can overlap the access for
an input code yi with that for the next code yi+1. Therefore,
when the length of Cr(yi) is L(i), we can output a string
Cr(yi) in L(i) + 1 clock cycles. The characters of Cr(yi)
are stored into an output buffer o one by one. Also, L(i)
is counted at the same time. After outputting the characters
of Cr(yi), and L(i) is stored to table L which is composed
of a dual-port block RAM. Since it takes L(i) + 1 clock
cycles to output for each input code yi, Step 2 is performed
in Σm−1

i=0 (L(i) + 1) clock cycles in total.

Step 3: In Step 3, partially-reversed strings Cr(y0),
Cr(y1),. . . , Cr(ym−1), stored in output buffer o in Step 2
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Figure 5. Dual-port block RAM and memory configurations of tables p
and Cf



is reordered to the uncompressed strings C(y0), C(y1),. . . ,
C(ym−1). Since the length of each string is known from
L(i), each character can be read reversely from output buffer
o one by one. Each operation for an input code yi can be
started after Cr(yi) is stored to output buffer o, that is, L(i)
is stored into table L. It takes L(i) + 1 clock cycles to
perform the operation for a code yi since one clock cycle
for reading L(i) and L(i) clock cycles for reversely reading
C(yi) are necessary.

Let us consider the overlapped execution among the three
steps as illustrated in Figure 3. Recall that Step 1 can
be performed in 2 clock cycles for each input code. The
operation for an input code yi (0 ≤ i ≤ m − 1) in
Step 2 can be performed after the operation for the next
code yi+1 in Step 1 is finished. Also, the execution time
for each yi is at least 2 clock cycles since L(i) + 1 ≥ 2.
Therefore, the execution of Step 2 can be started 4 clock
cycles later after the first code y0 is given in Step 1 and
performed continuously. In Step 3, the operation for an
input code yi can be performed after the operation for yi
in Step 2. Namely, the operation for yi in Step 3 can be
executed when the operation for yj (yj ≥ i+ 1) in Step 2.
Therefore, in Step 3, the execution sometimes waits for the
execution in Step 2. Let us consider the longest case for
computing time that an input data obtained by compressing
data whose elements are the same value is given. For
example, when a string X = 0, 0, 0, . . . is compressed, the
compressed data is Y = 0, 258, 259, . . .. The length L(i)
of each uncompressed string C(yi) can be represented as
L(i) = i + 1 (0 ≤ i ≤ m − 1) since the lengths are
incremented by one for each code. Since L(i+1) = L(i)+1
in this case, L(i) < L(i + 1) always holds. Therefore, the
execution for yi in Step 3 can be performed when that for
yi+1 is performed concurrently. Moreover, the execution for
each yi in Step 3 waits for one clock cycle. In such case, it
takes Σm−1

i=0 (L(i) + 2) = m(m + 5)/2 clock cycles. Since
the execution of Step 2 can be started 4 clock cycles later
after the first code y0 is given in Step 1 and Step 3 can be
started 2(= L(0) + 1) clock cycles later after the execution
of Step 2 is started, Step 3 can be started 6 clock cycles
later after the first code y0 is given in Step 1. Therefore, in
such case, it takes m(m+5)/2+6 clock cycles to perform
the LZW decompression in total.

V. EXPERIMENTAL RESULTS

This section shows the implementation results of the
hardware LZW decompression algorithm in the FPGA.

We have implemented the proposed architecture for hard-
ware LZW decompression algorithm and evaluated it in
VC707 board [23] equipped with the Xilinx Virtex-7 FPGA
XC7VX485T-2. According to the implementation results,
one LZW decompression module uses 278 slice registers,
307 slice LUTs and 13 18K-bit block RAMs. We have
succeeded to implement 150 proposed LZW decompression

modules which work in parallel in the FPGA. The experi-
mental results of the implementation is shown in Table IV.
We also use Intel Xeon CPU E5-2430 (2.2GHz) to evaluate
the running time of sequential LZW decompression. We
have used three gray scale images with 4096× 3072 pixels
as shown in Figure 6, which are converted from JIS X 9204-
2004 standard color image data. Table V shows the time of
decompression on CPU and FPGA and the compression ratio
( original image size
compressed image size ). The image “Graph” has high com-

pression ratio since it has large areas with similar intensity
levels. The image “Crafts” has small compression ratio since
it has small details. Both CPU and FPGA decompression
take more time to create dictionary tables if the image has
small compression ratio. In LZW decompression on CPU,
the operation of creating dictionary tables occupies most of
the computing time. In our implementation on FPGA, the
operation of creating tables is performed independently, and
writing characters to output buffer and reading characters
from output buffer are paralleled, hence, the operation of
outputting characters occupies most of the time. As shown
in Table V, for only one proposed module, the results
show that implementation on FPGA is 2.16 times faster
than the implementation on the CPU. For example, in our
FPGA implementation of one proposed module, it takes
19674631 clock cycles to decompress image “Crafts”, i.e.,
19674631

301.02MHz = 65.36ms. It takes 18339574 clock cycles to
decompress image “Flowers”, i.e., 18339574

301.02MHz = 60.924ms.
To decompress image “Graph”, it only takes 12892927
clock cycles, i.e., 12892927

301.02MHz = 42.831ms. Hence, for
gray scale image “Graph” which has high compression
ratio with 4096×3072 pixels, the LZW decompression
module outputs 4096×3072×1 Bytes of original data in
42.83ms. Therefore, the decompression rate of module is
4096×3072×1Bytes

42.831ms = 280.17MBytes/s. Since the decompres-
sion rate depends on input data, the decompression rate
can be even better if the compression rate of input file is
higher. Suppose that in the worst case for computing time,
4096×3072 input codes are given, all of which correspond-
ing strings include 1 character. Since it takes 2 clock cycles
to decompress each code that includes only 1 character,
all the codes can be decompressed in 4096 × 3072 × 2 =
25165824 clock cycles, i.e., 25165824

301.02MHz = 83.602ms. More
specifically, the minimum decompression rate of proposed
module is 4096×3072×1Byte

83.602ms = 143.54MByte/s. Since the
proposed FPGA module uses a few resources of the FPGA,
we have succeeded to implement 150 modules in a FPGA,
where all modules work in parallel. Since the number of
modules increases, the frequency of FPGA decreases to
245.4MHz. Simply calculated, our implementation with 150
modules runs up to 264 times faster than sequential LZW
decompression on a single CPU.

There are some literatures reported to implement data
decompression using the FPGA shown in Section I. Perfor-
mances such as method, slices, block RAMs, frequency and
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Figure 6. Three gray scale image with 4096× 3072 pixels used for experiments

Table IV
IMPLEMENTATION RESULT OF ONE MODULE OF HARDWARE LZW

DECOMPRESSION ALGORITHM

number of modules 1 150 Available
Slice Registers 278 (0.05%) 40642 (6.69%) 607200

Slice LUTs 307 (0.1%) 45194 (14.89%) 303600
18K-bit block RAMs 13 (0.63%) 1950 (94.66%) 2060

Clock frequency [MHz] 301.02 245.4 —

decompression rate are compared in Table VI. It is difficult
to directly compare to other works because used FPGAs,
algorithms and size of dictionary differ. Our implementation
provides a competitive decompression rate with other works.
For a file compressed by the original LZW compression
algorithm, only our implementation can directly decompress
it.

Table V
COMPUTING TIME (MILLISECONDS) FOR THREE IMAGES

images compression time of time of Speedup
ratio CPU FPGA ratio

“Crafts” 1.43:1 141.534 65.36 2.16:1
“Flowers” 1.72:1 127.136 60.924 2.08:1
“Graph” 36.72:1 75.901 42.831 1.77:1

Table VI
COMPARISON WITH RELATED WORKS FOR DATA DECOMPRESSION

Helion [13] Navqi [14] This work
Method LZRW3 Variant of LZW LZW
Device Xilinx Xilinx Xilinx

Virtex-5 XC2V250 XC7VX485T
Slices 166 247 139

18K-bit block RAMs 4 8 13
Frequency [MHz] 226 50 301.02

Decompression rate
[MBytes/s] 180.75 160 280.17

VI. CONCLUSIONS

We have presented a hardware LZW decompression al-
gorithm of decompressing images. It was implemented in
a Virtex-7 family FPGA XC7VX485T-2. According to the
implementation results, one LZW decompression module
uses 278 slice registers, 307 slice LUTs and 13 block
RAMs with 18K-bit. According to simulating results, one
FPGA module of LZW decompression is more than 2.16
times faster than sequential LZW decompression on a single
CPU. Our module provides a decompression rate up to
280.17MBytes/s which is higher than other research. Since
the proposed module uses a few resources of the FPGA, we
have succeeded to implemented 150 LZW decompression
modules in parallel which attains a speed up factor of 264
over the sequential implementation on the CPU.
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