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This paper presents an FPGA implementation of a 3-layer perceptron using the FDFM (Few
DSP blocks and Few block RAMs) approach implemented in the Xilinx Virtex-6 family FPGA.
In the FDFM approach, multiple processor cores with few DSP slices and few block RAMs are
used. We have implemented 150 processor cores for perceptrons in a Xilinx Virtex-6 family
FPGA XC6VLX240T-FF1156. The implementation results show that the 150 processor cores
for 32-32-32 input-hidden-output layer perceptrons can be implemented in the FPGA using
150 DSP48 slices, 185 block RAMs, and 9676 slices. It runs in 242.89MHz clock frequency and
a single evaluation of 150 nodes perceptron can be performed 1.65 × 107 times per second.
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1. Introduction

Artificial Neural Network (ANN) is a computational model based on biological neu-
ral networks. ANNs have been widely used in many fields, such as pattern recogni-
tion, signal processing, intelligent control and image processing, etc [1]. Multilayer
perceptron (MLP) is a type of ANNs. It is a multilayer feed forward network with
supervised learning typically using a so-called Back Propagation (BP). MLP has
been applied successfully to many complex real-world applications.

A Field Programmable Gate Array (FPGA) is a programmable logic device de-
signed to be configured by the customer or designer by hardware description lan-
guage after manufacturing. The most common FPGA architecture consists of an
array of logic blocks, I/O pads, block RAMs and routing channels. Furthermore,
recent FPGAs have embedded DSP slices that make a higher performance and a
broader application.

The Xilinx Virtex-6 series FPGAs have DSP48E1 slices equipped with a multi-
plier, adders, logic operators, etc [2]. More specifically, as illustrated in Figure 1,
the DSP48E1 slice has a two-input multiplier followed by multiplexers and a three-
input adder/subtractor/accumulator. The DSP48E1 multiplier can perform multi-
plication of a 18-bit and a 25-bit two’s complement numbers and produces one 48-
bit two’s complement production. Programmable pipelining of input operands, in-
termediate products, and accumulator outputs enhances throughput and improves
the frequency. The DSP48E1 also has pipeline registers between operators to re-
duce the delay. The block RAM in the Virtex-6 FPGA is an embedded memory
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Figure 1. Architecture of DSP48E1

supporting synchronized read and write operations. In Virtex-6 FPGA, it can be
configured as a 36k-bit dual-port block RAMs, FIFOs, or two 18k-bit dual-port
RAMs. In our architecture, it is used as a 2k×18-bit dual-port RAM.

Since FPGA chips maintain relative lower price and its programmable features,
it is widely used in those fields which need to update architecture or functions fre-
quently such as communication and education areas. They are widely used in con-
sumer and industrial products for accelerating processor intensive algorithms [2–
7]. For the implementation of neural networks, An FPGA is a crucial hardware
platform, which offers high performance and possibility to modify and change al-
gorithms dynamically.

There is some research for accelerating the computation of neural networks. Re-
cently, many applications have employed GPUs (Graphics Processing Units) as
real platforms to achieve an efficient acceleration. To accelerate the computation
of neural networks, several research using GPU support [8, 9]. The above imple-
mentations with GPUs achieved speed up factors of several ten times over the
sequential implementation with a CPU at the most. However, applications that
use neural networks, in general, need to process massive data and require higher
throughput computing. Therefore, the ability of the implementations is not enough.

On the other hand, numerous works on FPGA implementation of Neural Net-
works have been proposed [1, 10, 11]. J. Beuchat et al. presented a prototype
system of a neural network [12]. The system consists of four FPGAs and several
off-chip RAMs. Cox et al. introduced implementations of two types of neural net-
works [13]. Each implementation uses an array of about 30 FPGAs, which are high
performance FPGAs at the time, and off-chip RAMs. In [14], an implementation
of a three layer perceptron using DSP slices is proposed. The idea of the imple-
mentation is similar to our approach for utilization of DSP slices. However, since
they implemented a tiny prototype circuit with at most 13 neurons, compared to
practical circuit, the size of the MLP is too small and it is not practical. E. M. Or-
tigosa et al. [15] presents several hardware implementations of an MLP for speech
recognition using both serial and parallel hardware architecture. In paper [16], the
forms of parallelism that can be exploited for neural network implementations on
FPGA-based reconfigurable computing environments are described. However, their
implementation mainly use logic blocks in the FPGAs.
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Figure 2. Handwritten ZIP code recognition system

In this paper, we propose an FPGA implementation of a three-layer perceptron
using a parallel FDFM approach. In this approach, a perceptron is implemented
with a processor core using few DSP slices and few block RAMs in the FPGA.
The approach is promising because we can obtain high throughput using multiple
FDFM cores that work in parallel. Also, even if the FPGA does not have enough
remaining space for a perceptron, we can implement it using only few DSP slices
and few block RAMs. The detail of the FDFM approach is shown in the following
section. A single core for a three-layer perceptron with 32-32-32 nodes for input-
hidden-output layers uses 1 DSP slice and eight 18k-bit block RAMs. The eight
18k-bit block RAMs are used as follows: (1) three for storing the weights (W-
RAM), (2) four for a table to compute the sigmoid function (S-RAM), and (3) one
for storing the output value of each perceptron node (O-RAM). For the perceptron
with 32-32-32 nodes for input-hidden-output layers, our implementation by the
FDFM approach runs in 242.89MHz using one DSP48 slice and eight 18k-bit block
RAMs in a Xilinx Virtex-6 family FPGA 6VLX240T-FF1156. It computes all the
outputs in 2124 clock cycles, that is, in 8.74µ seconds. For parallel implementation,
we use 30 cores as a cluster of parallel computation. Since 30 cores can share a
block RAM for storing the weights (W-RAM) and a table to compute the sigmoid
function (S-RAM). So, we use 30 DSP48 slices and 37 18k-bit block RAMs (30
O-RAMs, 4 S-RAMs, and 3 W-RAMs) to implement 30 processor cores. For a
perceptron with 32-32-32 nodes for input-hidden-output layers, 30 FDFM cores
run in 242.89MHz. Thus, a single evaluation of the perceptron can be performed
3.30×106 times per seconds. For further parallelization, we have implemented 5
clusters, that is, 150 processor cores. The 150 processor cores run in 242.89MHz,
using 150 DSP48 slices, 185 18k-bit block RAMs (150 O-RAMs, 20 S-RAMs, and
15 W-RAMs), and 9676 slices.

Note that in this paper, we focus on accelerating the computation in feed-forward
way. In other words, we deal with the neural network after learning. It is reasonable
for the practical applications such as pattern recognition etc. One of the practical
applications is a handwritten ZIP code recognition system. Given a large number of
handwritten ZIP code images, the system recognizes the ZIP code digits (Figure 2).
To deal with many letters, although the processing time is a little longer, the
throughput of the system is more important. For such system, our FDFM approach
that can provide high throughput process is suitable.

In this paper, we focus on the Xilinx Virtex-6 family FPGA. However, the FDFM
approach can be applied to other types of FPGAs if they have embedded circuits
whose functions similar to DSPs and block RAMs of the Virtex-6 FPGAs. Recent
widely used FPGAs, such as Xilinx other families FPGAs and Altera Stratix series
FPGAs, equip them [17–19]. Therefore, we can implement circuits based on the
FDFM approach using the above FPGAs.

This paper is organized as follows. Section 2 introduces a three-layer perceptron.
Section 3 shows the FDFM approach. We show the architecture of a processor core
to evaluate the perceptron by the FDFM approach in Section 4. Section 5 presents
a cluster architecture that involves multiple processor cores. Section 6 evaluates
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Figure 3. Three-layer MLP

the performance of the processor core and the cluster. We show the experimental
results in Section 7. Finally, Section 8 concludes the paper.

2. Three-layer perceptron

The main purpose of this section is to review a three-layer MLP. As illustrated
in Figure 3, it has three layers: input layer, hidden layer, and output layer. Each
layer has a set of nodes. Let Nx, Nh, and No denote the numbers of nodes in the
input layer, the hidden layer and the output layer, respectively. There are Nx nodes
X0, X1, . . . , XNx−1 in the input layer, Nh nodes H0,H1, . . . ,HNh−1 in the hidden
layer and No nodes O0, O1, . . . , ONo−1 in the output layer as illustrated in Figure 3.

A real number xi in the range of [0, 1] is given to each node Xi in the input layer
as an input, they are transferred to all nodes in hidden layers. Some computation
is performed in every node Hj of the hidden layer, and it outputs real numbers
hj in the range of [0, 1]. These values are transferred to all nodes in the output
layers. Similar computation is performed in every node Ok of the output layer, and
it outputs real numbers ok in the range of [0, 1]. These real numbers are output
of the three-layer MLP. For each pair of nodes Xi and Hj (0 ≤ i ≤ Ni − 1,
0 ≤ j ≤ Nh − 1), a fixed real number vi,j is given as a weight. Also, for each pair
of nodes Hj and Ok (0 ≤ j ≤ Nh − 1, 0 ≤ k ≤ No − 1), a fixed real number wj,k is
given as a weight. In addition, for each hidden nodes Hj , a fixed real number cj is
given as a threshold value. Also, for each output nodes Ok, a fixed real number dk

is given as a threshold value. In a hidden node Hj , the following weighted sum h′
j

is computed by:

h′
j = cj +

Nx−1∑
i=0

vi,jxi. (1)

After that, the sigmoid function f(x) = 1/(1 + e−x) is applied to obtain the
output of each hidden node. More specifically, output hj of node Hj is computed
as follows:
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hj = f(h′
j) = f(cj +

Nx−1∑
i=0

vi,jxi).

Similar computation is performed for each output node. Let ok (0 ≤ k ≤ No −
1) denote the output of node Ok. The value of ok is computed by the following
formulas:

o′k = dk +
Nh−1∑
j=0

wj,khj ,

ok = f(o′k) = f(dk +
Nh−1∑
j=0

wj,khj). (2)

Thus, for input x0, x1, . . . , xNx−1 in [0, 1] given to nodes in the input layer, the
three-layer MLP outputs o0, o1, . . . , oNo−1 in [0, 1] from nodes in the output layer.
The resulting output values are controlled by NxNh +NhNo +Nh +No parameters
vi,j , wj,k, cj and dk (0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Nh − 1, 0 ≤ k ≤ No − 1).
These parameters are determined in the training phase using back propagation.
Intuitively, a pair of inputs and the corresponding correct outputs is given. These
parameters are adjusted such that the MLP outputs the correct outputs.

In the training phase, parameters are repeatedly adjusted for a number of pairs
of inputs and the corresponding correct outputs. In our work, the training phase is
performed on a host PC to determine appropriate parameters. These parameters
are stored in block RAMs of the FPGA connected to a host PC.

3. FDFM Approach

This section presents an approach that we call the FDFM (Few DSP slices and
Few block RAMs) approach. The key idea of the FDFM approach is to use few
DSP slices and few block RAMs to perform routine computation. Let us explain
the FDFM approach using a simple example. Figure 4 (1) illustrates a hardware
algorithm to compute the output of FIR (Finite Impulse Response) yi = a0 · xi +
a1 ·xi−1 +a2 ·xi−2 +a3 ·xi−3. A conventional approach implementing the FIR is to
use four DSP slices as illustrated in Figure 4 (2)[20]. In this conventional approach
the number of DSP blocks must be the same as that of multiplier in the hardware
algorithm. On the other hand, our FDFM approach uses one or few DSP slices
and one or few block RAMs to implement the FIR. The coefficients a0, a1, . . . are
stored in the block RAM.

Our FDFM approach has two advantages. First, even if large main circuit occu-
pies the most of hardware resources in the FPGA, we can implement a necessary
hardware algorithm in the FPGA using remaining few hardware resources as il-
lustrated in Figure 5 (1). Also, if enough hardware resources are available, we can
implement multiple FDFM processor cores that work in parallel(Figure 5 (2)). The
resulting hardware implementation has maximum throughput by parallel compu-
tation. We can use the FPGA effectively by implementing FDFM cores in all the
remaining hardware resources in the FPGA to obtain maximum performance. Ac-
tually, hardware algorithms for RSA encryption/decryption have been implemented



April 9, 2012 10:19 The International Journal of Parallel, Emergent and Distributed Systems
nn-ijpeds

6 Yuki Ago, Yasuaki Ito and Koji Nakano

× × × ×

+ + +

(1) FIR

DSP DSP DSP DSP

DSP

(2) Conventional approach

(3) FDFM approach

RAM

xi

xi

yi

xi

yi

yi

Figure 4. Our FDFM approach

in the FPGA using the FDFM approach [2, 21]. Their implementation results are
better than the conventional approach [22].
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4. The Architecture of a Single Processor Core

This section describes the FDFM approach using a single DSP48 slice and sev-
eral block RAMs in Xilinx Virtex-6 FPGA. We use Xilinx Virtex-6 family FPGA
XC6VLX240T-FF1156 as the target device [23]. It consists of columns of slices
each of which includes two Configurable Logic Blocks (CLBs), programmable In-
put/Output Blocks (IOBs), 36k-bit dual-port block RAMs, and DSP48 slices.

4.1 A single processor core architecture using a DSP48 slice and block
RAMs

The DSP48 slice is a configurable block with a multiplier, an adder, and registers.
In our work, we use two types of configurations illustrated in Figure 6. In Figure 6,
Type 1 employs a 18×18 bit two’s complement multiplier, a 48-bit adder, and
a 48-bit register. It also has two 18-bit inputs A and B, and one 48-bit output
P . Basically, it repeatedly computes A × B + P ← P . Type 2 also employs two
additional 18-bit registers. Since ports BIN and BOUT of adjacent DSP48 are
directly connected, one Type 1 DSP48 block and several Type 2 DSP48 blocks can
be connected as illustrated in Figure 6.

We have used three types of block memories for the FDFM approach.

W-RAM
Four 18-kbit block RAMs are used to store the weights vi,j and wj,k.
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S-RAM
Four 18-kbit block RAMs are used to store a table to compute the sigmoid

function (S-RAM).

O-RAM
An 18-kbit block RAM is used to store the output values, xi, hj and ok of all

nodes.

The reader should refer to Figure 7 for illustrating the basic structure of a single
processor core for a perceptron. We use Type 1 DSP48, W-RAM, S-RAM, and
O-RAM as illustrated in the figure.

4.2 Data representation

The choice of data precision is guided by the implementation cost in terms of
area, simplicity of design, speed and power consumption. On the one hand, higher
precision will lead to less quantization error in the final implementation. On the
other hand, lower precision will produce more compaction and faster designs with
less power consumption. A trade-off choice needs to be made depending on the
given application and available FPGA resources [15].

In our work, in order to minimize chip space and computation time, short fixed-
point representations of numbers are used. According to paper [1], the minimum
required fixed-point precision for weights is 16bits (1bit sign, 3 bits integer and
12 bits fraction). Hence the data format (input, weight, intermediate result and
output) is 18-bit fixed point number in our system, which consists of 1-bit sign, 3-
bit integer, and 14-bit fraction based on two’s complement. The data format is just
like SIII.FFFFFFFFFFFFFF, where S is sign bit, I is integer bit and F is fraction
bit. Thus, the discrete error is at most ε = 2−14 ≈ 6.1 × 10−5, and the maximum
is 0111.11111111111111 = 8 − ε and the minimum is 1000.00000000000000 = −8.
Consequently, real numbers in our system are in the rage [−8, 8− ε] with precision
6.1× 10−5. Also, if interim value h′

j or o′k is out of this range, it is rounded either
to the maximum or the minimum. For example, if h′

j > 8− ε then h′
j ← 8− ε, and

if h′
j < −8 then h′

j ← −8.

4.3 Sigmoid function implementation

One of the design challenges with perceptrons based on the FPGA is the activa-
tion function. Activation function is a typically nonlinear, monotonically increasing
function. The sigmoid function is used widely in the activation function for our
perceptron. We use the sigmoid function is f(x) = 1/(1 + e−x) as an activation
function. Figure 8 shows a graph of the sigmoid function. In our implementation,
the values of f(h′

j) and f(o′k) are computed. We take a look-up-table implemen-
tation using a block RAM to compute the sigmoid function. Recall that, h′

j and
o′k take 18-bit fixed point representation. In the look-up-table, the value of f(x)
is stored in the address of x. If we implement full 18-bit precision for computing
f(x) we need look-up-table of size 18×218. However, the size of a block RAM is
18×210. Thus, we use four 18kbit block RAMs and the most significant 12 bits of
interim values of h′

j and o′k as the address of look-up-table. More specifically, 12
bits of form SIII.FFFFFFFF is used in h′

j and o′k. Address x of the block RAM is
storing the value of f(x) = 1/(1 + e−x) in the 18-bit fixed point format.
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4.4 The behavior of a single processor core

Let us explain how a single processor core illustrated in Figure 7 works.

Step 1 The value x0, x1, . . . , xNx−1 of the input nodes are written into the O-RAM.

Step 2 Each h′
j (0 ≤ j ≤ Nh) is computed, in turn, using the DSP48 slice.

Necessary values xi, vi,j and cj (0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Nh) are provided from
the O-RAM and the W-RAM, respectively. As soon as h′

j is obtained, hj = f(h′
j)

is computed by the S-RAM and the resulting value hj is written in the O-RAM.

Step 3 Each o′k (0 ≤ k ≤ No) is computed, in turn, using the multiplier accumu-
lator in the DSP48 slice. Necessary values hj , wj,k and dk (0 ≤ j ≤ Nh − 1, 0 ≤
k ≤ No) are provided from the O-RAM and the W-RAM, respectively. As soon as
o′k is obtained, ok = f(o′k) is computed by the S-RAM and the resulting value ok

is written in the O-RAM.

Note that all of the computation is performed by the pipelining technique. For
example, as soon as the DSP48 finish computing h′

j , it starts to compute h′
j+1.
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5. A Cluster of Multiple Processor Cores

We have implemented many processor cores of the FDFM approach that works in
parallel. More specifically, we have designed a cluster that consists of 30 processor
cores.

Before showing the architecture of the cluster of 30 cores, we will observe the
behavior of a single processor core. The Type 1 DSP48, the W-RAM, and the
O-RAM operate in almost all clock cycles. However, the S-RAM is used only few
clock cycles. For example, the computation of h′

j takes Nx clock cycles and then,
hj = f(h′

j) is computed in one clock cycle. the S-RAM is used only the one clock
cycle and it is idle for the other clock cycles. So, the multiple processor cores
can share the S-RAM to compute the sigmoid function. Also, since each of the
multiple processor cores evaluates the same perception, we can share the W-RAM
that stores the weights of the perceptron.

From this observation, we design a cluster of 30 cores as illustrated in Figure 9.
The cluster is designed as follows:

• 30 DSP48 slices (1 Type 1 and 29 Type 2 DSP48 slices) and 30 O-RAMs are
used.

• One W-RAM and one S-RAM are shared by the processor cores.
• The weights and threshold values are provided from the W-RAM, to the port B

of Type 1 DSP48 slices.
• The product sums h′

j and o′k are sent to the registers outside of the DSP slices.
They are transferred to the S-RAM in the pipeline technique.

• The resulting values hj and ok are stored in the O-RAM.

We can further improve the throughput by using two or more clusters. Figure 10
illustrates the 5-cluster system, which has totally 150 processor cores.
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6. Performance Evaluation

Let us evaluate the performance of the architecture by our FDFM approach. Again,
let Nx, Nh, and No denote the numbers of input, hidden, and output nodes of the
three-layer perceptron. It should be clear that the evaluation of the perceptron
involves (Nx +1)Nh +(Nh +1)No calculations. This is because that a node requires
one addition for threshold value and Nx or No multiplications in every hidden or
output node. This is also the lower bound of the number of clock cycles. In our
implementation of a single processor core illustrated in Figure 7 the evaluation takes
(Nx+1)Nh+(Nh+1)No+3p+9 clock cycles. Since at least (Nx+1)Nh+(Nh+1)No

clock cycles are necessary, this architecture is nearly optimal in terms of the clock
cycles. For example, if we have implemented 32-32-32 input-hidden-output-node
perceptron in the cluster with 30 processor cores, it runs (32+1)× 32+ (32+1)×
32 + 3× 30 + 9 = 2211 clock cycles.

Since the number of entries of the 18k-bit RAM is 1024, the numbers of 18k-
bit RAMs for each of an O-RAM, a W-RAM, and an S-RAM are dNx+Nh+No

1024 e,
dNxNh+NhNo+Nh+No

1024 e, and 4. If we use a cluster with p processor cores, it uses p
DSP48 slices, p O-RAMs, 1 W-RAM, and 1 S-RAM. Therefore, the cluster needs
pdNx+Nh+No

1024 e+ dNxNh+NhNo+Nh+No

1024 e+ 4 18k-bit block RAMs. For example, if we
have implemented 32-32-32 input-hidden-output-node perceptron in the cluster
with 30 processor cores, 30×d32+32+32

1024 e+d32×32+32×32+32+32
1024 e+4 = 30×1+3+4 =

37 18k-bit RAMs are necessary.
Note that if a given application does not need higher data precision, the precision

in our implementation may be too sufficient and can be reduced. For example, the 2-
input logical-XOR problem that is a simple problem of neural networks requires 12-
bit fixed point precision (1bit sign, 3bits integer and 8bits fraction) [24]. Therefore,
some readers may think that the numbers of used DPS slices and block RAMs
can be reduced. Reducing the data precision, however, the numbers of used DPS
slices and block RAMs cannot be reduced because they are embedded circuits in
the FPGA and their construction is fixed. The numbers of them depend only on
the number of neurons.
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Table 1. Performance evaluation of our FDFM approach for evaluating two types of neural networks

(a) 32-32-32 input-hidden-output layer perceptron

1 processor core 1 cluster (30 cores) 5 clusters (150 cores)
DSP48 slices (out of 768) 1 30 150
18k-bit block RAMs (out of 832) 8 37 185
Slices (out of 301440) 83 1936 9676
Clock frequency [MHz] 242.89 242.89 242.89
Clock cycles 2124 2211 2211
Throughput [1/s] 1.14 × 105 3.30 × 106 1.65 × 107

(b) 400-300-10 input-hidden-output layer perceptron

1 processor core 1 cluster (30 cores) 5 clusters (150 cores)
DSP48 slices (out of 768) 1 30 150
18k-bit block RAMs (out of 832) 126 155 775
Slices (out of 301440) 93 1946 9726
Clock frequency [MHz] 207.21 207.21 207.21
Clock cycles 123322 123409 123409
Throughput [1/s] 1.68 × 103 5.03 × 104 2.51 × 105

7. Experimental Results

We have evaluated the performance of our FDFM approach using Xilinx Virtex-6
family FPGA 6VLX240T-FF1156. Table 1(a) summarizes the experimental results
for 32-32-32 input-hidden-output layer perceptron using ISE Foundation 13.1. The
performance is evaluated for 1 processor core, 1 cluster (30 cores), and 5 clusters
(150 cores). The numbers of used DSP48 slices and 36-kbit block RAMs, and the
clock cycles are equal to the results of the evaluation presented in Section 6. In
the table, the throughput means that the number of the evaluation of the 32-32-32
perceptron can be performed per second. For example, the 5 clusters can perform
the computation of the perceptron 1.65 × 107 times per second. According to the
table, the clock frequency does not depend on the number of cores.

We have also implemented the circuit for 400-300-10 input-hidden-output-node
perceptrons. The experimental results are shown in the Table 1(b). The size of used
RAMs is larger than that of the circuit for the 32-32-32 perceptron. However, we
can find that the number of slices is little larger and the clock frequency does not
decrease largely. Therefore, our method has scalability for the number of neurons.
Also, a 400-300-10 input-hidden-output-node perceptrons is used in the recognition
system for handwritten digits [25]. The system recognizes a handwritten digit for
a binary image of 20×20. It reports that the false recognition rate toward the
60,000 patterns by 250 writers of this system is 1.6 percent. From the table, if the
recognition system uses our 5 cluster system that has 150 cores, 251000 handwritten
digits can be recognized in one second.

8. Conclusion

This paper presented an FPGA implementation for a 3-layer perceptron using
the FDFM approach and implemented it in the Xilinx Virtex-6 family FPGA. In
the FDFM approach, multiple processor cores with few DSP slices and few block
RAMs are used. The performance evaluation shows that the performance is close
to optimal. Experimental results show that our implementation can perform in
extremely high speed and throughput.
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