
An Efficient Implementation of the Hough Transform using DSP slices and block
RAMs on the FPGA

Xin Zhou, Yasuaki Ito, and Koji Nakano
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—Since FPGA chips maintain relatively low price
and its programmable features, it is widely used in those fields
which need to update architecture or functions frequently such
as communication and education areas. Especially, in mobile
devices that recently require the ability to perform computation
such as real-time image processing, FPGAs are promising
devices. Recent FPGAs have hundreds of embedded DSP slices
and block RAMs. For example, Xilinx Virtex-6 Family FPGAs
have a DSP48E1 slice, which is a configurable logic block
equipped with fast multipliers, adders, pipeline registers, and so
on. They also have a dual-port memory with 18Kbits as a block
RAM. Therefore, one of the most important key techniques
for accelerating computation using such FPGAs is an efficient
usage of DSP slices and block RAMs. The main contribution
of this paper is to present a new FPGA architecture for the
Hough transform for all the pixel data input in raster scan
order. The architecture uses 90 DSP48E1 slices and 181 block
RAMs with 18Kbits that work in parallel. The experimental
results show that this implementation runs in 247.525MHz and
given a binary image of size n×n, our circuit can perform in
n2 +

√
2n + 379 clock cycles.

Keywords-Image processing, Line detection, Hough trans-
form, FPGA, Embedded DSP slices, Embedded block RAMs

I. INTRODUCTION

A Field Programmable Array (FPGA) is a programmable
logic device designed to be configured by the customer or
designer by hardware description language after manufac-
turing. The most common FPGA architecture consists of an
array of logic blocks, I/O pads, block RAMs and routing
channels. Furthermore, recent FPGAs have embedded DSP
slices that make a higher performance and a broader appli-
cation. The Xilinx Virtex-6 series FPGAs have DSP48E1
slices that are equipped with a multiplier, adders, logic
operators, etc [1]. More specifically, the DSP48E1 slice
has a two-input multiplier followed by multiplexers and
a three input adder/subtractor/accumulator. The DSP48E1
multiplier can perform multiplication of an 18bit and a 25bit
two’s complement numbers and produces one 48bit two’s
complement production. Programmable pipelining of input
operands, intermediate products, and accumulator outputs
enhances throughput and improves frequency. The DSP48E1
also has pipeline registers between operators to reduce the
delay. The block RAM in the Virtex-6 FPGA is an embedded

memory supporting synchronized read and write operations.
In the Virtex-6 FPGA, it can be configured as 36Kbit dual
port block RAMs, FIFOs, or two 18Kbit dual port RAMs.
In our architecture, it is used as a 1K×18bit dual port
RAM. Since FPGA chips maintain relatively low price and
its programmable features, it is widely used in those fields
which need to update architecture or functions frequently
such as communication and education areas. They are widely
used in consumer and industrial products for accelerating
processor intensive algorithms [2]–[9].

Hough transform is a technique to find shapes in im-
ages [10]. In particular, it has been utilized to extract lines,
circles, ellipses and arbitrary shapes. The Hough transform
defines a mapping from an image into a parameter space
represented by an accumulate array. The parameter space
is defined by parameterizing detected shapes. Based on
each edge point of the image, the mapping adds a vote
to corresponding elements in the accumulate array. The
elements that are increased represent associated parameters
based on detected shapes. Therefore, the elements that are
voted intensively correspond to the parameters of shapes in
the image space.

The Hough transform can be used to extract straight lines
in a binary image [11]. The idea of this method is to exploit
the duality between points of a line and parameters of that
line. A point in the image is represented by a curve in the
parameter space and lines of collinear points intersect in the
parameter space at one point. These intersections are counted
in an array of accumulators that quantizes the parameter
space appropriately. In the followings, we call this counting
to the accumulators voting. More specifically, for each
edge point (x, y) in a 2-dimensional image, the voting is
performed along a curve ρ = x cos θ+y sin θ (0 ≤ θ < 180).
Possible lines can be detected by searching points that are
voted intensively. Figure 1 shows an example of straight line
detection using the Hough transform. For an input image
(Figure 1(a)), the binary edge image (Figure 1(b)) is obtained
by the edge detector such as Sobel filter. The result of voting
to the parameter space is shown in Figure 1(d). In this figure,
darker points show points that are voted intensively, that is,
represent probable lines. According to the result of voting,
the principal lines are detected (Figure 1(c)).



(a) Input image (b) Binary edge image
by Sobel filter

(c) Line detection using (d) Hough parameter space
the Hough transform

Figure 1. Example of straight line detection using the Hough transform

In our previous work [12], we proposed an FPGA im-
plementation of the Hough transform with DSP slices and
block RAMs. We used 178 DSP slices and 180 block
RAMs and they work in the fully pipelined architecture.
The implementation need to accept the coordinates of edge
points as input. However, since pixel data of input images
from digital video cameras are generally input in raster scan
order, the requirement might not to be versatile. Also, since,
after voting, identified straight lines are obtained just by
thresholding, similar to lines in the input image but incorrect
lines are also detected.

In this paper, we improve the FPGA implementation
of our architecture. One of the main different points of
this paper from our previous work is that our improved
architecture processes pixel data given in raster scan order,
and outputs the identified straight lines. Therefore, the voting
time is a fixed clock cycles corresponding to the size of the
image. Also, compared to our previous implementation, the
number of used DSP slices becomes approximately half. Our
new idea includes: (i) Voting Space Partitioning: Polar co-
ordinate voting space (θ, ρ) is partitioned and arranged into
block RAMs. This enables us to perform voting operations
in parallel. Also, the function of dual-port of block RAMs
are fully used to accumulate the voting value instantly. (ii)
Efficient Usage of DSP slices: DSP slices are used x cos θ
and y sin θ in parallel for each edge pixel (x, y). We compute
x cos θ for θ such that 0 ≤ θ < 90 instead of computing
them for θ such that 0 ≤ θ < 180. Also, we avoid the

computation of the values of cos θ by pre-loading them in
the DSP slices. In addition, since pixel data are input in
raster scan order, we use the fact that the value of y in a
certain row is not change. When pixels in a certain row
y are processed, we pre-compute (y + 1) sin θ for θ such
that 0 ≤ θ < 90 in the next row. According to the above,
compared with our previous implementation, the number
of utilized DSP slices is reduced to approximately half.
(iii) Fully Pipelined Architecture: We design our new
Hough transform architecture as a fully pipelined one using
the Virtex-6 FPGA XC6VLX240T that has 768 DSP48E1
slices arranged in 8 columns of 96 adjacent DSP48E1 slices.
Neighboring DSP48E1 slices are connected directly through
pipeline registers. Our Hough transform architecture uses
only 1 DSP slice to compute y sin θ, and uses 1 columns
to compute x cos θ. (iv) More precise line detection: In
our previous work, the straight lines are output such that the
number of votes exceeds a certain threshold value. However,
the output includes many mistaken straight lines due to the
discretization error in voting. In this paper, therefore, after
voting process, to obtain more precise straight lines, we
apply the 3 × 3 maximum filter for the voted results.

Many hardware algorithms for FPGA implementation of
the Hough transform for lines have been proposed in past. In
the existing researches, they introduced incremental Hough
transform [13]–[15], CORDIC [16], [17], and hybrid-log
arithmetic [18] to the computation of Hough transform.
Since most of recent FPGAs produced by principal vendors
equip embedded DSP slices [19]–[21], one of the most
important key techniques for accelerating computation using
FPGAs is an efficient usage of DSP slices and block RAMs.

II. HOUGH TRANSFORM

The main purpose of this section is to review Hough
transform algorithms for straight lines. Suppose that we have
an image of size n × n. We assume that n × n pixels are
arranged in two dimensional xy-space such that the origin
is in the center of the image as illustrated in Figure 2.
Hence, both coordinates x and y take integers in the range

n

n
x

y

θ

ρ

(x, y)

θ

ρ

0 180

n√
2

(θ, ρ)

− n√
2

n
2

−n
2 + 1

−n
2 + 1

n
2

Figure 2. Two dimensional Spaces xy and θρ used in the Hough transform

[−n
2 + 1, n

2 ]. A pixel (x, y) (−n
2 + 1 ≤ x, y ≤ n

2 ) in the



xy-space is converted to a curve in the θρ-space by the
following formula: ρ = x cos θ + y sin θ (0 ≤ θ < 180).
Clearly, the double inequality − n√

2
< ρ ≤ n√

2
is satisfied.

The values of θ and ρ can also be obtained geometrically.
Suppose that we draw a line going through the origin with
angle θ as illustrated in Figure 2. For such lines, we can
draw the orthogonal line going through a pixel (x, y). The
value of ρ corresponds to the distance to the line. In other
words, a point (θ, ρ) of θρ-space corresponds to a line of
xy-space.

The key idea of the Hough transform is to vote in θρ-
space only for every edge pixel in the xy-space. Let (x, y)
be the pixel in xy-space, and let p[x][y] be the value of the
pixel such that p[x][y] = 1 if a pixel (x, y) is an edge pixel
and p[x][y] = 0 if a pixel (x, y) is a non-edge pixel. In this
paper we process the image in raster scan order, the Hough
transform is spelled out as follows:

[Straight Forward Hough Transform]
for y ← −n

2
+ 1 to n

2
for x← −n

2
+ 1 to n

2
if p[x][y] = 1

for θ ← 0 to 179
begin

ρ← x cos θ + y sin θ
v[θ][ρ]← v[θ][ρ] + 1

end

For simplicity, we assume that the value of ρ is automatically
rounded to an integer. In the Straight Forward Hough Trans-
form, for each point (x, y), the values of x cos θ and y sin θ
are computed for θ = 0, 1, . . . , 179. If v[θ][ρ] is storing a
large value, many edge pixels in the input pixels lie in the
line in xy-space corresponds to a point (θ, ρ) in θρ-space.

We will show that, it is sufficient to compute these
values for θ = 0, 1, . . . , 90. From the addition theorem of
trigonometric functions, we have

ρ = x cos(180 − θ) + y sin(180 − θ)
= −x cos(θ) + y sin(θ). (1)

Using Formula (1), the Hough transform can also be done by
partitioning the range [0, 179] of θ into two ranges [0, 89] and
[90, 179]. Also, we avoid going through array v for finding
elements larger than a threshold. Thus, our new Hough
transform, called the Circuit-oriented Hough Transform is
be spelled out as follows:

[Circuit-oriented Hough Transform]
for y ← −n

2
+ 1 to n

2
for x← −n

2
+ 1 to n

2
if p[x][y] = 1

begin
for θ ← 0 to 89 do

begin
ρ← x cos θ + y sin θ
v[θ][ρ]← v[θ][ρ] + 1

end
for θ ← 1 to 90 do

begin
ρ← −x cos(θ) + y sin(θ)

X1 X2

V0 V1V179 V2V178

x

y

X89

V89V91 V90

Computation of y sin θ(1 ≤ θ ≤ 90)

3 × 3 maximum filters (θ, ρ)

Counter

Counter

Input
pixels

y sin 1 y sin 2 y sin 89 y sin 90

x cos 1 x cos 2 x cos 89

Figure 3. The outline of our FPGA architecture for the Hough transform

v[180 − θ][ρ]← v[180− θ][ρ] + 1
end

end

In the following section, we show an efficient implementa-
tion of the Circuit-oriented Hough Transform.

III. OUR FPGA ARCHITECTURE FOR THE HOUGH

TRANSFORM

This section describes our FPGA architecture for the
Hough transform using DSP slices and block RAMs in
Xilinx Virtex-6 Family FPGA XC6VLX240T-1 as the target
device [22].

A. Structure of our architecture for the Hough transform

Figure 3 illustrates the outline of our FPGA architecture
for the Hough transform. Whenever each input pixel is given,
the two counters for x and y increment appropriately. We use
89 DSP slices X1, X2, . . .X89. For each θ (0 ≤ θ ≤ 90),
Xθ computes x cos θ. Since x cos 0 = x and x cos 90 = 0,
DSP slices X0 and X90 are not necessary. Also, we use a
module to compute y sin θ (1 ≤ θ ≤ 90). Using an adder and
a subtractor for x cos θ and y sin θ, ρθ = x cos θ + y sin θ
and ρ180−θ = −x cos θ + y sin θ are computed. We also
use 180 block RAMs V0, V1, . . . , V179 to store the voting
value. Address ρ of each Vθ (0 ≤ θ ≤ 179) is used to
store the value of v[θ][ρ]. After voting, to obtain identified
straight lines, we use 3 × 3 maximum filters. These filters
simultaneously work row by row.

To minimize the delay between registers, DSP slices
X1, . . . , X90 are connected in a pipeline fashion as illus-
trated in Figure 3. Each Xθ has a register to store the value
of x. In every clock cycle, the value is transferred from X θ

to Xθ+1.
Figure 4 illustrates a DSP slice Xθ . In Xθ, the value of

x is loaded in an internal register. Also, the value of cos θ
is pre-computed. Note that the value of cos θ used in Xθ is
a fixed value. The product of x and cos θ is computed in a
multiplier of the DSP slice Xθ.



cos θ

x

x cos θ

x

Figure 4. A DSP slice Xθ to compute x cos θ

x

x(= x cos 0)

cos 2

x cos 2

cos 89

x cos 89

cos 1

x cos 1

Figure 5. Pipeline architecture to compute x cos θ with DSP slices

In the Virtex-6 FPGA XC6VLX240T, that is our target
device, DSP48E1 slices are arranged in 8 columns of 96
adjacent DSP48E1 slices. Neighboring DSP48E1 slices are
connected directly through pipeline registers. Our Hough
transform architecture uses 1 column to compute x cos θ, and
uses a pipeline technique to maximize the clock frequency
(Figure 5).

Also, to compute y sin θ (1 ≤ θ ≤ 90) we use the fact that
the value of y in a certain row is not change since pixel data
are input in raster scan order. Therefore, when pixels in a
certain row y are processed, we pre-compute (y+1) sin θ for
θ such that 0 ≤ θ < 90 in the next row and store them into
the registers. In the next row y + 1, the computed values of
(y+1) sin θ are used. Figure 6 illustrates our architecture to
compute y sin θ. We use a look-up-table using a block RAM
to compute sin θ. and a DSP slice to compute a product of
y and sin θ. Also, we utilize two series of registers, called
banks. One is used to pre-compute the values of y sin θ
for the next row. The other is used to output the already
computed y sin θ for the current processing row. To compute
the values of sin θ we successively generate the value of
θ = 90, 89, 88, . . . , 2, 1 by a counter. By inputting them to
the look-up-table, the values of sin θ are obtained. Using
the DSP slice, the products of y sin θ are computed. Note
that the values of y sin θ is for the next row. Therefore, the
value of y is incremented in advance. The obtained values
are successively input to a bank. In each bank, registers are
cascaded shown in the figure. The values shift one by one
until all the values are input to the bank. When pixels in a
row are finished, the banks are switched.

LUT
for

sin θ

y

θ sin θ

y sin θ
block RAM

90, 89, ..., 2, 1

Bank 0

Bank 1

y[0]

y sin 2y sin 1 y sin 3 y sin 90

Counter

+1

Figure 6. Architecture of computing y sin θ with one DSP slice

+1

ADDRA
DOA

ρ

ADDRB

DIB

ρ

vθ[ρ]

=

vθ[ρ] + 1

block RAM

Figure 7. A block RAM Vθ to store v[θ][ρ]

Let vθ[i] denote the data of address i in block RAM Vθ .
Since ρ is given to it ADDRA, vθ[ρ] is output from DOA
after the rising clock edge as illustrated in Figure 7. After
that, vθ[ρ]+1 is computed and it is given to DOB. Since ρ is
given to ADDB, vθ[ρ]+1 is written in vθ[ρ]. In other words,
vθ[ρ] ← vθ[ρ] + 1 is performed. At that time, according to
the restriction stated in the above, since the same value of
ρ may be input continuously, the setting of block RAMs
must be RF. Namely, when the same value of ρ is input
continuously, the former voted value is not read from the
block RAM. To avoid this situation, we use an additional
register to store the latest voted value and if the same value
of ρ is input continuously, the stored value is used instead
of the value read from the block RAM. Note that the above
voting process is performed when the input value is an edge
pixel. Namely, when the it is a non-edge pixel, the voting
process is not performed.

In the following, when all the voting operations are
completed, we utilize 3 × 3 maximum filters to output the
final correct identified straight lines. The maximum filter is
defined as the maximum of all pixels within a local region
of an image. In here, for each value in the voting space, this
filter copies the largest value from a 3 × 3 region to it. In
the voting process, the vote concentrates to each point (θ, ρ)
corresponding to a line in the original image. However, it
also concentrates to around the point. If identified straight
lines are determined by thresholding for voted values, many
lines which are not in the original image may be obtained.

Figure 8 illustrates our architecture to perform a 3 × 3
maximum filter to the voted results. Since the voted values
in the same ρ can be obtained from V0, V1, . . . , V179, this



architecture works row by row in a pipeline fashion. To
perform a 3 × 3 maximum filter to each value in a certain
row, it is concurrently read from V0, V1, . . . , V179. After that,
using comparators, local maxima of each 3 neighboring
votes in the row are obtained. These local maxima are
input shift registers. After local maxima in the 3 rows are
computed, local maxima of each 3 × 3 votes are obtained
by computing maxima from corresponding 3 values. If the
maximum equals to the original value of the center in the
corresponding 3×3 votes, its (θ, ρ) that represents a probable
line is input to the shift registers and output through the
registers.

> > > > >

> > > > >

>

>
> >

>

=

V0 V1 V2 V3 V4 V5 V6 V7 V176 V177 V178 V179

local maxima of each 
3 neighboring votes 
in the row ρi+1

local maxima of each 
3 neighboring votes 
in the row ρi

local maxima of each 
3 neighboring votes 
in the row ρi−1

local maxima of 
each 3×3 votes

> > > > >> >

== = = = = =

if the maximum equals 
to the vote of the center 
in the corresponding 
3×3 votes, output its
(θ, ρ)

(θ, ρ) 

Figure 8. Pipeline architecture of 3 × 3 maximum filters

B. Data representation

The choice of data precision is guided by the implemen-
tation cost in terms of area, simplicity of design, speed
and power consumption. Higher precision will lead to less
quantization error in the final implementation. On the other
hand, lower precision will produce more compaction and
faster designs with less power consumption. A trade-off
choice needs to be made depending on the given application
and available FPGA resources.

In this paper, the data format of inputs are values (0 or
1) of all pixels in the image, these values are input in raster
scan order. The coordinates (x, y) which are necessary to
compute ρ are generated by the counter as shown in Figure 3.
In order to minimize chip space and computation time, short
fixed point representation of numbers are used. Considering
the structure of DSP slices and block RAMs, we choose
the data presentation in our implementation, as follows. The
data format of inputs that are values of pixels p[x][y] are 1bit
binary number. The data format of cos θ and sin θ is 16bit
fixed point number, which consists of 1bit sign, 1bit integer

and 14bit fraction based on two’s complement. On the other
hand, the data format of ρ is 10bit two’s complement integer.
The data format of the voted value is 18bit integer. Namely,
the number of the vote is at most 218 − 1. Since the range
of the value of θ is 0 to 180, the data format of θ is 8bit
integer.

IV. EXPERIMENTAL RESULTS

We have implemented the proposed architecture for
Hough transform and evaluated it on the Xilinx Virtex-
6 FPGA XC6VLX240T-1. Table I shows the experimental
results using Xilinx ISE 13.4. In the implementation, to
reduce the delay of the circuit, some pipeline registers are
inserted into between circuit elements. To compute y sin θ
for (1 ≤ θ ≤ 90) in the first row, i.e., y = − n

2 + 1, in
advance, 94 clock cycles are necessary. It takes 3 clock
cycles to compute the values of ρ for given x and the pre-
computed y sin θ. Also, 4 clock cycles are necessary to vote
to the Hough space. Moreover, to perform vote for each V θ ,
the number of clock cycles necessary to move data from
the leftmost register to the rightmost register in Figure 3
is 91. Since all of the points in the binary image are input
into our architecture, the voting operations are performed
for an n×n image in n2 +192 clock cycles, i.e., n2+192

247.525μs.
After voting,

√
2n + 187 clock cycles, i.e.,

√
2n+187

247.525 μs
are necessary to output identified straight lines with 3 × 3
maximum filters. Therefore, in total, n2 +

√
2n + 379 clock

cycles, i.e., n2+
√

2n+379
247.525 μs are necessary to perform the

Hough transform for an n×n image. If the size of an input
image is 512 × 512, our circuit performs in 1.065ms.

Table I
PERFORMANCE EVALUATION OF THE PROPOSED ARCHITECTURE FOR

HOUGH TRANSFORM

DSP48E1 slices (out of 768) 90 (11.1%)
18Kbit block RAMs (out of 832) 181 (21.7%)
Slices (out of 301440) 40487 (13%)
Clock frequency [MHz] 247.525

For the purpose of estimating the speed up of our FPGA
implementation, we have also implemented a conventional
software approach of Hough transform using GNU C. We
have used Intel Xeon X7460 running in 2.66GHz and
128GB memory to run the sequential algorithm for Hough
transform. For the image shown in Figure 1(b) of size
512×512, the software implementation performs the Hough
transform in 41.408ms. On the other hand, our circuit
performs in 1.065ms. Therefore, our FPGA implementation
attains a speed-up factor of more than 38 over the sequential
implementation on the CPU.

There are a number of literatures reported to implement
Hough transform for lines using the FPGA shown in Sec-
tion I. Performances such as device, logic blocks, DSP slices,
frequency and throughput are compared in Table II. It is
difficult to directly compare to other works because utilized



FPGAs and supported size of images differ. Considering the
throughput, however, it is clear that the performance of our
FPGA implementation is better than that of other works. In
addition, although the new architecture takes more time than
our previous work to perform Hough transform, the number
of DSP slices are less than our previous work, and the result
is filtered.

Table II
COMPARISON WITH RELATED WORKS FOR HOUGH TRANSFORM

Karabernou [16] Deng [17]
Device XC4010EPC84 XC4010XL
Logic blocks 205 CLBs 333 CLBs
DSP slices — —
Frequency 23.166MHz 40MHz
Throughput 10.368Mpixel/s 0.623Mpixel/s

Lee [18] previous work [12]
Device Virtex 4 XC6VLX240T-1
Logic blocks 314 CLBs 14493 Slices
DSP slices — 178 DSP48E1s
Frequency 132MHz 245.519MHz
Throughput 32.768Mpixel/s 245.428Mpixel/s

This work
Device XC6VLX240T-1
Logic blocks 40487 Slices
DSP slices 90 DSP48E1s
Frequency 247.525MHz
Throughput 246.219Mpixel/s

V. CONCLUSIONS

We have presented a new architecture of the Hough trans-
form for the straight lines using DSP slices and block RAMs
in the Virtex-6 Family FPGA. Partitioning the parameter
space to vote, the 180 voting operations are performed in
parallel with 91 DSP48E1s and 181 18Kbit block RAMs.
We have implemented our architecture on the Virtex-6
Family FPGA XC6VLX240T-1. The experimental results
show that this implementation runs in 247.525MHz and
given a binary image of size n× n, our circuit can perform
in n2 +

√
2n + 379 clock cycles, i.e., n2+

√
2n+379

247.525 μs.

REFERENCES

[1] Xilinx Inc., Virtex-6 FPGA DSP48E1 Slice User Guide (v1.3),
2011.

[2] J. L. Bordim, Y. Ito, and K. Nakano, “Accelerating the CKY
parsing using FPGAs,” IEICE Transactions on Information
and Systems, vol. E86-D, no. 5, pp. 803–810, May 2003.

[3] ——, “Instance-specific solutions to accelerate the CKY pars-
ing for large context-free grammars,” International Journal on
Foundations of Computer Science, pp. 403–416, 2004.

[4] Y. Ito and K. Nakano, “Low-latency connected component la-
beling using an FPGA,” International Journal on Foundations
of Computer Science, pp. 405–426, 2010.

[5] ——, “A new FM screening method to generate cluster-
dot binary images using the local exhaustive search with
FPGA acceleration,” International Journal on Foundations of
Computer Science, pp. 1373–1386, 2008.

[6] ——, “Efficient exhaustive verification of the Collatz con-
jecture using DSP blocks of Xilinx FPGAs,” International
Journal of Networking and Computing, vol. 1, no. 1, pp. 49–
62, 2011.

[7] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor
core approach for CRT-based RSA decryption,” International
Journal of Networking and Computing, vol. 2, no. 1, pp. 56–
78, 2012.

[8] K. Nakano and E. Takamichi, “An image retrieval system us-
ing FPGAs,” IEICE Transactions on Information and Systems,
vol. E86-D, no. 5, pp. 811–818, May 2003.

[9] K. Nakano and Y. Yamagishi, “Hardware n choose k counters
with applications to the partial exhaustive search,” IEICE
Trans. on Information & Systems, 2005.

[10] P. V. C. Hough, “Method and means for recognizing complex
patterns,” U.S. Patent 3,069,654, 1962.

[11] R. O. Duda and P. E. Hart, “Use of the Hough transformation
to detect lines and curves in pictures,” Communications of the
ACM, vol. 15, no. 1, pp. 11–15, 1972.

[12] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, “Efficient
Hough transform on the FPGA using DSP slices and block
RAMs,” in Proc. of Workshop on Advances in Parallel and
Distributed Computational Models, 2013, pp. 771–778.

[13] S. Tagzout, K. Achour, and O. Djekoune, “Hough transform
algorithm for FPGA implementation,” Signal Processing,
vol. 81, no. 6, pp. 1295–1301, 2001.

[14] H. Bessalah, S. Seddiki, F. Alim, and M. Bencherif, “On line
mode incremental Hough transform implementation on Xilinx
fpga’s,” in Proc. of the 8th conference on Signal, Speech and
image processing, 2008, pp. 176–179.

[15] O. Djekoune and K. Achour, “Incremental Hough transform:
an improved algorithm for digital device implementation,”
Real-Time Imaging, vol. 10, no. 6, pp. 351–363, 2004.

[16] S. M. Karabernou and F. Terranti, “Real-time FPGA imple-
mentation of Hough transform using gradient and CORDIC
algorithm,” Image and Vision Computing, vol. 23, no. 11, pp.
1009–1017, 2005.

[17] D. D. S. Deng and H. ElGindy, “High-speed parameterisable
Hough transform using reconfigurable hardware,” in Proc.
of the Pan-Sydeny area workshop on Visual information
processing, vol. 11, 2001, pp. 51–57.

[18] P. Lee and A. Evagelos, “An implementation of a multiplier-
less Hough transform on an FPGA platform using hybrid-log
arithmetic,” in Proc. of Real-Time Image Processing 2008,
vol. 6811, 2008, pp. 68 110G–1.

[19] Xilinx Inc., Virtex-4 FPGA User Guide(v2.6), 2008.

[20] ——, Virtex-5 FPGA User Guide(v5.2), 2009.

[21] Altera Corp., Stratix V Device Handbook, 2012.

[22] Xilinx Inc., Virtex-6 Family Overview(v2.4), 2012.


