
Accelerating Montgomery Modulo Multiplication for Redundant Radix-64k
Number System on the FPGA using Dual-Port Block RAMs

Koji Shigemoto, Kensuke Kawakami, Koji Nakano
Department of Information Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, JAPAN

Abstract

The main contribution of this paper is to present hard-
ware algorithms for redundant radix-2r number system in
the FPGA to accelerate Montgomery modulo multiplication
with many bits, which have applications in security systems
such as RSA encryption and decryption. Quite surprisingly,
our hardware algorithm for Montgomery modulo multipli-
cation of two dr-bit numbers can be completed in only d+1
clock cycles. Since most FPGAs have 18-bit multipliers and
18k-bit block RAMs, it makes sense to let r = 16. Our hard-
ware algorithm for Montgomery modulo multiplication for
256-bit numbers runs only 17 clock cycles using redundant
radix-64k (i.e. radix-216) number system. The experimental
results for Xilinx Virtex-II Pro Family FPGA XC2VP100-6
show that the clock frequency of our circuit is independent
of d. Further, the hardware algorithm for 1024-bit Mont-
gomery modulo multiplication using the redundant number
system is 3 times faster than that using the conventional
number system. Also, for 256-bit Montgomery modulo mul-
tiplication, our hardware algorithm runs in 0.322µs, while
a previously known implementation runs in 1.22µs although
our implementation uses less than a half slices.

1 Introduction

An FPGA (Field Programmable Gate Array) is a pro-
grammable VLSI in which a hardware designed by users
can be embedded instantly. Typical FPGAs consist of an ar-
ray of programmable logic blocks (slices), memory blocks,
and programmable interconnect between them. The logic
block contains four-input logic functions implemented by
a look up table and/or several registers. Using four-input
logic functions, registers, and their interconnects, any com-
binational circuits and sequential logic can be implemented.
The memory block is a dual-port RAM which can per-
form read and/or written operations for a word of data to
two distinct or same addresses in the same time. Usually,

the dual-port RAM supports synchronous read and syn-
chronous write. The read and/or write operations are per-
formed at the rising edge of clock if read and/or write en-
able inputs are high. The dual-port RAM outputs data in
a specified address after the rising edge. Similarly, data is
written to a specified address at the rising edge of clock if
write enable is high. Thus, a clock cycle necessary to per-
form read/data operations. Using design tools provided by
FPGA vendors or third party companies, a hardware logic
designed by users using hardware description languages can
be embedded in FPGAs. It has been shown that a lot of com-
putation can be accelerated using a circuit implemented in
FPGAs [3, 4, 7, 11, 12].

It is well known that the addition of two n-bit numbers
can be done using a ripple carry adder with the cascade of
n full adders [5]. The ripple carry adder has a carry chain
through all the n full adders. Thus, the delay time to com-
plete the addition is proportional to n. The carry look-ahead
adder [5, 13] which computes the carry bits using the prefix
computation can reduce the depth of the circuit. Although
the delay time is O(log n), its constant factor is large and
the circuit is much more complicated than the ripple carry
adder. Hence, it is not often to use the carry look-ahead
adder for actual implementations. On the other hand, re-
dundant number systems can be used to accelerate addi-
tion. Using redundant number systems, we can remove long
carry chains in the addition. The readers should refer to [13]
(Chapter 3) for comprehensive survey of redundant number
systems.

The main contribution of this paper is to present hard-
ware algorithms for redundant radix-2r number system
in the FPGA to speed Montgomery modulo multiplica-
tion [10], which have applications in security systems such
as RSA encryption and decryption system [14]. Mont-
gomery modulo multiplication is used to speed the mod-
ulo multiplication X · Y · 2−R mod M for R-bit numbers
X , Y , and M . The idea of Montgomery modulo multi-
plication is not to use direct modulo computation, which is
very costly in terms of the computing time and hardware re-
sources. By iterative computation of Montgomery modulo

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.30

44

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.30

44

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.30

44

multiplication, the modulo exponentiation PE mod M can
be computed, which is a key operation for RSA encryption
and decryption [2].

This paper shows implementations of redundant radix-2r

number system in the FPGA for arithmetic operations and
then presents hardware algorithms for Montgomery modulo
multiplication. The key feature of our implementation for
Montgomery modulo multiplication is to use

• redundant radix-2r number system for interim results,

• dual-port block RAMs to compute k ·M such that (X ·
Y + k ·M) mod 2r = 0, and

• 18-bit multipliers in an effective manner.

Since each digit of redundant radix-2r number system has
r+2 bits and most FPGAs has 18-bit multiplies as building
blocks, it makes sense to let r = 16.

Quite surprisingly, our hardware algorithms for Mont-
gomery modulo multiplication runs in d + 1 clock cycles
for d-digit redundant radix-2r number system which takes
integers up to 2dr−1. For example, our hardware algorithm
for 1024-bit Montgomery modulo multiplication runs for
1024/16 + 1 = 65 clock cycles. From the experimental re-
sults for the Xilinx Virtex II Pro Family FPGA XC2VP100-
6. our implementation for 1024-bit Montgomery modulo
multiplication runs in 1.23µs. Further, the speed up factors
of our hardware algorithm using the redundant number sys-
tem over those using the conventional number system are 3
for 1024-bit Montgomery modulo multiplication.

Several hardware implementations have been presented
for Montgomery modulo multiplication [2, 6, 8, 9]. For ex-
ample, it was shown in [8] that 256-bit Montgomery mod-
ulo multiplication can be done in 93 clock cycles of 76.17
MHz (=1.22µs) using 64 18-bit multipliers and 4663 slices
on the Xilinx Virtex II Pro Family FPGA XC2VP125-7. In
our implementation, it can be done in 17 clock cycles of
52.86MHz (=0.322µs) using 2054 slices and 16 18-bit mul-
tipliers and 8 18k-bit block RAMs. Table 1 summarizes
the comparison of the performance for 256-bit Montgomery
modulo multiplication. Our implementation is more than
five times faster although it uses lesser hardware resources
on a lesser grade FPGA. Also, the implementation pre-
sented in [1] uses 16 times more slices than ours.

2 Non-Redundant and Redundant Radix-2r

Numbers

In this paper, we use the following notation to repre-
sent the consecutive bits in a number. For a number X , let
X [i, j] (i ≥ j) be consecutive bits from i-th to j-th bits,
where the least significant bits is 0-th bit. For example,
X [6, 2] = 11100 for X = 11110000.

Before defining redundant radix-2r number, we start
with a non-redundant radix-2r number. A d-digit non-
redundant radix-2r number is a sequence X of d r-bit num-
bers (Xd−1, Xd−2, . . ., X0). The value of X is

∑d−1
i=0 Xi ·

2ir and, it takes an integer up to
∑d−1

i=0 (2r − 1) · 2ir =
2dr − 1. Hence, it is also a conventional dr-bit binary
number. Also, for any integer X , its d-digit non-redundant
radix-2r number (Xd−1, Xd−2, . . . , X0) is unique.

A d-digit redundant radix-2r number is a sequence X of
d (r +2)-bit numbers (Xd−1, Xd−2, . . ., X0). The value of
X is

∑d−1
i=0 Xi · 2ir. We call, for each Xi with r + 2 bits,

Xi[r − 1, 0] and Xi[r + 1, r], principal bits and redundant
bits, respectively. For example, X = (000101, 010011,
111111, 101111) is a 4-digit redundant radix-24 number,
where underlined binary numbers are redundant bits. The
value of X can computed as follows:

00 01 11 10
+ 0101 0011 1111 1111

00 0110 0111 0001 1111

Clearly, for any integer X , its d-digit redundant number
may not be unique. For example, the value of Y =
(000110, 000111, 000001, 001111) is equal to that of X al-
though they have different numbers in each corresponding
digit. Since the all the redundant bits of this redundant
radix-24 number are zero, it can be converted to the non-
redundant radix-24 number by just removing the redundant
bits. Also, the non-redundant numbers can be converted to
the equivalent redundant numbers by attaching redundant
bits 00 to each digit.

From the definition, the value of a d-digit redundant
radix-2r number X is up to

∑d−1
i=0 (2r+2 − 1) · 2ir =

(2dr−1)(2r+2−1)
2r−1 > 2dr. However, we assume that the valid

value of X is up to 2dr−1. If the value of X is greater than
2dr − 1, it is regarded as overflow. For example, 4-digit
redundant radix-24 numbers (010000, 000000, 000000,
000000) and (001101, 110000, 000000, 000000) are over-
flows, because their values are greater than 216 − 1. We as-
sume that, if the resulting value of an operation is a d-digit
redundant radix-2r number and it is greater than 2dr − 1, it
is not necessary for a circuit or a program performing the
operation to guarantee the correct result due to the overflow
error. Clearly, the redundant bits Xd−1[r+1, r] of the most
significant digit Xd−1 of a d-digit redundant radix-2r num-
ber X are not zero, then the value of X is overflow. Note
that X can be overflow even if Xd−1[r + 1, r] is zero.

In this paper, we present hardware algorithms for vari-
ous operations for redundant radix-2r numbers. We assume
that input numbers and the resulting numbers are not over-
flows, and the redundant bits of the most significant digit
are always zero.

454545

Table 1. The performance evaluations of our implementation and known implementation for 256-bit
Montgomery modulo multiplication

speed hardware resources
freq(MHz) cycles time(µs) slices multipliers block RAMs

Our implementation 52.86 17 0.322 2054 16 8
McIvor et al. [8] 76.17 93 1.22 4663 64 -
Khaleel et al. [1] 2.50 - 0.40 34345 - -

3 Arithmetic Operations of Redundant/Non-
redundant Numbers

3.1 Addition of Non-redundant Numbers

Let us observe the addition over non-redundant numbers.
Let X = (0101, 1010, 0101, 1001) and Y = (0100, 0101,
1010, 1001) be 4-digit non-redundant radix-24 numbers.
The sum X + Y can be computed as follows:

0101 1010 0101 1001
+ 0100 0101 1010 1001

1010 0000 0000 0010

Clearly, the carry from the least significant digit is propa-
gated to the most significant digit. We call such carry block
carry. In other words, for two d-digit non-redundant radix-
2r numbers X and Y , if X0 +Y0 ≥ 2r, then the block carry
c0 = 1. Also, if Xi + Yi + ci−1 ≥ 2r (1 ≤ i ≤ d− 1), then
the block carry ci = 1. Hence, the addition has a carry chain
from the least significant and the most significant digit, and
it increases the delay if the addition is implemented by a
combinational circuit.

3.2 Block-Carry-Free Addition for Re-
dundant Numbers

Let us see the computation of the sum of two redun-
dant numbers. For two 4-digit redundant radix-24 num-
bers X = (000101, 110011, 111111, 101111) and Y =
(000011, 101111, 011111, 010001), their sum Z = X + Y
can be computed by the position sum as follows:

11 11 10
0101 0011 1111 1111

10 01 01
+ 0011 1111 1111 0001

001101 010110 100001 010000

Clearly, the addition has no block carry. Let us see the ad-
dition of two d-digit redundant radix-2r numbers X and Y .

The sum Z = X + Y can be computed as follows:

Z0 = X0[r − 1, 0] + Y0[r − 1, 0]
Zi = Xi−1[r + 1, r] + Xi[r − 1, 0] + Yi−1[r + 1, r]

+Yi[r − 1, 0] (1 ≤ i < d)

Hence, Z0 < 2r + 2r = 2r+1 and Zi < 4 + 2r + 4 + 2r <
2r+2 holds if r ≥ 2. Thus, Z is a correct redundant radix-2r

number.
Let us design a combinational circuit to compute the sum

Z = X + Y . Let ADD(2, 2, r, r) denote an adder circuit
that computes the sum of two 2-bit and two r-bit integers.
Also, let ADD(A, B, C, D) denote the resulting value of
the sum of 2-bit numbers A and B, and r-bit numbers C
and D. Clearly, Z0 = ADD(0, 0, X0[r−1, 0], Y0[r−1, 0])
and Zi = ADD(Xi−1[r + 1, r], Yi−1[r + 1, r], Xi[r −
1, 0], Yi[r − 1, 0]). Thus we have,

Lemma 1 The addition of two d-digit redundant radix-2r

numbers can be computed using d adders ADD(2, 2, r, r)
without block carries, whenever r ≥ 2.

Since the computation is performed independently in each
ADD(2, 2, r, r), the circuit for Lemma 1 has no block carry
chain. Thus, the delay time of the circuit is small and inde-
pendent of d.

3.3 Block-Carry-Free Multiplication of
Redundant Numbers

We show that the multiplication of 3-digit and 1-digit re-
dundant radix-24 numbers can be computed without block
carry. Let X = (010011, 100011, 101111) and Y =
(100101). The product X · Y can be computed using 6-
bit×6-bit=12-bit multiplications as follows.

010011 101001 010001
× 100101

0010 0111 0101
0101 1110 1101

+ 0010 1011 1111
000010 010000 011111 010100 000101

464646

Clearly, we do not have the block carries. Let us formally
confirm that the multiplication of d-digit and 1-digit redun-
dant radix-2r numbers can be computed without block car-
ries. Let X and Y be d-digit and 1-digit redundant radix-2r

numbers. Also, let Pi = Xi · Y (0 ≤ i ≤ d − 1) be the
partial multiplication. Since both Xi and Y has r + 2 bits,
Pi has 2r + 4 bits. We can compute the product S = X · Y
as follows.

S0 = P0[r − 1, 0]
S1 = P0[2r − 1, r] + P1[r − 1, 0]
Si = Pi−2[2r + 3, 2r] + Pi−1[2r − 1, r]

+Pi[r − 1, 0] (2 ≤ i ≤ d− 1)

Sd = Pd−2[2r + 3, 2r] + Pd−1[2r − 1, r]
Sd+1 = Pd−1[2r + 3, 2r]

Hence, S0 < 2r, S1 < 2r + 2r = 2r+1, Sd < 2r, and
Sd+1 < 24 hold. Also, if r ≥ 3 then Si < 24 + 2r + 2r ≤
2r+2 holds. Thus, S = (Sd+1, Sd, . . . , S0) is a redundant
radix-2r number.

Let MUL(r + 2, r + 2) and ADD(4, r, r) denote com-
binational circuits to compute the (2r + 4)-bit product of
two (r + 2)-bit numbers and the (r + 2)-bit sum of one
4-bit and two r-bit numbers. Each of the partial products
Pd−1 = Xd−1 ·Y , Pd−2 = Xd−2 ·Y , . . ., P0 = X0 ·Y can
be computed using MUL(r + 2, r + 2). After that, each Si

can be computed using ADD(4, r, r). Thus, we have

Lemma 2 The product of d-digit and 1-digit redundant
radix-2r numbers can be computed using d MUL(r+2, r+
2)s, and d ADD(4, r, r)s, whenever r ≥ 3.

Next, to show a circuit to compute two d-digit redundant
numbers, we will show how to add a (d + 1)-digit radix-2r

number C to the product X · Y . More specifically, we will
show how to compute S = X · Y + C. Later, C is used to
store interim results of the product sum. We can compute
each digit of the sum T can be computed as follows.

T0 = P0[r − 1, 0] + C0[r − 1, 0]
T1 = P0[2r − 1, r] + P1[r − 1, 0]

+C0[r + 1, r] + C1[r − 1, 0]
Ti = Pi−2[2r + 3, 2r] + Pi−1[2r − 1, r]

+Pi[r − 1, 0] + Ci−1[r + 1, r]
+Ci[r − 1, 0] (2 ≤ i ≤ d− 1)

Td = Pd−2[2r + 3, 2r] + Pd−1[2r − 1, r]
+Cd−1[r + 1, r] + Cd[r − 1, 0]

Td+1 = Pd−1[2r + 3, 2r] + Cd[r + 1, r]

Clearly, each Ti can be computed using ADD(2, 4, r, r, r),
and the resulting value has no more than r + 2 bits if r ≥ 5.
Thus, T is a (d + 2)-digit redundant radix-2r number and
we have,

Lemma 3 For a d-digit redundant radix-2r number X , a
1-digit redundant radix-2r number Y , and a (d + 1)-digit
redundant radix-2r number C, the product sum X · Y + C
can be computed using d MUL(r + 2, r + 2)s, d + 2
ADD(2, 4, r, r, r)s, and a (d+1)(r+2)-bit registers, when-
ever r ≥ 5.

Let T = PS(X, Y, C) denote the circuit (or function)
for Lemma 3. Using PS(X, Y, C) we can compute the
sum C of two d-digit redundant radix radix-2r numbers
X and Y . Let X = (Xd−1, Xd−2, . . . , X0) and Y =
(Yd−1, Yd−2, . . . , Y0) be two d-digit redundant radix radix-
2r numbers. We will show how to compute the product
P = (P2d−1, P2d−2, . . ., P0) = X · Y using PS(X, Yi, C).
We compute partial products X · Y0, X · Y1, . . ., X · Yd−1

in turn. We use C = (Cd, Cd−1, . . . , C0) to denote regis-
ters storing a interim (d + 1)-digit redundant radix radix-2r

number. We first compute PS(X, Y0, 0). Then, P0 is the
least significant digit PS(X, Y0, 0)[r + 1, 0]. We store the
remaining d+1 digits PS(X, Y0, 0)[(d+1)(r+2)−1, r+2]
in C. After that, we compute PS(X, Y1, C). Clearly, P1 is
the least significant digit PS(X, Y1, C)[r + 1, 0] holds, and
then we store the remaining d+1 digits PS(X, Y1, C)[(d+
1)(r + 2) − 1, r + 2] in C. Continuing similarly, we can
obtain the product M = X · Y . The details are spelled out
as follows:

C ← 0;
for i = 0 to d− 1 do

begin
Compute PS(X, Yi, C);
Pi ← PS(X, Yi, C)[r + 1, 0];
C ← PS(X, Yi, C)[(d + 2)(r + 2)− 1, r + 2];

end
(P2d−1, P2d−2, . . ., Pd)← (Cd−1, Cd−2, . . ., C0);

We have the following theorem:

Theorem 4 For two d-digit redundant radix-2r numbers
X and Y , the product X · Y in the redundant radix-2r

representation can be computed in d clock cycles using
d MUL(r + 2, r + 2)s, d + 2 ADD(2, 4, r, r, r)s, and a
(d + 1)(r + 2)-bit register, whenever r ≥ 5.

4 Montgomery Modulo Multiplication

In the RSA encryption/decryption, the modulo expo-
nentiation C = PE mod M or P = CD mod M are
computed, where P and C are plain and cypher text, and
(E, M) and (D, M) are encryption and decryption keys.
Usually, the number of bits in P , E, D, and M is 256
or larger. Also, the modulo exponentiation is repeatedly
computed for fixed E, D, and M , and various P and
C. Since modulo operation is very costly in terms of

474747

the computing time and hardware resources, we use Mont-
gomery modulo multiplication [10], which does not use di-
rect modulo operations. In Montgomery modulo multipli-
cation, three R-bit numbers X , Y , and M are given, and
(X · Y + k · M) · 2−R mod M is computed, where an
integer k is selected such that the least significant R bits
of X · Y + k · M are zero. The value of k can be com-
puted as follows. Let (−M−1) denote the minimum non-
negative number such that (−M−1) ·M ≡ −1(or 2R − 1)
(mod 2R). If M is odd, then (−M−1) < 2R always holds.
We can select k such that k = ((X ·Y) ·(−M−1))[r−1, 0].
For such k, (X · Y + k · M)[r − 1, 0] are zero. For the
reader’s benefit, we will confirm this fact using an example
as follows. Let X = 10010011(147), Y = 01011100(92),
M = 11111011(251), and R = 8. We have the product
X · Y = 011010011010100(13524). Next, we need se-
lect an integer k such that the least significant R bits of
X ·Y +k·M are zero. We have (−M−1) = 11001101(205),
because (−M−1) · M ≡ 1100100011111111(51455) ≡
−1 (mod 2R). We select k = (X · Y)[R − 1, 0] ·
(−M−1) = 11000100(196). Then, we have the prod-
uct k · M = 1100000000101100(49196) and the prod-
uct sum X · Y + k · M = 1111010100000000(62720).
Thus, we have (X · Y + k ·M)[r − 1, 0] = 00000000 and
(X · Y + k ·M) · 2−R = (X · Y + k ·M)[2R − 1, R] =
11110101(245).

Since 0 ≤ X, Y < M < 2R and 0 ≤ k < 2R, we can
guarantee that (X · Y + k · M) · 2−R < 2M . Thus, by
subtracting M from (X · Y + k ·M) · 2−R, we can obtain
(X · Y + k ·M) · 2−R mod M if it is not less than M .

Since X ·Y +k ·M ≡ X ·Y (mod M), we write (X ·
Y +k ·M)·2−R mod M = X ·Y ·2−R mod M . Let us see
how Montgomery modulo multiplication is used to compute
C = PE mod M using an example. Suppose we need to
compute C = PE mod M . For simplicity, we assume that
E is a power of two. Since R and M are fixed, we can
assume that 22R mod M is computed beforehand. We first
compute P · (22R mod M) · 2R mod M = P · 2R mod
M using the Montgomery modulo multiplication. We then
compute the square (P · 2R mod M) · (P · 2R mod M) ·
2−R mod M = P 2 · 2R mod M . It should be clear that,
by repeating the square computation using the Montgomery
modulo multiplication, we have PE · 2R mod M . After
that, we multiply 1, that is (PE ·2R mod M) ·1 ·2−R mod
M = PE mod M is computed. In this way, cypher text C
is obtained.

4.1 Block-Carry-Free Implementation of
Montgomery Modulo Multiplication

Recall that in the Montgomery modulo multiplication, R
bit numbers X , Y , and M are given. In this subsection,
we assume X and Y are a d-digit redundant radix-2r num-

ber and a 1-digit redundant radix-2r number, respectively.
We will show a circuit to compute the Montgomery mod-
ulo multiplication (X · Y + k ·M) · 2−r for such X , Y ,
and M . We assume that the value of X and Y are given to
the circuit as inputs, M is fixed and (−M−1) is computed
beforehand. This assumption makes sense if Montgomery
modulo multiplication is used to compute the modulo expo-
nentiation for RSA encryption and decryption.

Recall that, using the circuit for Lemma 2, X · Y can be
computed using d MUL(r+2, r+2)s and d ADD(4, r, r)s.
After computing X ·Y , we need to compute k such that the
least significant r bits of (X · Y + k · M) are zero. We
can compute k = ((X · Y)[r − 1, 0] · (−M−1))[r − 1, 0]
using a MUL(r, r). Once k is obtained, the product k ·M is
computed using the circuit for Lemma 2. Finally, the sum
(X · Y + k ·M) is computed by the circuit for Lemma 1.
Note that both X · Y and k ·M are (d + 1)-digit redundant
radix-2r numbers. However, since the least significant digit
of X ·Y and k ·M are zero, we can omit the addition of the
least significant digit. The readers should refer to Figure 1
for illustrating the circuit for Lemma 5.

X Y

Multiplier

M

Adder

(X · Y)[r − 1, 0]

X · Y + k ·M

Multiplier

(−M−1)

Multiplier
k ·M k

Figure 1. Circuit to compute (X · Y + k · M)
using multipliers

To compute the multiplication X · Y , we can use a cir-
cuit for Lemma 2 which uses d MUL(r + 2, r + 2)s and d
ADD(4, r, r). To compute k, we use a MUL(r, r). After
that to compute the multiplication k ·M , we also use a cir-
cuit for Lemma 2 and the addition X · Y + k ·M can be
computed using d ADD(2, 2, r, r) by Lemma 1.

Therefore, we have,

Lemma 5 Montgomery modulo multiplication (X ·Y + k ·
M) · 2−r for d-digit X and 1-digit Y of redundant radix-
2r representation can be computed using 2d + 1 MUL(r +
2, r+2)s, 2d ADD(4, r, r)s, and d ADD(2, 2, r, r), without
block carries, whenever r ≥ 4.

4.2 Montgomery Modulo Multiplication
Using a Memory

The circuit for Lemma 5 has a cascade of three multi-
pliers, which can be a long critical path. Also, it needs too
many multipliers. We remove multipliers for computing k

484848

Adder

(X · Y)[r − 1, 0]

X · Y + f(X · Y)

f(X · Y)

X Y

Multiplier

f

Figure 2. Circuit to compute X · Y ·+f(X · Y)
using a memory

to improve the circuit for Lemma 5. The key idea is to use
a memory to look up the value of k ·M .

Let f be a function such that f(Z) = (Z[r − 1, 0] ·
(−M−1))[r − 1, 0] ·M . The function f can be computed
using a 2r word (d + 1)r-bit memory as follows. The value
of f(i) (0 ≤ i ≤ 2r − 1) is stored in address i of the mem-
ory in advance. Then, by reading address Z[r − 1, 0] of the
memory, we can obtain the value of f(Z) in one clock cy-
cle. Using this memory, f(X · Y) can be computed in one
clock cycle. After that, the addition X · Y + f(X · Y) can
be computed using d + 1 ADD(2, 2, r, r)s from Lemma 1.
Figure 2 illustrates the circuit to compute X ·Y +f(X · Y).

Note that the least significant digit of X · Y + f(X · Y)
is always zero. Hence, we can omit the computation of the
least significant digit of f and the following addition. Thus,
we use a 2r word dr-bit memory for computing f(X · Y)
and d ADD(2, 2, r, r)s to compute the sum X ·Y +f(X ·Y).
Therefore, we have,

Lemma 6 Montgomery modulo multiplication (X ·Y + k ·
M) · 2−r for d-digit X and M , and 1-digit Y of redundant
radix-2r representation can be computed using d MUL(r+
2, r +2)s, d+2 ADD(2, 4, r, r, r)s, d ADD(2, 2, r, r), and
a 2r-word dr-bit memory, without block carries, whenever
r ≥ 5.

If r = 16 and dr = 1024, then the circuit for Lemma 6
needs 64k-word 1024-bit memory of size 64M bits. Since
the size of block memory of current FPGAs is up to few
mega bits, this circuit cannot be implemented in FPGAs.

4.3 Montgomery Modulo Multiplication
Using a Fewer Memory

We will reduce the size of memory to compute the func-
tion f . Recall that, k is a r-bit number such that the least
significant r bits of X ·Y +k ·M are zero. Let r-bit k num-
ber partition into two r/2 bits such that k = k[r − 1, r/2]
and k = k[r/2 − 1, 0]. We can compute the values of k
and k separately as follows. Let (−M−1) be the mini-
mum non-negative integer such that (−M−1) · M ≡ −1

(mod 2r/2). Also, let XY = (X · Y)[r − 1, r/2] and
XY = (X · Y)[r/2 − 1, 0]. We set k = XY · (−M−1).
Then, the least significant r/2 bits of X ·Y +k ·M are zero.
Let g be a function such that g(Z) = ((Z[r/2−1, 0]·M)[r−
1, r/2] · (−M−1) + c and c = 0 if (Z ·M)[r/2− 1, 0] = 0
and c = 1 otherwise. Function g can be computed using
a combinational circuit with r/2 input bits and r/2 out put
bits. We set k = (XY + g(XY))[r/2 − 1, 0]. Then, the
least significant digit of X ·Y +k ·M +k ·M ·2r/2 is zero.

We will implement this idea in the same way as
Lemma 6. Instead of computing k and k, we compute k ·M
and k ·M using a memory. Let h be a function such that
h(Z) = (Z[r/2 − 1, 0] · (−M−1))[r/2 − 1, 0] ·M . Sim-
ilarly to f , function g can be computed using 2r/2-word
(d(r +2)+ r/2)-bit memory. Then, k ·M = h(X · Y) and
k·M = h(XY +g(XY)) holds. Thus, k·M = k+k·2r/2 =
h(X · Y) + h(XY + g(XY)) · 2r/2. The readers should
refer to Figure 3 for illustrating the circuit to compute
X ·Y +k ·M = X ·Y +h(XY)+h(XY +g(XY)) ·2r/2.
Since a FPGAs has dual port memories, two modules to
compute h in Figure 3 can be computed by a single 2r/2-
word (dr + r/2)-bit dual port memory in the same time.
The readers may think that a combinational circuit to com-
pute g is not necessary. However, block RAMs in most
FPGAs to implement a memory support only synchronous
read. Thus, one clock cycle is necessary to read a memory.
It follows that, if we use a memory to implement the com-
putation of g, two clock cycles are necessary to compute
h(XY + g(XY)).

The circuit to compute g is small. If r = 16, then a
combinational circuits with 8 input bits and 8 output bits to
compute g are used, and it is feasible. For example, a two-
digit 7-segment decoder has 8 input bits and 14 output bits.
So, necessary hardware resource to compute g is compara-
ble to that for the two-digit 7-segment decoder. Also, we
can omit the computation of the least significant r/2-bit of
h. Thus, a single 2r/2-word dr-bit dual-port memory can
compute two functions h’s in the same time.

Let us evaluate the hard aware resources necessary to
compute X ·Y +h(X · Y)+h(X · Y +g(X · Y))·2r/2. The
multiplication X · Y can be computed using d MUL(r +
2, r + 2)s and d ADD(4, r, r)s from Lemma 2. Function
g(X · Y) can be computed using a combinational circuits
with 8 input bits and 8 output bits and addition X · Y +
g(X · Y) can be computed ADD(r/2, r/2). After that the
value of function h for two arguments can be computed us-
ing a 2r/2-word dr-bit dual-port memory. Finally, the sum
(X · Y) + h(X · Y) + h(X · Y + g(X · Y)) · 2r/2 can be
computed using d ADD(2, 2, 2, r, r, r) by straightforward
generalization of Lemma 1. Consequently, we have,

Lemma 7 Montgomery modulo multiplication (X ·Y + k ·
M) · 2−r for d-digit X and M , and Y and 1-digit Y of re-
dundant radix-2r representation can be computed using d

494949

X Y

Multiplier

gAdder

hAdder

h

X · YX · Y

Figure 3. Circuit to compute X ·Y +h(X · Y)+
h(X · Y + g(X · Y)) · 2r/2

MUL(r+2, r+2)s, d ADD(4, r, r)s, one ADD(r/2, r/2),
d ADD(2, 2, 2, r, r, r), a 2r/2-word dr-bit dual-port mem-
ory, and a combinational circuit with r/2-bit input and r/2-
bit output, without block carries, whenever r ≥ 4.

4.4 Montgomery Modulo Multiplication
for Two d-digit Numbers

Recall that the multiplication of d-digit and 1-digit num-
bers are shown in Lemma 2. we have extended Lemma 2 to
Theorem 4 which shows the computation of multiplication
of two d-digit numbers. The same technique can be used to
extend Lemma 7 to compute the Montgomery modulo mul-
tiplication of d-digit redundant radix-2r numbers. In other
words, we compute partial products X · Y0, X · Y1, . . .,
X · Yd−1 in turn, and compute their sum, which is equal to
X · Y .

Suppose that, as shown in Theorem 4, we use (d+1)(r+
2) bit register C to store (d+1)-bit redundant radix-2r num-
bers as an interim result. To compute X · Yi + C we use a
circuit for Lemma 3. After that, the value of k ·M such that
the least significant digit of X · Yi + C + k ·M is zero is
obtained using the circuit for Lemma 7. Note that it uses
a memory to compute function h. Thus, one clock cycle is
necessary to compute k ·M . Additional one clock is neces-
sary to store the resulting value of X ·Yi +C + k ·M in C.
This implementation requires two clock cycles to compute
(X · Yi + C + k ·M) · 2−r and store it in C.

We can reduce these two clock cycles into one as fol-
lows. As illustrated in Figure 4, the output X · Yi + C is
stored in register instead of storing C. Then, the following
adder computes X · Yi + C + k ·M . In this way, the value
of X · Yi + C + k ·M can be done in one clock cycle. The
readers should refer to Figure 4 for illustrating the circuit.

Let us evaluate necessary hardware resources. To com-
pute X · Yi + C we use a circuit for Lemma 3, which

X Yi

X · Yi + C

gAdder

hAdder

h

X · Yi + CX · Yi + C

X · Yi + C + k ·M

register

clock

Figure 4. Circuit to compute X · Yi + C + k ·M

uses d MUL(r + 2, r + 2)s, d + 2 ADD(2, 4, r, r, r)s.
As before, function g can be computed using a combina-
tional circuit with 8 input bits and 8 output bits and func-
tion h can be computed using a dr-bit 2r/2-word dual-
port memory. Also, we need one ADD(r/2, r/2) to com-
pute X · Y + g(X · Y), and (d + 1)(r + 2)-bit register
to store the value of X · Yi + C. After that, the sum
(X · Y) + h(X · Y) + h(X · Y + g(X · Y)) · 2r/2 can be
computed using d ADD(2, 2, 2, r, r, r)s. Thus, we have

Theorem 8 Montgomery modulo multiplication (X · Y +
k · M) · 2−dr for three d-digit redundant radix-2r num-
bers X , Y and M can be computed in d clock cycles us-
ing d MUL(r + 2, r + 2)s, d + 2 ADD(2, 4, r, r, r)s, d
ADD(2, 2, 2, r, r, r), a 2r/2-word dr-bit dual port memory,
and a combinational circuit with r/2-bit input and r/2-bit
output, and a (d + 1)(r + 2)-bit register, without block car-
ries, whenever r ≥ 5.

5 Experimental Results

We have evaluated the performance of redundant radix-
2r circuits using Virtex II Pro Family FPGA XC2VP100-
6, which has 99,216 slices, 444 18-bit multipliers, and 444
18k-bit dual-port block RAMs. We have used XST in ISE
Foundation 9.2i for logic synthesis and analysis. Since this
FPGA has 18-bit multipliers as building blocks, it makes
sense to let r = 16. Thus, we use redundant radix-64k (i.e.
radix-216) number system.

Table 2 shows the experimental results of Montgomery
modulo multiplication for d-digit redundant radix-64k num-
bers shown in Theorem 8. In addition to the circuit for The-
orem 8, the experimental results include the circuit to sub-
tract M from the resulting value (X · Y + k ·M) · 2−dr to
guarantee that it is smaller than M . Thus, the circuit runs
in d + 1 clock cycles. For example, for dr = 1024-bit in-

505050

Table 2. Montgomery modulo multiplication of two d-digit redundant/non-redundant radix-64k num-
bers

bits 64 128 256 512 1024
clock cycles 5 9 17 33 65

redundant clock(MHz) 53.10 52.74 52.86 52.48 52.95
time (µs) 0.094 0.171 0.322 0.629 1.23
slices 560 1067 2054 3990 7883
multipliers 4 8 16 32 64
block RAMs 2 4 8 15 29

non-redundant clock(MHz) 54.36 47.31 37.66 27.05 17.16
time (µs) 0.092 0.190 0.451 1.22 3.79
slices 453 740 1363 2574 4958
multipliers 4 8 15 31 61
block RAMs 2 4 8 15 29

put, it takes 65 clock cycles to complete the computation.
The table also shows the experimental results of the circuits
obtained by changing those for Theorem 8 to use the non-
redundant number system. The experimental results show
that the clock frequency of the circuits for the redundant
number system is constant for every number of bits. On the
other hand, the clock frequency for non-redundant number
system decreases as the number of bits increases. The speed
up factor of our hardware algorithm using the redundant
number system over those using the conventional number
system is 3 for 1024-bit Montgomery modulo multiplica-
tion.

6 Conclusions

We have introduced redundant radix-2r number system
for Montgomery modulo multiplication and its implemen-
tation on the FPGA. Our implementation for 256-bit Mont-
gomery modulo multiplication is four times faster using less
hardware resources in the FPGA than the previously know
implementation.

References

[1] O. Al-Khaleel, C. Papachristou, F. Wolff, and K. Pekmestzi.
FPGA-based design of a large moduli multiplier for public-
key cryptographic systems. In Proc. of International Con-
ference on Computer Design, pages 314 – 319, 2007.

[2] T. Blum and C. Paar. High-radix montgomery modular ex-
ponentiation on reconfigurable hardware. IEEE Trans. on
Computers, 50(7):759–764, 2001.

[3] J. L. Bordim, Y. Ito, and K. Nakano. Accelerating the CKY
parsing using FPGAs. IEICE Transactions on Information
and Systems, E86-D(5):803–810, May 2003.

[4] J. L. Bordim, Y. Ito, and K. Nakano. Instance-specific so-
lutions to accelerate the CKY parsing for large context-free
grammars. International Journal on Foundations of Com-
puter Science, pages 403–416, 2004.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[6] C. K. Koc, T. Acar, and B. S. Kaliski, Jr. Analyzing and
comparing Montgomery multiplication algorithms — as-
sessing five algorithms that speed up modular exponenti-
ation, the most popular method of encrypting and signing
digital data. IEEE Micro, 16(3):26–33, 1996.

[7] R. Lin, K. Nakano, S. Olariu, M. C. Pinotti, J. L. Schwing,
and A. Y. Zomaya. Scalable hardware-algorithms for binary
prefix sums. IEEE Trans. on Parallel and Distributed Sys-
tems, 11(8):838–850, August 2000.

[8] C. McIvor, M. McLoone, and J. McCanny. FPGA Mont-
gomery multiplier architectures - a comparison. In Proc. of
Field-Programmable Custom Computing Machines, pages
279 – 282, 2004.

[9] P. V. A. Mohan. Fast algorithm for implementation of mont-
gomery’s modular multiplication technique. Circuit System
Signal Processing, 23(6):463–478, 2004.

[10] P. L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, 1985.

[11] K. Nakano and E. Takamichi. An image retrieval system
using FPGAs. IEICE Transactions on Information and Sys-
tems, E86-D(5):811–818, May 2003.

[12] K. Nakano and Y. Yamagishi. Hardware n choose k counters
with applications to the partial exhaustive search. IEICE
Trans. on Information & Systems, 2005.

[13] B. Parhami. Computer Arithmetic - Algorithm and Hard-
ware Designs. Oxford University Press, 2000.

[14] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21:120 – 126, 1978.

515151

