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Abstract—The Unified Memory Machine (UMM) is a theo-
retical parallel computing model that captures the essence of
the global memory access of GPUs. A sequential algorithm is
oblivious if an address accessed at each time does not depend
on input data. Many important tasks including matrix compu-
tation, signal processing, sorting, dynamic programming, and
encryption/decryption can be performed by oblivious sequential
algorithms. The bulk execution of a sequential algorithm is to
execute it for many different inputs in turn or at the same
time. The main contribution of this paper is to show that
the bulk execution of an oblivious sequential algorithm can
be implemented to run on the UMM very efficiently. More
specifically, the bulk execution for p different inputs can be
implemented to run O( pt

w
+ lt) time units using p threads on the

UMM with memory width w and memory access latency l, where
t is the running time of the oblivious sequential algorithm. We
also prove that this implementation is time optimal. Further, we
have implemented two oblivious sequential algorithms to compute
the prefix-sums of an array of size n and to find the optimal
triangulation of a convex n-gon using the dynamic programming
technique. The prefix-sum algorithm is a quite simple example of
oblivious algorithms, while the optimal triangulation algorithm
is rather complicated. The experimental results on GeForce GTX
Titan show that our implementations for the bulk execution of
these two algorithms can be 150 times faster than that of a single
CPU if they have many inputs. This fact implies that our idea
for the bulk execution of oblivious sequential algorithms is a
potent method to elicit the capability of CUDA-enabled GPUs
very easily.

Keywords-Parallel algorithms, oblivious sequential algorithm,
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I. INTRODUCTION

A. Background

The research of parallel algorithms has a long history of
more than 40 years. Sequential algorithms have been devel-
oped mostly on the Random Access Machine (RAM) [1].
In contrast, since there are a variety of connection methods
and patterns between processors and memories, many parallel
computing models have been presented and many parallel
algorithmic techniques have been shown on them. The most
well-studied parallel computing model is the Parallel Random
Access Machine (PRAM) [2], [3], [4], [5], which consists
of processors and a shared memory. Each processor on the
PRAM can access any address of the shared memory in a

time unit. The PRAM is a good parallel computing model in
the sense that parallelism of each problem can be revealed
by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that
can be accessed by all processors at the same time, it is not
feasible.

A Graphics Processing Unit (GPU) is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [6], [7], [8]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application
developers [6], [9], [10], [11], [12]. NVIDIA provides a par-
allel computing architecture called CUDA (Compute Unified
Device Architecture) [13], the computing engine for NVIDIA
GPUs. CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [14], since they have hundreds of
processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [13]. The shared
memory is an extremely fast on-chip memory with lower
capacity, say, 16-48 Kbytes. The global memory is imple-
mented as an off-chip DRAM, and thus, it has large capacity,
say, 1.5-6 Gbytes, but its access latency is very long. The
efficient usage of the shared memory and the global memory
is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank
conflict of the shared memory access and the coalescing of
the global memory access [11], [14], [15]. The address space
of the shared memory is mapped into several physical memory
banks. If two or more threads access the same memory banks
at the same time, the access requests are processed in turn.
Hence, to maximize the memory access performance, threads
of CUDA should access the distinct memory banks to avoid
the bank conflicts of the memory accesses. To maximize
the bandwidth between the GPU and the DRAM chips, the
consecutive addresses of the global memory must be accessed
at the same time. Thus, CUDA threads should perform the
coalesced access when they access the global memory.

The most well-studied parallel computing model is the



Parallel Random Access Machine (PRAM) [2], [3], [4], [5],
which consists of processors and a shared memory. Each
processor on the PRAM can access any address of the shared
memory in a time unit. The PRAM is a good parallel com-
puting model in the sense that parallelism of each problem
can be revealed by the performance of parallel algorithms
on the PRAM. Although GPUs have the shared memory
and the global memory accessed by multiple threads, parallel
algorithms developed for the PRAM may not achieve good
performance on GPUs. We should consider the memory access
characteristics such as the bank conflicts and the coalescing
when we develop efficient parallel algorithms for GPUs. There
are several previously published works that aim to present
theoretical practical parallel computing models capturing the
essence of parallel computers. Many researchers have been
devoted to developing efficient parallel algorithms to find
algorithmic techniques on such parallel computing models. For
example, processors connected by interconnection networks
such as hypercubes, meshes, trees, among others [16], bulk
synchronous models [17], LogP models [18], reconfigurable
models [19], among others. Quite recently, the memory ma-
chine models [20], [21] have been presented for theoretical
parallel computing models for CUDA-enabled GPUs.

B. Memory Machine Models

In our previous paper [20], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM), which reflect the essential features of
the shared memory and the global memory of CUDA-enabled
GPUs. Since the DMM and the UMM are promising as theo-
retical computing models for GPUs, we have published several
efficient algorithms on the DMM and the UMM [22], [23],
[24], [25]. For example, in our previous paper [20], we have
presented offline permutation algorithms on the DMM and
the UMM. We have also implemented the offline permutation
algorithm on NVIDIA GeForce GTX-680 and showed that
theoretical analysis of the performance on the DMM provides
very good approximation of the CUDA C implementation of
the offline permutation algorithm [22]. These results imply that
the DMM is a good theoretical model for computation using
the shared memory on GPUs. Later, we have introduced the
Hierarchical Memory Machine (HMM) [21], which captures
the essence of the hierarchical architecture of the CUDA-
enabled GPU. The HMM has multiple DMMs, each of which
corresponds to a streaming multiple-processor on a GPU. It
also has a global memory which can be accessed by all threads
in DMMs. Since all threads share a global memory, we can
think it is a UMM. In [26], we have shown an approximate
string matching algorithm on the HMM and implemented it on
the HMM. In [27], we have presented an offline permutation
algorithm on the HMM and evaluated its performance on the
CUDA-enabled GPU. The implementation results show that
theoretical analysis of the performance on the HMM provides
very good approximation of the actual running time. However,
performance analysis of parallel algorithms on the Memory
Machine Models including the DMM, the UMM, and the

HMM is sometimes complicated and difficult.
The DMM and the UMM have three parameters: the number

p of threads, width w, and memory access latency l. Figure 1
illustrates the outline of the architectures of the DMM and the
UMM with p = 20 threads and width w = 4. Each thread
is a Random Access Machine (RAM) [1], which can execute
fundamental operations in a time unit. Threads are executed in
SIMD [28] fashion, and run on the same program and work on
the different data. The p threads are partitioned into p

w groups
of w threads each called warp. The p

w warps are dispatched
for the memory access in turn, and w threads in a dispatched
warp send the memory access requests to the memory banks
(MBs) through the memory management unit (MMU). We do
not discuss the architecture of the MMU, but we can think that
it is a multistage interconnection network in which the memory
access requests are moved to destination memory banks in a
pipeline fashion. Note that the DMM and the UMM with width
w have w memory banks and each warp has w threads. For
example, the DMM and the UMM in Figure 1 have 4 threads
in each warp and 4 MBs.
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Fig. 1. The architectures of the DMM and the UMM with width w = 4

MBs constitute a single address space of the memory. A
single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
i is stored in the (i mod w)-th bank B[i], where w is the
number of MBs. The main difference of the two architectures
is the connection of the address line between the MMU and the
MBs, which can transfer an address value. In the DMM, the
address lines connect the MBs and the MMU separately, while
a single set of address lines from the MMU is connected to
the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of the
MBs can be accessed at each time unit. On the other hand,
different addresses of the MBs can be accessed in the DMM.
Since the memory access of the UMM is more restricted than
that of the DMM, the UMM is less powerful than the DMM.



Also, we assume that MBs are accessed in a pipeline fashion
with latency l. In other words, if a thread sends a memory
access request, it takes at least l time units to complete it. A
thread can send a new memory access request only after the
completion of the previous memory access request and thus,
it can send at most one memory access request in l time units.

Let us clarify the difference of the DMM and the UMM
using the bank groups and the address groups. Figure 2
illustrates the memory banks and the address groups. Let
B[j] = {j, j + w, j + 2w, j + 3w, . . .} (0 ≤ j ≤ w − 1)
denote the j-th memory bank. Also, let A[j] = {j ·w, j ·w+
1, . . . , (j + 1) · w − 1} denote the j-th address group. In the
DMM, if multiple memory access requests are destined for
the same memory bank, they are processed sequentially. In
the UMM, if multiple memory access requests are destined
for different address groups, they are processed separately.
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Fig. 2. The memory banks and the address group of the DMM and the
UMM for w = 4 banks

The performance of algorithms of the PRAM is usually
evaluated using two parameters: the size n of the input and the
number p of processors. For example, it is well known that the
sum of n numbers can be computed in O(np + log n) time on
the PRAM [2]. We will use four parameters, the size n of the
input, the number p of threads, the width w and the latency l
of the memory access when we evaluate the performance of
algorithms on the DMM and on the UMM. The width w is
the number of the memory banks as well as the number of
threads in a warp. The latency l is the number of time units
to complete the memory access. For example, we have shown
in [25] that the prefix-sums of n numbers can be computed
in O( nw + nl

p + l log n) time units. In latest CUDA-enabled
GPUs, the width w of the shared memory is 32, and that of
the global memory is 256-384 bits. Also, the latency l of the
shared memory is very small, while that of the global memory
is several hundred clock cycles. In CUDA, a grid can have at
most 65535 blocks with at most 1024 threads each [13]. Thus,
the number p of threads can be 65 million.

C. Our contribution

Intuitively, a sequential algorithm is oblivious if an address
accessed at each time unit is independent of the input. For ex-
ample, the prefix-sums of an array b of size n can be computed
by executing b[i] ← b[i] + b[i − 1] for all i (1 ≤ i ≤ n − 1)

in turn. This prefix-sum algorithm is oblivious because the
address accessed at each time unit is independent of the
values stored in b. The readers may think that the oblivious
memory access is too restricted, and most useful algorithms
are not oblivious. However, many important and complicated
tasks including matrix computation, signal processing, sort-
ing, dynamic programming, and encryption/decryption can be
performed by oblivious sequential algorithms.

The first contribution of this paper is to introduce the bulk
execution of a sequential algorithm. The bulk execution of
a sequential algorithm is to execute it for many different
inputs in turn or at the same time. For example, suppose
that we have p arrays b0, b1, . . . bp−1 of size n each. We
can compute the prefix-sums of each bj (0 ≤ j ≤ p − 1)
by executing the prefix-sum algorithm on a single CPU in
turn or on a parallel computer in parallel. The bulk execution
has many applications. For example, the conventional FFT
algorithm [29] for n points running in O(n log n) time is
oblivious. In practical signal processing, an input stream is
equally partitioned into many blocks, and the FFT algorithm
is executed for each block in turn or in parallel. This is exactly
the bulk execution of the FFT algorithm.

It is very important to avoid the non-coalesced access for
high acceleration using the GPU. However, it is not easy
to design efficient algorithms that never perform the non-
coalesced memory access.

The second contribution of this paper is to show a simple but
potent idea to implement algorithms to perform the coalesced
memory access to the global memory. More specifically,
we show that the bulk execution of an oblivious sequential
algorithm can be implemented without performing the non-
coalesced memory access. Let t be the running time units
of an oblivious sequential algorithm on a single CPU. We
show that the bulk execution for p different inputs can be
implemented to run O(ptw + lt) time units using p threads on
the UMM with width w and latency l if the inputs are arranged
in column-wise. We also prove that any implementation on the
UMM takes Ω(ptw + lt) time units. Thus, our implementation
is time optimal. Further, we have implemented two oblivious
sequential algorithms:

• to compute the prefix-sums in O(n) time units on a single
CPU, and

• to find the optimal triangulation of a convex n-gon using
the dynamic programming technique in O(n3) time units
on a single CPU.

The readers should refer to Figure 3 that shows an example
of the optimal triangulation of a convex 8-gon. We selected
these two oblivious sequential algorithms because the compu-
tation of the prefix-sums are quite simple while the dynamic
programming is rather complicated. Our implementations run
O(pnw + ln) time units for the prefix-sums and O(pn

3

w + ln3)
time units for the dynamic programming.

The third contribution of this paper is to implement the bulk
execution of these oblivious sequential algorithms on GeForce
GTX Titan. The experimental results show that the running
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Fig. 3. An example of the optimal triangulation of a convex 8-gon

time on the GPU approximates the theoretical analysis on
the GPU. Also, our implementation for the bulk execution for
these two algorithm can be more than 150 times faster than the
implementation on the convectional CPU. Many researchers
have been devoted to implement parallel algorithms on the
GPUs [6]. Most efficient implementations use the shared
memories on the multistreaming processors of the GPU. More
specifically, they first copy a part of input on the global
memory to the shared memory, and performs the computation
for data on the shared memory. The resulting values are
copied from the shared memory to the global memory. This
operation is repeated several times. In most implementations,
the GPU speedup factor over a single CPU is in the range 10-
200. Although our idea for the bulk execution of oblivious
sequential algorithms is simple and naive, it can attain a
speedup of factor more than 150 in some cases without using
the shared memory. Thus, we can say that our idea is a potent
method to elicit the capability of CUDA-enabled GPUs very
easily.

The rest of this paper is organized as follows: In Sec-
tion II, we define the Unified Memory Machine (UMM) and
the sequential memory access. Section III defines oblivious
sequential algorithms and the bulk execution using the prefix-
sum algorithm as an example. It also shows that the bulk
execution of an oblivious sequential algorithm can be done
in O(ptw + lt) time units on the UMM and prove that it is
time optimal. Section IV defines the optimal triangulation
problem (OPT problem) and review the dynamic programming
for solving this problem. It also shows that the bulk execution
can be done in O(pn

3

w + ln3) time units on the UMM. In
Section V, we show experimental results using GeForce GTX
Titan. Section VI concludes our work.

II. THE UNIFIED MEMORY MACHINE (UMM)

The main purpose of this section is to define the Unified
Memory Machine (UMM) [20]. The reader should refer to [20]
for the details of the the UMM. It also defines the sequential
memory access and evaluates its running time on the UMM.

Let us define the UMM with width w and latency l. Let m[i]
(i ≥ 0) denote the memory cell with address i. The memory
of the UMM is partitioned into address groups A[0], A[1], . . .
such that each A[j] (j ≥ 0) stores m[j ·w], m[j ·w+ 1], . . .,
m[(j + 1) · w − 1]. The reader should refer to Figure 2 that

illustrates address groups for w = 4. Also, the memory access
is performed through l-stage pipeline registers as illustrated in
Figure 4. Let p be the number of threads of the UMM and
T (0), T (1), . . ., T (p− 1) be the p threads. We assume that p
is a multiple of w. The p threads are partitioned into p

w groups
called warps with w threads each. More specifically, p threads
are partitioned into p

w warps W (0),W (1), . . ., W ( p
w−1) such

that W (i) = {T (i·w), T (i·w+1), . . . , T ((i+1)·w−1)}. Warps
are dispatched for the memory access in turn, and w threads
in a warp try to access the memory in the same time. More
specifically, W (0),W (1), . . . ,W ( p

w − 1) are dispatched in a
round-robin manner if at least one thread in a warp requests
the memory access. If no thread in a warp needs the memory
access, such warp is not dispatched for the memory access.
When W (i) is dispatched, w threads in W (i) send the memory
access requests, one request per thread, to the memory banks.

For the memory access, each warp sends the memory access
requests to the memory banks through the l-stage pipeline
registers. We assume that each stage can store the memory
access requests destined for the same address group. For
example, since the memory access requests by W (0) are
separated in three address groups in the figure, they occupy
three stages of the pipeline registers. Also, those by W (1) are
in the same address group, they occupy only one stage. In
general, if the memory access requests by a warp are destined
for k address groups, they occupy k stages. For simplicity,
we assume that the memory access is completed as soon as
the request reaches the last pipeline stage. Thus, all memory
access requests by W (0) and W (1) in the figure are completed
in 3(address groups)+ 1(address group)+ 5(latency)− 1 = 8
time units. We also assume that a thread cannot send a new
memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory access
request, it must wait at least l time units to send a new memory
access request.

III. OBLIVIOUS SEQUENTIAL ALGORITHMS AND THE BULK
EXECUTION

The main purpose of this section is to introduce oblivious
sequential algorithms and the bulk execution of it.

Intuitively, a sequential algorithm is oblivious if an address
accessed in each time unit is independent of the input. More
specifically, there exists a function a : {0, 1, . . . , t − 1} →
N , where t is the running time of the algorithm and N is
a set of all non-negative integers such that, for any input of
the algorithm, it accesses address a(i) or does not access the
memory at each time i (0 ≤ i ≤ t − 1). In other words, at
each time i (0 ≤ i ≤ t−1), it never accesses an address other
than a(i).

Let us see an example of oblivious algorithms. Suppose that
an array b of n integers are given. The prefix-sum computation
is a task to store each i-th prefix-sum b[0] + b[1] + · · · + b[i]
in b[i]. Let r be a register variable. The following algorithm
computes the prefix-sum of n numbers.

[Algorithm Prefix-sums]
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r ← 0
for i← 0 to n− 1 do
r ← r + b[i]
b[i]← r

Since b[0], b[1], . . ., b[n−1] are added to r in turn, the prefix-
sums are stored in b correctly when this algorithm terminates.
Let us see the address accessed in each time unit to confirm
that this algorithm is oblivious. For simplicity, we ignore
access to registers and local computation such as addition and
we assume that such operations can be done in zero time unit.
Clearly, memory access operations performed in this algorithm
are: read b[0], write b[0], read b[1], write b[1], . . ., read b[n−1],
and write b[n − 1]. Hence, the memory access function a is
a(2i) = a(2i+1) = i for all i (0 ≤ i ≤ n− 1), and thus, this
algorithm is oblivious.

Suppose that we need to execute a sequential algorithm
for many different inputs on a single CPU in turn or on a
parallel machine at the same time. We call such computation
bulk execution. For example, suppose that we have p arrays
b0, b1, . . . , bp−1 of size n each on the UMM. The goal of the
bulk execution of the prefix-sums is to compute the prefix-
sums of every bj (0 ≤ j ≤ p − 1) on the UMM in parallel.
We use p threads and each thread T (j) (0 ≤ j ≤ p − 1)
computes the prefix-sums of bi by Algorithm Prefix-sums. Let
rj (0 ≤ j ≤ p − 1) be a register of thread T (j). The prefix-
sums can be computed in parallel by the following algorithm:

[Parallel Algorithm Prefix-sums]
for j ← 0 to p− 1 do in parallel
rj ← 0
for i← 0 to n− 1 do
rj ← rj + bj [i]
bj [i]← rj

Let us consider two arrangements of the p arrays of size n
each as follows.
row-wise arrangement: They are arranged in a 2-dimensional
array with p rows and n columns such that each bj [i] (0 ≤
i ≤ n − 1, 0 ≤ j ≤ p − 1) is stored in the j-th row and the
i-th column, which is allocated in address j · n+ i.
column-wise arrangement: They are arranged in a 2-
dimensional array with n rows and p columns such that each
bj [i] (0 ≤ i ≤ n− 1, 0 ≤ j ≤ p− 1) is stored in the i-th row
and the j-th column, which is allocated in address i · p + j.
The reader should refer to Figure 5 for illustrating row-wise
and column-wise arrangements for p = 4 arrays of size n = 6

b0[0] b0[1] b0[2] b0[3] b0[4] b0[5]

b1[0] b1[1] b1[2] b1[3] b1[4] b1[5]

b2[0] b2[1] b2[2] b2[3] b2[4] b2[5]

b3[0] b3[1] b3[2] b3[3] b3[4] b3[5]

b0[0] b1[0] b2[0] b3[0]

b0[1] b1[1] b2[1] b3[1]

b0[2] b1[2] b2[2] b3[2]

b0[3] b1[3] b2[3] b3[3]

b0[4] b1[4] b2[4] b3[4]

b0[5] b1[5] b2[5] b3[5]

row-wise

column-wise

Fig. 5. Row-wise and column-wise arrangements for p = 4 arrays of size
n = 6 each

each.
Let us evaluate the time to execute the prefix-sum algo-

rithm for the row-wise arrangement (row-wise prefix-sums)
and column-wise arrangement (column-wise prefix-sums). For
simplicity, we assume that p is a multiple of w and n is so
large that n ≥ w. In the row-wise arrangement, for each i
(0 ≤ i ≤ n − 1), b0[i], b1[i], . . . , bp−1[i] stored in addresses
i, i+n, . . . , i+(p−1)n, are accessed by p threads. They are in
p different address groups and corresponding p memory access
requests occupy p pipeline stages and thus it takes p + l − 1
time units to complete them. Thus, the computation of the row-
wise prefix-sums takes O(p + l − 1) · n = O(np + nl) time
units. In the column-wise arrangement, for each i (0 ≤ i ≤
n− 1), b0[i], b1[i], . . . , bp−1[i] stored in continuous addresses
i · p, i · p + 1, . . . , i · p + (p − 1), are accessed by p threads.
They are in p

w address groups. Hence, the computation of the
column-wise prefix-sums takes O( p

w + l−1) ·n = O(npw +nl)
time units. Thus, we have

Lemma 1: The row-wise prefix-sums of an array of size
p × n and the column-wise prefix-sums of an array of size
n× p can be computed in O(np+ nl) and O(npw + nl) time
units, respectively, using p threads on the UMM with width
w and latency l.

We can evaluate the running time of any oblivious algorithm
in the same way as Lemma 1. Suppose that we have an
oblivious sequential algorithm running t time units. Without
loss of generality, the algorithm works on an array of size
n. Similarly to the prefix-sum computation above, suppose
that the oblivious sequential algorithm is executed for p inputs



of size n each using p threads on the UMM in parallel. We
can consider two arrangements, row-wise and column-wise
arrangements for the oblivious sequential algorithm. We say
that such execution is a row-wise oblivious computation if
p arrays are arranged in 2-dimensional array of size p × n
such that each row corresponds to an input of the oblivious
sequential algorithm. Similarly, it is a column-wise oblivious
computation if they are arranged in 2-dimensional array of
size n× p such that each column corresponds to an input.

Let us evaluate the computing time on the UMM for the
row-wise and the column-wise arrangements as follows. Let
a(j) (0 ≤ j ≤ t − 1) denote the address accessed by the
oblivious sequential algorithm. In the row-wise arrangement,
for each j (0 ≤ j ≤ t− 1), the p threads access a(j), a(j) +
n, . . . , a(j)+(p−1)n, which are in p different address groups.
Such memory access takes p + l − 1 time units. Thus, the
oblivious algorithm runs (p + l − 1) · t = O(pt + lt) time
units if we use the row-wise arrangement. In the column-wise
arrangement, they access a(j) · p, a(j) · p + 1, . . . , a(j) · p +
(p − 1), which are in p

w address groups. Since such memory
access takes p

w + l−1 time units, the oblivious algorithm runs
( p
w + l − 1) · t = O(ptw + lt) time units. Thus we have,
Theorem 2: Any row-wise oblivious computation of size

p×n and any column-wise oblivious computation of size n×p
run O(pt+ lt) and O(ptw + lt) time units, respectively, using
p threads on the UMM with width w and latency l, where t
is the running time of the corresponding oblivious sequential
algorithm.

We also prove that column-wise oblivious computation for
Theorem 2 is time optimal on the UMM. Since an oblivious
algorithm running t time units is executed p times, it may
involve pt memory access operations. Since the width of
the UMM is w, it takes at least pt

w time units to complete
pt memory access operations. Further, since an oblivious
algorithm performs t memory access operations in turn, it
takes at least lt time units on the UMM. Thus, we have,

Theorem 3: Any implementation of bulk execution of an
oblivious algorithm for p inputs takes at least Ω(ptw + lt) time
units using p threads on the UMM with width w and latency
l, where t is the running time of the oblivious sequential
algorithm.
Thus, the column-wise oblivious computation for Theorem 2
is time optimal.

IV. THE OPTIMAL POLYGON TRIANGULATION AND THE
DYNAMIC PROGRAMMING

This section defines the optimal polygon triangulation prob-
lem (OPT problem) and reviews an algorithm solving this
problem by the dynamic programming technique [11], [29],
[30].

Let v0, v1, . . . , vn−1 be vertices of a convex n-gon. Clearly,
the convex n-gon can be divided into n− 2 triangles by a set
of n−3 non-crossing chords. We call a set of such n−3 non-
crossing chords a triangulation. Figure 3 shows an example
of a triangulation of a convex 8-gon. The convex 8-gon is
separated into 6 triangles by 5 non-crossing chords. Suppose
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Fig. 6. The parse tree of a triangulation

that a weight c[i, j] of every chord vivj in a convex n-gon is
given. The goal of the optimal polygon triangulation problem
(OPT problem) is to find an optimal polygon triangulation
that minimizes the total weight of selected chords for the
triangulation. More formally, we can define the problem as
follows. Let T be a set of all triangulations of a convex n-gon
and t ∈ T be a triangulation, that is, a set of n−3 non-crossing
chords. The OPT problem asks to find

argmin
t∈T

∑
vivj∈t

c[i, j].

In this paper, for simplicity, we consider just the value of the
total weight

min
t∈T

∑
vivj∈t

c[i, j]

of the optimal polygon triangulation. Actually, the correspond-
ing optimal triangulation (i.e. a set of n − 3 non-crossing
chords) can be obtained by a few extra bookkeeping steps
to obtain the actual triangulation, using the data structure to
compute the minimum total weight.

We will show that the optimal polygon triangulation can
be solved by the dynamic programming technique. For this
purpose, we define the parse tree of a triangulation. Figure 6
illustrates the parse tree of a triangulation. Let li (1 ≤ i ≤ n−
1) be the edge vi−1vi of a convex n-gon. Also, let r denote the
edge v0vn−1. The parse tree is a binary tree of a triangulation,
which has the root r and n− 1 leaves l1, l2, . . . , ln−1. It also
has n−3 internal nodes (excluding the root r), each of which
corresponds to a chord of the triangulation. Edges are drawn
from the root toward the leaves as illustrated in Figure 6. Since
each triangle has three nodes, the resulting graph is a full
binary tree with n − 1 leaves, in which every internal node
has exactly two children. Conversely, for any full binary tree
with n−1 leaves, we can draw a unique triangulation. It is well
known that the number of full binary trees with n+1 leaves is
the Catalan number (2n)!

(n+1)!n! [31]. Thus, the number of possible

triangulations of convex n-gon is (2n−4)!
(n−1)!(n−2)! . Hence, a naive

approach, which evaluates the total weights of all possible
triangulations, takes an exponential time.

We are now in a position to show an algorithm using the
dynamic programming for the optimal polygon triangulation
problem. Suppose that a convex n-gon is chopped off by a
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Fig. 7. A (j − i + 2)-gon is partitioned into a (k − i + 2)-gon and a
(j − k + 1)-gon

chord vi−1vj (0 ≤ i < j ≤ n−1) and we obtain a (j− i+2)-
gon with vertices vi−1, vi, . . . , vj as illustrated in Figure 7.
Clearly, this (j − i+ 2)-gon consists of leaves li, li+1, . . . , lj
and a chord vi−1vj . Let m[i, j] be the minimum weight of
the (j − i + 2)-gon. The (j − i + 2)-gon can be partitioned
into the (k− i+2)-gon, the (j − k+1)-gon, and the triangle
vi−1vkvj as illustrated in Figure 7. The values of k can be an
integer from i to j−1. Thus, we can recursively define m[i, j]
as follows:

m[i, j] = 0 if j − i ≤ 1,
m[i, j] = min

i≤k≤j−1
(m[i, k] +m[k + 1, j]

+c[i− 1, k] + c[k, j]) otherwise.

The figure also shows its parse tree. The reader should have no
difficulty to confirm the correctness of the recursive formula
and the minimum weight of the convex n-gon is equal to
m1,n−1.

To reduce the computation, we let M [i, j] = m[i, j]+ c[i−
1, j] and c[0, n − 1] = 0. We can recursively define Mi,j as
follows:

M [i, j] = 0 if j − i ≤ 1,
M [i, j] = min

i≤k≤j−1
(M [i, k] +M [k + 1, j]) + c[i− 1, j]

otherwise.

Clearly, from c[0, n − 1] = 0, M [1, n − 1] = m[1, n − 1] +
c[0, n−1] = m[1, n−1] is the minimum weight of the convex
n-gon. We can evaluate that Figure 8 shows the values of
M [i, j]’s for a triangle in Figure 3. From the recursive formula,
the reader should have no difficulty to confirm that Algorithm
OPT below compute the values of all M [i, j]’s.

[Algorithm OPT]
for i← 1 to n− 1 do

M [i, i]← 0
for i← n− 2 downto 1 do
for j ← i+ 1 to n− 1 do

s← +∞
for k ← i to j − 1 do
r ←M [i, k] +M [k + 1, j]
if r < s then s← r else s← s

M [i, j]← s+ c[i− 1, j]

Note that s ← s is used to spend the time equal to that for
performing s ← r. This redundant operation is necessary to
make the algorithm oblivious. Figure 9 illustrates the values
of M [i, j] for an 8-gon shown in Figure 3. Clearly, M [i, j] =
mini≤k≤j−1(M [i, k] +M [k + 1, j]) + c[i− 1, j] holds when
Algorithm OPT terminates. Thus, Algorithm OPT solves the
OPT problem correctly.
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Fig. 9. The computation of M [i, j] by Algorithm OPT

Since Algorithm OPT has a triple for loop using variables
i, j and k, it runs

∑n−2
i=1

∑n−1
j=i+1

∑j−1
k=i O(1) = O(n3) time

units. In Algorithm OPT, elements in arrays M and c accessed
in each time are independent of the value stored in M and c.
Thus, Algorithm OPT is oblivious and we have,

Lemma 4: Oblivious Algorithm OPT runs O(n3) time
units.

Imagine that we execute Algorithm OPT for p convex n-
gons using p threads on the UMM in parallel. Similarly to the
prefix-sum algorithm, we can consider two arrangements, row-
wise arrangement and column-wise arrangement for arrays M
and c. The weights of p convex n-gons are stored in p 2-
dimensional arrays c0, c1, . . . , cp−1 of size (n− 2)× (n− 2)
each. Also, we use p arrays M0,M1, . . . ,Mp−1 of size (n−



1)×(n−1) each. Although they are two dimensional arrays, we
can define the row-wise and column-wise arrangements. For
example, Figure 10 illustrates the row-wise and column-wise
arrangements of four 2-dimensional arrays M0,M1,M2 and
M3. Each Mk[i, j] is arranged in address (n−1)2k+(n−1)i+j
in the row-wise arrangement. Also, it is arranged in address
(n− 1)2i+ (n− 1)j + k in the column-wise arrangement.

row-wise

column-wise

M0

M1

M2

M3

M0 M1 M2 M3

Fig. 10. Row-wise and column-wise arrangements of four 2-dimensional
arrays M0,M1,M2 and M3

Suppose that Algorithm OPT is executed in parallel for the
row-wise and the column-wise arrangement. Let rh and sh be
local registers of thread T (h) (0 ≤ h ≤ p− 1). The following
parallel algorithm solves the optimal triangulation problem in
parallel.

[Parallel Algorithm OPT]
for h← 0 to p− 1 do in parallel
for i← 1 to n− 1 do
Mh[i, i]← 0

for i← n− 2 downto 1 do
for j ← i+ 1 to n− 1 do
sh ← +∞
for k ← i to j − 1 do
rh ←Mh[i, k] +Mh[k + 1, j]
if rh < sh then sh ← rh else sh ← sh
Mh[i, j]← sh + ch[i− 1, j]

The reader should have no difficulty to confirm that, the
memory access by a warp at each time unit for the row-wise
arrangement is destined for the distinct memory banks. On the
other hand, its memory access for column-wise arrangement is
destined for the same memory bank. Hence, Theorem 2 holds
for Algorithm OPT. Thus, we have,

Corollary 5: The bulk execution of Algorithm OPT runs in
O(pn3+ ln3) and O(pn

3

w + ln3) time units, respectively, using
p threads on the UMM with width w and latency l.

V. EXPERIMENTAL RESULTS

We have implemented Parallel Algorithm Prefix-sums and
Parallel Algorithm OPT that run in parallel on GeForce GTX
Titan [32] using the row-wise arrangement and column-wise
arrangement, respectively.

GeForce GTX Titan has 14 streaming multiprocessors with
192 cores each. Hence, it can run 2688 threads in parallel. Note
that, a single kernel called to GeForce GTX Titan can run more
than 2688 threads in a time sharing manner using CUDA [13]
parallel programming platform. All input and output data are
stored in the global memory of the GPU and we do not use
the shared memory of the streaming multiprocessors.

For the prefix-sums computation, we have executed Parallel
Algorithm Prefix-sums for n = 32, 1K (= 1024), and 32K
(= 32768) float (32-bit) numbers. On the GPU, Parallel
Algorithm Prefix-sums is executed for p = 64, 128, . . . , 4M
inputs using p threads in p

64 CUDA blocks with 64 threads
each. However, due to the global memory capacity, it is
executed for up to p = 256K and p = 8K when n = 1K and
n = 32K, respectively. Also, we have executed Algorithm
Prefix-sums p times on the Intel Core i7 CPU (3.5MHz) to
see the speedup factor of the GPU over the CPU. We have
implemented such algorithm for the row-wise arrangement on
the CPU. Figure 11 (1) shows the resulting computing time.
Clearly, the computing time by the CPU is proportional to
p because it runs O(pn) time. Recall that, from Lemma 1,
the row-wise prefix-sums and the column-wise prefix-sums
can be computed in O(np + nl) and O(npw + nl) time units,
respectively. The row-wise prefix-sums for n = 32 takes about
40µs when p ≤1K. Also, the computing time is proportional
to p when p ≥16K and it runs 67.9ms when p = 8M . Thus,
we can think that O(nl) = 37µs and O(np) = (8.09p)ns.
More specifically, the row-wise prefix-sums for n = 32
and p can be computed in approximately 37µs+(8.09p)ns.
Similarly, the column-wise prefix-sums can be computed in
14µs+(1.35p)ns. Figure 11 (2) shows the speedup factor of
the row-wise and the column-wise prefix-sums computation
using the GPU over the CPU. We can see that the column-
wise prefix-sums is much faster than the row-wise prefix-sums
and it can achieve a speedup of factor more than 150 when
n = 1K and p ≥ 8K.

We have also implemented bulk execution of Parallel Algo-
rithm OPT on the same GPU. Similarly to Algorithm Prefix-
sums, we have implemented Parallel Algorithm OPT for the
row-wise arrangement on the CPU. Figure 12 (1) shows the
computing time of the bulk execution on the CPU and the GPU
(row-wise and column-wise arrangements) for convex 8-gons,
64-gons, and 512-gons. The computing time is evaluated with
p from 64 to the largest possible numbers. For 8-gons, 64-gons,
and 512-gons, the maximum values of p are 4M (= 4194304),
64K (= 65536), and 1K (= 1024), respectively. From the
figure, we can see that the computing time of the CPU is linear
to p. For 8-gons, the computing time of GPU for the row-wise
increasing is almost fixed 0.09ms for the size of the bulk ex-
ecution less than 2K. For the size of the bulk execution larger
than 4k, it is linearly increased. Recall that the computing time
is O(pn3 + ln3) from Corollary 5. Thus, we can think that
O(ln3) =0.09ms and O(pn3) = (50.8p)ns because it runs
213ms for p = 4M and 213ms

4M ≈ 50.8ns. In other words, the
GPU for the row-wise arrangement runs 0.09ms+ (50.8p)ns
for p 8-gons. Similarly, from Corollary 5, the GPU for the
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Fig. 11. The computing time of Algorithm Prefix-sums on CPU, GPU (row-wise), and GPU (column-wise), and the speedup for p = 64, 128, . . . , 8M

column-wise arrangement runs in O(pn
3

w + ln3), and from
Figure 12 (1), it runs 0.032ms + (2.11p)ns for p 8-gons on
the GPU. Figure 12 (2) shows the speedup factor of the GPU
over the CPU. The column-wise arrangement can be faster
than more than 150 when p ≥ 64K.

VI. CONCLUSION

In this paper, we have presented a simple column-wise
implementation of the bulk execution of an oblivious sequen-
tial algorithm on the UMM. Our column-wise implementation
runs O(ptw + t) time units using p threads on the UMM
with width w and latency l, where t is the running time of
an oblivious sequential algorithm on a single CPU. Further,

we have implemented two oblivious sequential algorithms
to compute the prefix-sums on p arrays of size n each
and to find the optimal triangulation of p convex n-gons
using the dynamic programming technique. The prefix-sum
algorithm is a quite simple example of oblivious algorithm
while the optimal triangulation algorithm is very complicated.
The experimental results on GeForce GTX Titan show that our
implementation for the bulk execution for these two algorithm
can be more than 150 times faster than the implementation
on the conventional CPU. As a further research, we are now
developing a conversion system that automatically converts a
sequential program written in C language into a CUDA C
program for the bulk execution. Using this system, we can get
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the GPU acceleration very easily. We try to implement for the
bulk execution of other oblivious algorithms, and can expect
to obtain the same results as these oblivious algorithms from
our theoretical analysis.

REFERENCES

[1] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures and
Algorithms. Addison Wesley, 1983.

[2] A. Gibbons and W. Rytter, Efficient Parallel Algorithms. Cambridge
University Press, 1988.
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