
An Optimal Offline Permutation Algorithm on the Hierarchical Memory Machine,
with the GPU implementation

Akihiko Kasagi, Koji Nakano, and Yasuaki Ito
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The Hierarchical Memory Machine (HMM) is a
theoretical parallel computing model that captures the essence
of computation on CUDA-enabled GPUs. The offline permu-
tation is a task to copy numbers stored in an array � of size
� to an array � of the same size along a permutation � given
in advance. A conventional algorithm can complete the offline
permutation by executing ������� � ���� for all � in parallel,
where an array � stores the permutation � . This conventional
algorithm simply performs three rounds of memory access
for reading from �, reading from �, and writing in �. The
main contribution of this paper is to present an optimal
offline permutation algorithm running in �� �

�
��� time units

using � threads on the HMM with width 	 and latency �.
We also implement our optimal offline permutation algorithm
on GeForce GTX-680 GPU and evaluate the performance.
Quite surprisingly, our optimal offline permutation algorithm
achieves better performance than the conventional algorithm in
most permutations, although it performs 32 rounds of memory
access. For example, the bit-reversal permutation for 4M float
(32-bit) numbers can be completed in 780ms by our optimal
permutation algorithm, while the conventional algorithm takes
2328ms. We can say that the experimental results of this paper
provide a good example of GPU computation showing that
a complicated but ingenious implementation with a larger
constant factor in computing time can outperform a much
simpler conventional algorithm.

Keywords-Memory machine models, offline permutation,
GPU, CUDA

I. INTRODUCTION

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3]. Latest GPUs are designed
for general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many appli-
cation developers [1]. NVIDIA provides a parallel com-
puting architecture called CUDA (Compute Unified Device
Architecture) [4], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [5], since they have hundreds of
processor cores and very high memory bandwidth.

NVIDIA GPUs have streaming multiprocessors (SMs)
each of which executes multiple threads in parallel. CUDA

uses two types of memories of the NVIDIA GPUs: the
shared memory and the global memory [4]. Each SM has
the shared memory, an extremely fast on-chip memory with
lower capacity, say, 16-48 Kbytes, and low latency. Every
SM shares the global memory implemented as an off-chip
DRAM, and has large capacity, say, 1.5-6 Gbytes, but its
access latency is high. The efficient usage of the shared
memory and the global memory is a key for CUDA devel-
opers to accelerate applications using GPUs. In particular,
we need to consider the bank conflict of the shared memory
access and the coalescing of the global memory access [2],
[5], [6], [7]. The address space of the shared memory is
mapped into several physical memory banks. If two or more
threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize
the memory access performance, threads of CUDA should
access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses
of the global memory must be accessed at the same time.
Thus, CUDA threads should perform coalesced access when
they access the global memory.

In our previous paper [8], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified
Memory Machine (UMM), which extract the essential fea-
tures of the shared memory and the global memory of
CUDA-enabled GPUs. Since the DMM and the UMM are
promising as theoretical computing models for GPUs, we
have published several efficient algorithms on the DMM
and the UMM [9], [10], [11], [12], [10]. The DMM and
the UMM have three parameters: the number � of threads,
width �, and memory access latency �. Figure 1 illustrates
the outline of the architectures of the DMM and the UMM
with � � �� threads and width � � �. The � threads
are partitioned into �

�
groups of � threads each called

warp. The �
�

warps are dispatched for memory access in
turn, and � threads in a dispatched warp send memory
access requests to the memory banks (MBs) through the
memory management unit (MMU). We do not discuss the
architecture of the MMU, but we can think that it is a
multistage interconnection network [13] in which memory
access requests are moved to destination memory banks in

a pipeline fashion. Note that the DMM and the UMM with
width � has � memory banks and each warp has � threads.
For example, the DMM and the UMM in Figure 1 have 4
threads in each warp and 4 MBs.

T T T T

T T T T

T T T T

T T T T

T T T T

MMU

MB MB MB MB

T T T T

T T T T

T T T T

T T T T

T T T T

MMU

MB MB MB MB

address line data line
T: Tread W: Warp
MB: Memory Bank
MMU: Memory Management Unit

W

W

W

W

W

W

W

W

W

W

DMM UMM

Figure 1. The architectures of the DMM and the UMM with width � � �

Quite Recently, we have introduced the Hierarchical
Memory Machine (HMM) [14], [15], which is a hybrid of
the DMM and the UMM. The HMM is a more practical
parallel computing model that extracts the architecture of
GPUs. Figure 2 illustrates the architecture of the HMM. The
HMM consists of � DMMs and a single UMM. Each DMM
has � memory banks and the UMM also has � memory
banks. We call the memory banks of each DMM the shared
memory and those of the UMM the global memory after
those of CUDA-enabled NVIDIA GPUs. Each DMM can
work independently and can perform the computation using
its shared memory. Also, all threads of DMMs work as a sin-
gle UMM and can access to the global memory. If multiple
DMMs try to access the global memory, they are dispatched
in turn. Thus, it makes sense that the global memory also
has � banks. The shared memory and the global memory of
NVIDIA GPUs have low latency and several hundred clock
cycles, respectively. Hence, for simplicity, we assume that
those of the HMM are 1 and �, respectively, although we
may use parameter � to denote the latency of the shared
memory access [15].

Offline permutation is a task to move numbers along a
permutation given beforehand. More specifically, for given
two arrays � and � of size �, and a permutation 	 , the
value of each ��
� (� �
 � � � �) is copied to ��	 �
	�. A
conventional algorithm can complete the offline permutation
by executing ����
�� � ��
� for all
 (� �
 � � � �) in
parallel, where an array � stores the permutation 	 . The
offline permutation has many applications in the area of

parallel computing. For example, matrix transpose, which
is one of the important permutations, is frequently used in
matrix computation. It is known that the computation of
the FFT can be done by a multistage network in which
each stage involves permutation [16]. Sorting networks such
as bitonic sorting [17], [18] also involve permutation in
each stage. Further, communication on processor networks
such as hypercubes, meshes, and so on can be emulated by
permutation. Further, random permutation is very helpful for
randomized algorithms [19].

On the PRAM, the conventional permutation algorithm
achieves the optimal running time. Since ����
�� � ��
� can
be done in parallel using � processors, the conventional
permutation algorithm runs in ���	 time on the PRAM.
However, the running time of the conventional algorithm on
GPUs depends on the permutation. As we will show in this
paper, the conventional algorithm for permutation 	 takes a
lot of time for most of all possible permutations.

In our previous paper [8], we have presented a conflict-
free offline permutation algorithm running in �� �

�

 ��

�

 �	

time units using � threads on the DMM with width �
and latency �. Later, we have implemented the conven-
tional offline permutation algorithm and this conflict-free
permutation algorithm on a single SM of GeForce GTX-680
GPU and evaluated the performance [9]. The experimental
results showed that the conventional permutation algorithm
and the conflict-free permutation algorithm run in 246ns and
in 165ns, respectively, for the random permutation of 1024
float (32-bit) numbers. Hence, the conflict-free permutation
algorithm is 1.5 times faster. However, since the shared
memory has only 48Kbits, it is not possible to permute
larger arrays than 4096 float (32-bit) numbers. It is also
shown in [8] an offline permutation algorithm running in
������

����

���� � �
�

 ��
�

 �		 time units using � threads on
the UMM with width � and latency �. This algorithm is
time optimal only for small � such that � � �����. This
permutation algorithm has large overhead for large �.

The main contribution of this paper is to present an
optimal permutation algorithm for larger arrays on the
global memory of the HMM. Our scheduled offline per-
mutation algorithm performs three step permutations, row-
wise permutation, column-wise permutation, and row-wise
permutation, each of which is performed in DMMs of the
HMM in parallel. Our scheduled offline permutation runs in
�� �

�

 ��� � �� time units using � threads on the HMM

with width � and global memory latency �. This algorithm
is time optimal in the sense that permutation takes at least
� �

�

 �	 time units. We also show that the conventional

algorithm runs in ���	 	
 � �
�

��� � time units, where

���	 	 is the distribution of 	 , which takes a value between
�
�

and �. Intuitively, ���	 	 is large if the distribution of
contiguous � values in 	 is large. Hence the computing
time of the conventional algorithm is between � �

�

��� �

NoC and MMU

MB MB MB MB

address line

data line

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

DMM DMM DMM

UMM

shared memory
latency=1

global memory
latency=�

Figure 2. The architecture of the HMM with � � � DMMs and width � � �

and �
 � �
�

 ��� � time units.

The readers may think that, our scheduled permutation
algorithm is not practically fast on GPUs, although it is time
optimal from the theoretical point of view. The constant
factors 32 and 16 in the running time seem too large to
achieve better performance than the conventional algorithm
with small constant factors in the computing time. How-
ever, contrary to this instinct, our scheduled permutation
algorithm can run faster than the conventional algorithm.
To show this fact, we have implemented our scheduled
offline permutation algorithm on GeForce GTX-680 GPU
and evaluate the performance for various permutations.
The experimental results show that, the running time of
our scheduled offline permutation algorithm terminates in
constant time for any permutation of the same size. In
other words, the computing time depends on the size of
the input array, but is independent of permutation 	 . On
the other hand, the computing time of the conventional
algorithm depends on the permutation. The experimental re-
sults also show that, for permutations with large distribution,
our scheduled permutation algorithm runs faster than the
conventional algorithm whenever � � 256K (� ���). For
example, our offline permutation algorithm runs in 780ms
for any permutation of 4M (� ���) float (32-bit) numbers.
The conventional algorithm takes 2328ms for the bit-reversal
permutation.

We also show that, for almost all of the permutations
over all possible �� permutations, our scheduled permutation
algorithm is faster than the conventional algorithm. To show
this fact, we pick 1000 permutations from all possible ��
permutations at random for � �4M(� ���). The conven-
tional algorithm takes 424.87-426.39ms, while our sched-
uled permutation algorithm takes 173.50-173.92ms. Thus,
our scheduled permutation algorithm is 2.45 time faster than

the conventional algorithm for almost all permutations over
all possible �� permutations.

This paper is organized as follows. First, we define three
memory machines, DMM, UMM, and HMM in Section II.
In Section III, we define three memory access opera-
tions, casual memory access, coalesced memory access, and
conflict-free memory access and evaluate the running time.
Section IV defines the offline permutation and show two
conventional permutation algorithms, destination-designated
permutation algorithm and source-designated permutation
algorithm. Section V presents an algorithm for transposing
a matrix, and Section VI shows algorithms for row-wise
permutation and column-wise permutation of a matrix. In
Section VII, we present our scheduled permutation algo-
rithm and show the optimality. Finally, Section VIII shows
experimental results for comparing the conventional permu-
tation algorithms and our scheduled permutation algorithm.
Section IX concludes our work.

II. MEMORY MACHINE MODELS: DMM, UMM, AND

HMM

The main purpose of this section is to define three memory
machine models: the Discrete Memory Machine (DMM),
the Unified Memory Machine (UMM), and the Hierarchical
Memory Machine (HMM).

We first define the Discrete Memory Machine (DMM) of
width � and latency �. Let �
� (
 � �) denote a memory
cell of address
 in the memory. Let ���� � �������

�����
 ������
 ���� � � �� (� � � � � � �) denote the
�-th bank of the memory. Clearly, a memory cell �
� is in
the �
 ��� �	-th memory bank. We assume that memory
cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in
a time unit. Also, we assume that � time units are necessary

to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU.

We assume that � threads are partitioned into �
�

groups
of � threads called warps. More specifically, � threads
� ��	, � ��	, � � �, � �� � �	 are partitioned into �

�
warps

� ��	�� ��	, � � �,� � �
�
��	 such that� �
	 � �� �
��	� � �
�

�
 �	� � � � � � ��

 �	 � � � �	� (� �
 � �
�
� �). Warps

are dispatched for memory access in turn, and � threads
in a warp try to access the memory at the same time. In
other words, � ��	�� ��	� � � � �� � �

�
� �	 are dispatched

in a round-robin manner if at least one thread in a warp
requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access. When � �
	 is dispatched, � threads in � �
	 send
memory access requests, at most one request per thread, to
the memory. We also assume that a thread cannot send a new
memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory
access request, it must wait at least � time units to send a
new memory access request.

We next define the Unified Memory Machine (UMM)
of width � as follows. Let ���� � ��� � ����� � �

��� � � � ����
 �	 � � � ��� denote the �-th address group.
We assume that memory cells in the same address group
are processed at the same time. However, if they are in
the different groups, one time unit is necessary for each
of the groups. Also, similarly to the DMM, � threads are
partitioned into warps and each warp accesses the memory
in turn.

Figure 3 shows examples of memory access on the DMM
and the UMM. We assume that each memory access request
is completed when it reaches the last pipeline stage. Two
warps � ��	 and � ��	 access to �����������������	
and �������������������	, respectively. In the DMM,
memory access requests by � ��	 are separated into two
pipeline stages, because ��� and ���� are in the same
bank ���	. Those by � ��	 occupy one stage, because all
requests are in distinct banks. Thus, the memory requests
occupy three stages, it takes �
 � � � � � time units
to complete the memory access. In the UMM, memory
access requests by � ��	 are destined for three address
groups. Hence the memory requests occupy three stages.
Similarly, those by� ��	 occupy two stages. Hence, it takes
�
 �� � � � time units to complete the memory access.

Finally, we define the Hierarchical Memory Machine
(HMM). The HMM consists of � DMMs and a single
UMM as illustrated in Figure 2. Each DMM has � memory
banks and the UMM also has � memory banks. We call
the memory banks of each DMM the shared memory and
those of the UMM the global memory. Each DMM works
independently. Threads are partitioned into warps of �
threads, and each warp is dispatched for the memory access
for the shared memory in turn. Further, each warp of �
threads in all DMMs can send memory access requests to

the global memory. Figure 2 illustrates the architecture of the
HMM with � � � DMMs. Each DMM and the UMM has
� � � memory banks. The shared memory of each DMM
and the global memory of the UMM correspond to “the
shared memory” of each streaming multiprocessor and “the
global memory” of GPUs. Since the latency of “the shared
memory” in existing GPUs is very low [4], we assume
that the memory access latency of the shared memory of
the DMM is 1 for simplicity. Also, since the latency of
“the global memory” in the GPUs is several hundred clock
cycles [4], it makes sense to use parameter � for the global
memory access of the HMM.

III. COALESCED, CONFLICT-FREE, AND CASUAL

MEMORY ACCESS

This section first defines a round of memory access
by threads. We also define offline permutation and show
conventional algorithms for this task.

We can evaluate the performance of algorithms on the
HMM by the number of rounds of memory access. A round
of memory access is an operation such that all threads
perform a single memory access to the shared memory or the
global memory. For example, the conventional permutation
algorithm performing ����
�� � ��
� involves one reading
round for � and � each, and one writing round for �.

Next, we define coalesced and conflict-free memory ac-
cess rounds. A round of memory access by a warp of �
threads is coalesced if all memory access by a warp destined
for the same address group of the global memory. Also,
that by a warp is conflict-free if all memory access by a
warp destined for the distinct memory banks of the shared
memory. More specifically, a round of the memory access by
a warp is coalesced if
��	�

�
� �
����

�
� � � � � �
������

�
�,

where�
	 (� �
 � ���) is the address accessed by thread
� �
	 in the warp. A round of the memory access by a warp
is conflict-free if, for all pair
 and � (� �
 � � � � � �),
�
	 � ��	 or �
	 � ��	 ���� �	 . We also say
that a round of the memory access by all of the � threads
is coalesced if memory access by all of the �

�
warps is

coalesced. Also, that by � threads is conflict-free if memory
access by every warp is conflict-free. For example, in the
conventional permutation algorithm, a round of the memory
access to � and � are coalesced. However, that to � may not
be coalesced or conflict-free. Clearly, the memory access
is conflict-free if it is coalesced. We also say that a round
of memory access is casual if it is not guaranteed to be
coalesced or conflict-free. For example, a round of access
to � in the conventional permutation algorithm is casual
because it may not be coalesced.

Let us evaluate the time necessary for coalesced and
conflict-free memory access. Suppose that � threads perform
a round of coalesced memory access to the global memory.
Since we have �

�
warps each of which sends � memory

requests to the same address group, it takes �
�

time units to

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�-stage pipeline registers

�

057 15

10 11 12 9

� �	�

� ���UMM

0

5

715

10

11

12

9

�-stage pipeline registers

057 15

10 11 12 9

� �	�

� ���DMM

0

5

715

10

11

12

9

�
	�

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�

	
	� 	
�� 	
�� 	
��

�
��

�
��

�
��

Each pipeline stage stores
memory access requests
destined for the different
banks

Each pipeline stage stores
memory access requests
destined for the same address
group

Figure 3. Examples of memory access on the DMM and the UMM

send all � memory requests, after that �� � time units are
necessary to complete the memory requests by the last warp.
Thus, it takes �

�

�� � time units to complete a round of

coalesced memory access by � threads. Similarly, a round
of conflict-free memory access for the shared memory takes
�
�

time units to send all memory requests. Since the latency
of the shared memory on the HMM is 1, the memory access
is completed in �

�
time units. Thus, we have,

Lemma 1: A round of coalesced memory access for the
global memory and that of conflict-free memory access for
the shared memory by � threads take �

�

�� � time units

and �
�

time units, respectively.
Note that casual memory access by � threads may be
destined for the different address group or the same memory
bank. If this is the case, it takes � time units to send �
memory requests. Thus, the casual memory access to the
global memory and the shared memory may take �
�� �
time units and � time units, respectively.

IV. OFFLINE PERMUTATION AND CONVENTIONAL

ALGORITHMS

Let us define the permutation of an array as follows.
Suppose that we have two arrays � and � of size �. Let
	 be a permutation of ��� �� � � � � � � �	. In other words,
	 ��	� 	 ��	� � � � � 	 ��� �	 take distinct integers in the range
��� � � ��. Offline permutation along 	 is a task to copy
��
� to ��	 �
	� for all
 (� �
 � � � �). We assume that
	 ��	� 	 ��	� � � � � 	 �� � �	 are stored in an array � of size
�, such that ��
� � 	 �
	 for all
 (� �
 � � � �). The
following algorithm can perform the offline permutation:

[Destination-designated permutation algorithm]
for
� � to �� � do
� �
	 performs ����
��� ��
�

The Destination-designated (D-designated) permutation al-
gorithm involves three rounds of memory access: one round
of coalesced reading from �, one round of coalesced reading
from �, and one round of casual writing in �. Thus, we have

Lemma 2: The D-designated permutation algorithm per-
forms the offline permutation by memory access rounds in
Table I.

We can design the Source-designated (S-designated) per-
mutation algorithm using the inverse permutation 	 �� of
	 such that 	���	 �
		 �
 for all
 (� �
 � � � �).
Suppose that 	����	� 	����	� � � � � 	���� � �	 are stored
in an array � of size �, such that ��
� � 	 ���
	 for all

(� �
 � � � �). The following algorithm can perform the
offline permutation:

[Source-designated permutation algorithm]
for
� � to �� � do
� �
	 performs ��
�� ����
��

Clearly, memory access to � and � are coalesced, while that
to � may not. Thus, we have

Lemma 3: The S-designated permutation algorithm per-
forms the offline permutation by memory access rounds in
Table I.

Let us define several important permutations that will be
used to evaluate the performance of permutation algorithms
by experiments on the GPU.
Identical: Permutation such that 	 �
	 �
 for every
.
Shuffle: Let
�
��� � � �
� be the binary representation of
.
The shuffle permutation is defined as 	 �
�
��� � � �
�	 �

��� � � �
�
�. Shuffle permutation is used for shuffle ex-
changing in sorting networks [17], [18].
Random: One of all possible �� permutations is selected
uniformly at random.
Bit-reversal: The bit-reversal permutation is defined as

Table I
THE NUMBER OF ROUNDS AND THE RUNNING TIME OF ALGORITHMS ON THE HMM

global memory shared memory
casual casual coalesced coalesced conflict-free conflict-free running time
reading writing reading writing reading writing

D-designated permutation - 1 2 - - - ���� � � � �
�

� ��� �
S-designated permutation 1 - 1 1 - - ������� � � �

�
� ��� �

Transpose - - 1 1 1 1 � �
�

� ��� �
Row-wise permutation - - 3 1 2 2 ��

�
� ��� �

Column-wise permutation - - 5 3 4 4 	
�
�

� ��� �
Our scheduled permutation - - 11 5 8 8 ���

�
� 	
�� 	

	 �
�
��� � � �
�	 �
� � � �
���
�. Bit-reversal is used for
data reordering in the FFT algorithms [16]
Transpose: Suppose that � and � are matrix with dimension�
����. Transpose corresponds to the data movement such

that � is read in row-major order and � is written in column-
major order. That is, 	 �
 � ��
 �	 � � � ��

 for every

and � (� �
� � � �

�� �).
For later reference, we define the distribution of a permu-

tation for conventional permutation algorithms. The distribu-
tion of a permutation 	 is the total number of address groups
of � accessed by all warps in D-designated permutation
algorithm. We can define the distribution ���	 	 of a
permutation 	 with respect to width � as follows:

���	 	 �

�

�
���

	

��
	 �� � �	
�

��
	 �� � �
 �	

�
�� � � � �

	 ���
 �	 � � � �	

�
����

where ��� denote the number of unique elements in a set �. It
should be clear that the D-designated permutation algorithm
for 	 occupies ���	 	 pipeline registers for writing in �.
Hence, the casual writing in � takes ���	 	
 � � � time
units. Similarly, the S-designated permutation algorithm for
	 takes ���	

��	
 � � � time units for reading from �.
Thus, we have,

Lemma 4: The D-designated permutation algorithm and
the S-designated permutation algorithm for a permutation 	
take time units shown in Table I.
Clearly, ���identical	 � �

�
and ���shuffle(�)	 �

���shuffle(�)��	 � � �
�

. Further, the values of
���bit-reversal	, ���bit-reversal��	, ���transpose	,
and ���transpose��	 are �. Since the random permutation
is not a fixed permutation, ���random	 is not a constant
value. However, we can say that, for enough large �, there
exists small � � �, such that � � � � ���random	 � �
with high probability.

V. TRANSPOSE OF A MATRIX ON THE HMM

This section is devoted to show that the transpose of a
matrix � of size

�
���

� stored in the global memory of

the HMM can be done by four memory access rounds. For
simplicity, we assume that

�
� is a multiple of �. We assume

that elements in a matrix � are arranged in the row-major
order in the memory space, that is, each ��
���� in the
-th
row and �-th column is allocated in address �
 � ��
 �	 of
the global memory.

We first show that a matrix � of size ��� on the global
memory can be transposed using one DMM with � � threads.
We use an array � of size � � � on the shared memory.
We write each element in � such that ��
� �� (� �
� � �
�� �), which is allocated in address
 ��
�

 �	 ��� �.
We call such allocation the diagonal arrangement. Figure 4
illustrates the diagonal arrangement of a �� � matrix. The
advantage of the diagonal arrangement is:

� all elements ��
� ��� ��
� ��� � � � � ��
� � � �� in the same
row are arranged in different memory banks, and

� all elements ���� ��� ���� ��� � � � � ������ �� in the same
column are arranged in different memory banks.

Hence, access to the same row or the same column of � is
conflict-free. Thus, we can transpose a matrix � using � as
follows.

[Transpose of a matrix of size � � �]
for
� � to � � � do in parallel
for � � � to � � � do in parallel

Step 1: � �
 � �
 �	 performs ��
� �� � ��
����
Step 2: � �
 � �
 �	 performs ��
����� ����
�

Since each ��
���� is copied to �����
� through ��
� ��, the
transposing can be done correctly. Every element of � in the
global memory is read once and written once. Also, every
element of � in the shared memory is read once and written
once. Clearly, memory access to � is coalesced, and that to
� is conflict-free.

Next, we will show that the transpose of a matrix � of size�
���

� can be done using that of size ���. We assume
that

�
� is a multiple of �. We partition � into

�
�
�

�
�
�
�

submatrices of size ���. Let ��
� �	 (� �
� � �
�
�

�
� �)

denote a submatrix of elements ��
������ (
 � � �
� � �

�	 � � � �� � � � � �� � ��
 �	 � � � �). The transpose can
be done by storing the transpose of each ��
� �	 in ����
	

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2][1,3]

[2,0] [2,1][2,2] [2,3]

[3,0][3,1] [3,2] [3,3]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

��� ��	 ��� ���

Figure 4. Diagonal arrangement of a �� � matrix

for all
 and � (� �
� � �
�
�
�
��). This can be done by the

transposing algorithm for a � � � matrix. Thus, we have,
Lemma 5: The transpose of a matrix of size

�
� � �

�
can be done by memory access rounds and running time in
Table I.

VI. ROW-WISE AND COLUMN-WISE PERMUTATIONS

The main purpose of this section is to show efficient row-
wise permutation and column-wise permutation algorithms,
which are key ingredients of our scheduled permutation
algorithm on the HMM.

Suppose that we have matrices � and � of size
�
���

�
each stored in the global memory. Also,

�
� permutations

		� 	�� � � � � 	���� of ��� �� � � � �
�
���) are given. The goal

of the row-wise permutation is to copy the value of each
��
���� (� �
� � � �

�) to ��
��	���	�.
Let �� and �� (� �
 � �

� � �) be permutations
such that 	������		 � ����	 is satisfied for all
 and �
(� �
� � � �

� � �). We show how �� and �� are
determined from 	� later. We assume that matrices � and
� such that each ��
���� � ����	 and ��
���� � ����	 are
also stored in the global memory. We use � threads, which
are partitioned into

�
� blocks of

�
� threads each. Let

�	� ��� � � � � ����� denote the
�
� blocks. Also, let ����	

(� �
� � � �
�) denote the �-th thread of block � �. Each

�� (� �
 � �
� � �) is assigned to a row ��
� of � and

works for the permutation of ��
�. Since we have � DMMs,
each DMM has

�
�

�
blocks. We assume that each block ��

(� �
 � �
���) has two arrays �� and �� of size

�
� each

in the shared memory of the DMM. Further, each � ���	
(� �
� � � �

�) has two local (register) variables ��
 and
��
 . The details of the row-wise permutation are spelled
out as follows:

[Row-wise permutation]
for
� � to

�
�� � do in parallel

for � � � to
�
�� � do in parallel

Step 1: ����	 performs ������ ��
����
Step 2: ����	 performs ��
 � ��
���� and ��
 � ��
����
Step 3: ����	 performs �����
 �� �����
 �
Step 4: ����	 performs ��
����� �����

It should be clear that ��
������	� stores ��
������	�. Hence,
��
������

��
� ��		� stores ��
������

��
� ��		�. From 	������		 �

����	, we have 	���	 � ����
��
� ��		, and thus ��
��	 ��	�

stores ��
����. Hence, this algorithm performs the row-wise
permutation correctly. We will show that �� and �� can be
determined from 	� such that 	������		 � ����	 holds and
memory access to �� and �� is conflict-free.

We use the following graph theoretic result [20], [21]:
Theorem 6 (König): A regular bipartite graph with degree

� is �-edge-colorable.
Figure 5 illustrates an example of a regular bipartite graph
with degree 4 painted by 4 colors. Each edge is painted by
one of the 4 colors such that no node is connected to edges
with the same color. In other words, no two edges with the
same color share a node. The readers should refer to [20],
[21] for the proof of Theorem 6.

Figure 5. A regular bipartite graph with degree 4 painted by 4 colors

We will show how �� and �� are determined from
permutation 	�. We draw a bipartite graph � �!� "�#	
from 	� as follows:

� ! � ������ ����� � � � � ���� ��� is a set of nodes each
of which corresponds to a bank of � �.

� " � ������ ����� � � � � ���� ��� is a set of nodes each
of which corresponds to a bank of � �.

� For each pair source ����� and destination ���	 ��	�,
has a corresponding edge connecting ��� ��� ����
!	 and ��	���	 ��� ���� " 	.

Clearly, an edge ���$�� ��%�	 (� � $� % � ���) corresponds
to a number to be copied from bank ��$� of � � to ��%� of �
 .
Also, � �!� "�#	 is a regular bipartite graph with degree�
�
�

. Hence, is
�
�
�

-colorable from Theorem 6. Suppose
that all of the

�
� edges in # are painted by

�
�
�

colors
0, 1, � � �,

�
�

�
� �. We can determine integer values &���� �	

(� � � �
�
�
�

� �� � � � � � � �� � � &���� �	 � �
� �

�) such that an edge ���&���� �	 ��� ��� ��	 �&���� �	 ���
��	 with color � corresponds to a pair of source � ��&���� �	�
and destination ���	 �&���� �		�. It should have no difficulty
to confirm that, for each �, (1) � banks ��& ���� �	 ��� ��,
��&���� �	 ��� ��, � � �, ��&���� �� �	 ��� �� are distinct,
and (2) � banks ��	 �&���� �		 ��� ��, ��	 �&���� �		 ���
��, � � �, ��	 �&���� � � �		 ��� �� are distinct. It follows

that, (1) ���&���� �	�, ���&���� �	�, � � �, ���&���� �� �	� are in
different banks, and (2) ���	 �&���� �		�, ���	 �&���� �		�, � � �,
���	 �&���� � � �	� are in different banks. Hence, we define
�� and �� from &���� �	 such that ���� � �
 �	 � &���� �	
and ���� � �
 �	 � 	 �&���� �		 for all � and � (� � � ��
�
�
� � � � � ���). For such �� and ��, 	 �����		 � ����	

holds and the memory access to �� and �� is conflict-free.
Let us evaluate the number of memory access rounds.

Step 1 performs one round of coalesced reading from � and
one round of coalesced (conflict-free) writing in �. Step 2
performs one round of coalesced reading from � and � each.
Step 3 involves one round of conflict-free reading from �
and one round of conflict-free writing in �. Finally, Step 4
performs one round of coalesced (conflict-free) reading from
� and one round of coalesced writing in �. Note that �, �,
�, and � are in the global memory, and � and � are in the
shared memory. Thus, we have,

Lemma 7: The row-wise permutation can be done by
memory access rounds and running time in Table I.

It should be clear that, the column-wise permutation can
be done in three steps: transpose, row-wise permutation, and
transpose. Thus, from Lemmas 5 and 7 we have,

Lemma 8: The column-wise permutation can be done by
memory access rounds and running time in Table I.

VII. OUR SCHEDULED PERMUTATION ALGORITHM

The main purpose of this section is to show our scheduled
offline permutation algorithm on the HMM. The scheduled
permutation algorithm uses the row-wise permutation and
the column-wise permutation.

Suppose that arrays � and � of size � each are given. Let
	 be a permutation of ��� �� � � � � ���	. For convenience, we
can think that both � and � are matrices of size

�
���

�.
For simplicity, we assume that

�
� is a multiple of �. The

goal of permutation is to move a number stored in ��
���� to
��
	 �
 ��
 �	'

�
����	 �
 ��
 �	 ���

�
�� for every
 and

� (� �
� � � � � �). Note that, the permutation is defined
for a 1-dimensional array and our scheduled permutation
algorithm is not restricted to a square matrix.

Our scheduled permutation has three steps, row-wise
permutation (Step 1), column-wise permutation (Step 2),
and row-wise permutation (Step 3). We will show how we
determine three permutations performed in the three steps.
For a given permutation 	 on a matrix �, we draw a bipartite
graph � �!� "�#	 as follows:

� ! � �(���� (���� � � � � (������� is a set of nodes each
of which corresponds to a row of �.

� " � �(���� (���� � � � � (������� is a set of nodes each
of which corresponds to a row of �.

� For each pair source ��
���� and destination ��
	 �
 ��

�	'

�
����	 �
 ��
�	 ���

�
��, # has a corresponding

edge connecting (�
��� !	 and (�
	 �
��
�	'������
" 	.

Clearly, is a regular bipartite graph with degree
�
�.

From Theorem 6, the bipartite graph thus obtained can
be painted using

�
� colors such that

�
� edges painted

by the same color never share a node. Thus, we have that
(1) numbers in the same row are painted by different colors,
and (2) numbers painted by the same color have different
row destination. The readers should refer to Figure 6 for
illustrating how input numbers are painted.

In Step 1, row-wise permutation is performed such that
a number with color
 (� �
 � �

� � �) in each row
is transferred to the
-th column. From (1) above,

�
�

numbers in each row are painted by
�
� colors and thus,

Step 1 is possible. Step 2 uses column-wise permutation
to move numbers to the final row destinations. From (2)
above,

�
� numbers in each column has different

�
� row

destinations and Step 2 is possible. Finally, in Step 3,
row-wise permutation is performed to move numbers to
the final column destinations. The readers should refer
to Figure 6 for illustrating how numbers are routed by
the permutation algorithm for

�
� � �. In this figure,

�
	 �
 ��
�	'���� 	 �
 ��
�	 ���
�
�	 is stored in ��
����

initially, and after the permutation algorithm terminates,
�
� �	 is stored in ��
����.

(3,0) (3,1) (2,0) (2,1)

(0,1) (0,0) (0,3) (1,3)

(0,2) (1,2) (1,1) (3,2)

(1,0) (3,3) (2,3) (2,2)

(3,0) (3,1)(2,0) (2,1)

(0,1) (0,0) (0,3)(1,3)

(0,2)(1,2) (1,1) (3,2)

(1,0)(3,3) (2,3) (2,2)

(3,0) (3,1)

(2,0) (2,1)

(0,1) (0,0) (0,3)

(1,3)

(0,2)

(1,2) (1,1)

(3,2)

(1,0)

(3,3)

(2,3) (2,2)

(3,0) (3,1)

(2,0) (2,1)

(0,1)(0,0) (0,3)

(1,3)

(0,2)

(1,2)(1,1)

(3,2)

(1,0)

(3,3)

(2,3)(2,2)

Input After Step 1

After Step 2 After Step 3

Figure 6. Illustrating how numbers are routed by the permutation algorithm

Since the scheduled permutation algorithm on the HMM
performs row-wise permutation twice and the column-wise
permutation once, we have,

Theorem 9: Our scheduled permutation algorithm on the
HMM can be done by memory access rounds and running
time in Table I.

We can prove � �
�

 �	-time lower bound for the per-

mutation on the HMM. Since all of the � elements in �
must be read at least once and � elements can be read in a

time unit, �
�

time units are necessary. Also, reading of one
element takes � time units. Thus, � �

�

 �	 time units are

necessary for permutation of � elements and our scheduled
permutation algorithm is optimal from the theoretical point
of view.

VIII. EXPERIMENTAL RESULTS

The main purpose of this section is to show experimental
results on GeForce GTX-680. We have implemented D-
designated, S-designated, and our scheduled algorithm and
evaluate the performance for

�
� � ���� ���� ����� �����

and ����. The experiment is performed for an array �
both of float (32-bit) numbers and of double (64-bit) num-
bers. Also, five permutations, identical, shuffle, random, bit-
reversal, and transpose permutations are used to evaluate the
performance.

We have invoked �
�	�� CUDA blocks [4] of ���� threads

each for D-designated and S-designated permutation algo-
rithms. In the D-designated algorithm, each block is assigned
to a row of � and works for the copy of the assigned
row. Similarly, in the S-designated algorithm, each block
is assigned to a row of �. Also, arrays � and � used in
D-designated and S-designated are arrays of int (32-bit)
numbers, since at most ��� ����� � �� bits are necessary.

Recall that scheduled permutation algorithm involves
three steps, row-wise permutation, column-wise permuta-
tion, and row-wise permutation. Also, column-wise permuta-
tion has three substeps, transpose, row-wise permutation, and
transpose. Thus, it has essentially five steps, three for row-
wise permutation and two for transpose. The implementation
of our scheduled algorithms performs five sequential kernel
calls for these five steps. For the row-wise permutation,�
� CUDA blocks are invoked. However, since each CUDA

block can have up to 1024 threads [4], each block is assigned
1024 threads when

�
� � ����. If this is the case, each

thread works for
�
�

�	�� numbers. Also, arrays � and � used
in our scheduled permutation algorithms are 2-dimensional
arrays of � short int (16-bit) numbers in the global memory,
since at most ��� ���� � �� bits are necessary.

Table II shows the running time of the three permutation
algorithms for five permutations. Since the shared memory
of GeForce GTX680 has up to 48Kbytes, it is not possible to
implement our scheduled algorithm for ����� ���� double
(64-bit) numbers. Thus, we evaluate the performance up
to ���� � ���� double (64-bit) numbers. Clearly, for the
D-designated and S-designated permutation algorithms, the
identical permutation is fastest, because it is just a copy
between two arrays.

From Table II, we can see that D-designated and S-
designated permutation algorithms take more time for per-
mutation with larger distribution, while our scheduled per-
mutation algorithm takes almost the same running time
for each value of

�
�. Since the identical and the shuffle

Table III
THE RUNNING TIME (MILLISECONDS) OF THE THREE PERMUTATIONS

AND THE VALUES OF ���� � FOR PERMUTATION � OF SIZE 4M

D-designated S-Designated Scheduled ���� �
�

Minimum 424.87 397.89 173.50 0.99987
Average 425.52 398.27 173.66 0.99989

Maximum 426.39 398.77 173.92 0.99990

permutation have very small distribution, our scheduled per-
mutation algorithm cannot be better than the D-designated
and S-designated permutation algorithms. Since the random,
the bit-reversal, and the transpose permutations have large
distribution, our scheduled permutation algorithm runs faster
when

�
� � ���. However, our scheduled permutation

algorithm is slower when
�
� � ���. We can presume that

the L2 cache of size 512Kbytes [22] on GeForce GTX-680
decreases the overhead of the casual memory access per-
formed by the D-designated and S-designated permutation
algorithms efficiently for small �. Also, in most cases, the
S-designated permutation algorithm is more efficient that the
D-designated. This is because the casual writing takes more
running time than the casual reading due to the overhead of
cache coherency in writing.

Table III shows the running time of the three permutation
algorithms for double (64-bit) numbers and the values of
���� �
�

. We have selected 1000 permutations 	 of size 4M
at random. The table shows the minimum, the average, and
the maximum values for 1000 permutations. We can see that
the values of���	 	 are very close to � for all permutations.
Also, the variance of the computing time of each algorithm
is very small. Hence, we can say that, for most of all possible
permutations, our scheduled permutation is faster than the
D-designated and the S-designated permutation algorithms.
The identical and the shuffle permutations are examples of
few exceptions.

IX. CONCLUSION

In this paper, we have presented an optimal offline permu-
tation algorithm on the HMM, a theoretical model of CUDA-
enabled GPUs. We have implemented the optimal offline
algorithm and the conventional algorithms on GeForce GTX-
680 GPU and evaluate their performance. The experimental
results showed that our optimal offline permutation algo-
rithm is faster than the conventional permutation algorithm
for most cases.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[2] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU imple-
mentation of computing euclidean distance map with efficient
memory access,” in Proc. of International Conference on
Networking and Computing. IEEE CS Press, Dec. 2011,
pp. 68–76.

Table II
THE RUNNING TIME (MILLISECONDS) OF D-DESIGNATED, S-DESIGNATED AND OUR SCHEDULED ALGORITHM

(a) Permutation for float (32-bit) numbers

D-designated S-designated Our scheduled�
� 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

identical 0.86 2.48 9.06 33.2 130 0.86 2.49 9.13 33.1 129 3.87 11.7 46.9 173 780
shuffle 0.94 3.05 11.5 44.7 186 0.84 2.47 9.09 33.6 133 3.87 11.7 46.9 174 780
random 1.55 15.1 93.9 425 1756 3.30 15.7 89.8 398 1644 3.87 11.7 47.0 173 780

bit-reversal 1.60 15.6 95.3 459 2328 3.12 20.8 96.6 414 1870 3.87 11.7 47.0 173 780
transpose 1.44 21.2 127 636 2850 2.72 17.8 87.0 370 2037 3.87 11.7 46.9 173 780

(b) Permutation for double (64-bit) numbers

D-designated S-designated Our scheduled�
� 256 512 1024 2048 256 512 1024 2048 256 512 1024 2048

identical 1.07 3.57 13.5 54.6 1.07 3.60 13.8 54.6 5.07 16.9 66.6 275
shuffle 1.44 5.14 19.7 82.2 1.08 3.57 13.6 54.6 5.09 17.0 66.7 275
random 2.98 21.6 104 452 3.40 21.3 100 424 5.09 17.0 66.6 275

bit-reversal 3.00 22.0 108 559 3.36 25.0 104 498 5.09 17.0 66.6 275
transpose 2.07 22.2 134 638 2.99 15.4 80.3 358 5.12 17.0 66.6 275

[3] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” in Proc.
of International Conference on Networking and Computing.
IEEE CS Press, Dec. 2011, pp. 153–159.

[4] NVIDIA Corporation, “NVIDIA CUDA C programming
guide version 5.0,” 2012.

[5] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple-
mentations of a parallel algorithm for computing euclidean
distance map in multicore processors and GPUs,” Interna-
tional Journal of Networking and Computing, vol. 1, no. 2,
pp. 260–276, July 2011.

[6] NVIDIA Corporation, “NVIDIA CUDA C best practice guide
version 5.0,” 2012.

[7] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic
programming for the optial poygon triangulation on the
GPU,” in Proc. of International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP, LNCS
7439). IEEE CS Press, Sept. 2012, pp. 1–15.

[8] K. Nakano, “Simple memory machine models for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops. IEEE CS Press, May 2012, pp. 788–
797.

[9] A. Kasagi, K. Nakano, and Y. Ito, “An implementation
of conflict-free off-line permutation on the GPU,” in Proc.
of International Conference on Networking and Computing,
2012, pp. 226–232.

[10] K. Nakano, “Asynchronous memory machine models with
barrier syncronization,” in Proc. of International Conference
on Networking and Computing, Dec. 2012, pp. 58–67.

[11] ——, “Efficient implementations of the approximate string
matching on the memory machine models,” in Proc. of In-
ternational Conference on Networking and Computing, Dec.
2012, pp. 233–239.

[12] ——, “An optimal parallel prefix-sums algorithm on the
memory machine models for GPUs,” in Proc. of International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP, LNCS 7439). Springer, Sept. 2012,
pp. 99–113.

[13] S.-H. Hsiao and C. Y. R. Chen, “Performance evaluation of
circuit switched multistage interconnection networks using a
hold strategy,” IEEE Transactions on Parallel and Distributed
Systems, pp. 632–640, Sept. 1992.

[14] K. Nakano, “The hierarchical memory machine model for
GPUs,” in Proc. of International Parallel and Distributed
Processing Symposium Workshops, May 2013, pp. 591–600.

[15] D. Man, K. Nakano, and Y. Ito, “The approximate string
matching on the hierarchical memory machine, with perfor-
mance evaluation,” in to appear in Proc. of International
Symposium on Embedded Multicore/Many-core System-on-
Chip, Sept. 2013, p. to appear.

[16] J. D. Scott Parker, “Notes on shuffle/exchange-type switching
networks,” IEEE Trans. on Computers, vol. C-29, no. 3, pp.
213 – 222, March 1980.

[17] A. Gibbons and W. Rytter, Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[18] K. E. Batcher, “Sorting networks and their applications,” in
Proc. AFIPS Spring Joint Comput. Conf., vol. 32, 1968, pp.
307–314.

[19] R. Motwani and P. Raghavan, Randomized Algorithms. Cam-
bridge University Press, 1995.

[20] K. Nakano, “Optimal sorting algorithms on bus-connected
processor arrays,” IEICE Trans. Fundamentals, vol. E76-A,
no. 11, pp. 2008–2015, Nov. 1993.

[21] R. J. Wilson, Introduction to Graph Theory, 3rd edition.
Longman, 1985.

[22] NVIDIA Corporation, “NVIDIA GeForce GTX680 GPU
whitepaper,” 2012.

