2009 International Conference on Parallel and Distributed Computing, Applications and Technologies

An efficient parallel sorting compatible with the standard qsort

Duhu Man, Yasuaki Ito and Koji Nakano
Department of Information Engineering,
Hiroshima University
1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527 Japan
{manduhu, yasuaki, nakano} @cs.hiroshima-u.ac.jp

Abstract—The main contribution of this paper is to present
an efficient parallel sorting “psort” compatible with the stan-
dard gsort. Our parallel sorting “psort” is implemented such
that its interface is compatible with “qsort” in C Standard
Library. Therefore, any application program that uses standard
“qsort” can be accelerated by simply replacing “qsort” call
by our “psort”. Also, “psort” uses standard ‘“qsort” as a
subroutine for local sequential sorting. So, if the performance
of “qsort” is improved by anyone in the community, then that
of our “psort” is also automatically improved.

To evaluate the performance of our “psort”, we have
implemented our parallel sorting in a Linux server with two
Intel quad-core processors (i.e. eight processor cores). The
experimental results show that our “psort” is approximately 6
times faster than standard “qsort” using 8 processors. Since
the speed up factor cannot be more than 8 if we use 8 cores,
our algorithm is close to optimal. Also, as far as we know, no
previously published parallel implementations achieve a speed
up factor less than 4 using 8 cores.

Keywords-Parallel algorithm; Sorting; Multicore processor;
C standard library

I. INTRODUCTION

Recently, software performance has improved rapidly, pri-
marily driven by the growth in processing power. However,
we can no longer follow Moore’s law for performance
improvements. Fundamental physical limitations such as
the size of the transistor and power constraints have now
required a radical change in commodity microprocessor ar-
chitecture to multicore designs. Multicore processors which
have two or more processing cores are now ubiquitous in
home computing. Moreover, we will be able to use much
more processing cores in the near future.

It is no doubt that sorting is one of the most important
tasks in computer engineering, such as database operations,
image processing, statistical methodology and so on. Hence,
many sequential sorting algorithms have been studied in the
past [1].

To speedup the sorting, multiprocessors are employed for
parallel sorting. Several parallel sorting algorithms such as
parallel merge sort [2], bitonic sort [3], [4], randomized
parallel sorting [5], column sort [6], and parallel radix
sort [7], [8] have been devised. Lately, a parallel sorting
algorithm using GPUs (Graphic Processing Unit) has been
shown [9].

978-0-7695-3914-0/09 $26.00 © 2009 IEEE
DOI 10.1109/PDCAT.2009.55

512

The main contribution of this paper is to present an
efficient parallel sorting compatible with “gsort” in C Stan-
dard Library. Therefore, any application program that uses
standard “qsort” can be accelerated by simply replacing
“gsort” call by our “psort”. More specifically, suppose that
an array of integers is sorted using “gsort” in an application
program. What we need to do for accelerating the sorting
is to replace library call “gsort” by our “psort” simply as
follows:

gsort(data, num_data, sizeof(int), comp);

!

psort(data, num_data, sizeof(int), comp);

Also, our “psort” uses standard “qsort” as a subroutine for
local sequential sorting. So, if the performance of “gsort”
is improved by anyone in the community, then that of
our “posrt” is also automatically improved. Further, since
standard “gsort” is maintained by the community, we can
minimize the bugs and security holes of our “psort” com-
pared with the case that we use an original sequential local
sorting developed by ourselves.

In our previous paper, we have shown a parallel sorting
algorithm for multicore processors [10]. This parallel sorting
algorithm implemented on the multicore processors. The
experimental results have shown that for random 32-bit
unsigned integer numbers, this parallel sorting algorithm is
approximately 6 times faster than sequential sorting using 8
processors. For general purpose, however, it should be able
to sort any kind of objects such as floating point numbers
and strings. The advantage of our approach is to replace
sequential sort with our efficient parallel sorting with less
work and without skills of parallel programming.

The key idea of our parallel sorting is to select samples
appropriately, and use samples in the samples as pivots to
partition the input keys into groups. We have implemented
and evaluated our algorithm in a Linux server with two
Intel quad-core processors. The results have shown that our
parallel sorting algorithm is 6 times faster than sequential
sorting. Since the speed up factor cannot be more than 8
if we use 8 cores, our algorithm is close to optimal. From
the experimental results, we discuss how many samples are
appropriate for efficient multicore sorting.

The paper is organized as follows. In Section II, we

IEEE
computer
pSOC|ety

present an idea of our parallel sorting algorithm for mul-
ticore processors. Section IIT shows an implementation of
parallel sorting for multicore processors. Section IV shows
an idea of our multicore sorting compatible with gsort. In
Section V, we reports experimental results performed on
multicore processors. We conclude in the last section.

II. PARALLEL SORTING BY SAMPLING

The main purpose of this section is to show an idea of
our sorting algorithm for multicore processors.

Let A = (agp,a1,-..,a,—1) be a sequence of keys stored
in a memory to be sorted. The outline of our sorting
algorithm for p processors is as follows:

o Step 1 Select p threshold values dy, dy, . ..,d,—1 such
that dy is the minimum key in A.
o Step 2 Partition A into p groups Ag,A1,...,Ap 1

using threshold values such that 4; = {z € A | d; <
z < dit1}, where d, = +00.

o Step 3 Sort keys in each group A; using one processor

per group independently.

To complete the sorting, every A; must have almost the
same number of keys. We will show that, we can select
threshold values such that the numbers of keys in all A; are
well balanced.

Let A = (agp,a1,...,a,—1) be a sequence of keys stored
in a memory. For simplicity, we assume that every a; is dis-
tinct. We partition A into p blocks B; (0 < ¢ < p—1) of the
same size such that B; = (a;. 2,00 n g1y Qi) ;,1>
Suppose that each block B; (0 <i<p- 1) is sorted
independently, and B; = (b;0,b;1,...,b;,z_1) denotes
the sorted sequence thus obtained. In other \I;vords, bio <
bii < < bj»n_; holds. For an arbitrary integer
k > 0, we further Zi)artition each sorted block B; (0 <
t < p—1) into pk sub-blocks B;go,Bi1,...,Bipk—1
such that Bi’j = <b 5 p k,bz’] +1, . .,bi7(j+1),p72t_k_1>.
Clearly, each B; ; has p2 - keys. Let C; denote the sequence
of keys obtained by picking the minimum key from each
of the sub-blocks BiU,BZ 15+, Bipk—1. In other words,
Ci = (bio-=2,bi1.n y bi (ple—1). 2 > Let C' denote the
combined spequence of C’O, Cl, . C'p 1 Since each C; has
pk keys, C has p’k keys. Let (co,cl,..., Cp2k—1) denote
the sorted sequence of C. In other words, ¢g < ¢ <

- < cp2p—1 holds. We pick every pk keys from sorted
sequence C. Let D = (do,d1,...,d,—1) be the sequence
thus obtained. In other words, d; = ¢;.pr (0 < i < p—1)
holds. We use keys in D as threshold values to partition
elements in A. Let A; (0 < i < p — 1) denote a set of
values such that A; = {x € A | d; < z < d;41}, where
d, = +o00. By sorting keys in each A; independently, we
can obtain the sorted sequence of A.

Quite surprising, we can prove that the number of keys
in A; is well balanced as follows. Let D; = {z € C' | d; <
o <diy1} = {Cipk; Cipkt1,-- -, C(i41)-pk—1 }- Clearly, each

513

D; has pk keys. Further, let D; ; = B; N D; and A; ; =
B; N A;. For example, in Figure 1, |Dg 1| =0, |D1 1| =4,
|D2,1| = 2, and |D3 1| = 2. From the figure, it is easy to
see that if |D; ;| = 0 then |4;;] < -3z — 1 holds. For
example, in the figure, since |[Dg 1| = 0, we can guarantee
that |A071| S 2k 1. Slmllarly, if |Di7]'| =1 then |Ai7]'| S
21%,6 — 1 holds. In general, we have

n
[Ai il < (IDijl + 1) =7 = 1.

P’k
Thus, we can compute the upper bound of the number of
keys in A; as follows:

|A;]

p—1

> 1A4q]

i=0

p—1

(1Dl + D =)
i=0

(pk +p)
n

»k

n
+ ok p-
Thus, we have the followmg important lemma.

Lemma 1: Each A; (0 < j < p — 1) has no more than
% + pik — p keys.
Note that, if A is equally partitioned into p groups, each
of them has 2 keys. It follows that, A; may have at most
plk — p additional keys, and the number of additional keys
decreases as k increases.

III. PARALLEL SORTING ALGORITHM

This section shows an implementation of parallel sorting
for multicore processors. Let P(i) (0 < i < p—1) denote a
processor ¢. We assume that the input n keys are stored in
array A, and the parallel sorting algorithm stores the sorted n
keys in array R. The details of the parallel sorting algorithm
are spelled out as follows:

 Step 1.1 Partition A into p groups By, Bi, ..., Bp_1
and sort each group B; (0 < i < p— 1) using P(i).

o Step 1.2 We use an array of size p?k to store C. Each

P(i) picks every -z keys in B; and copy them to the
array for C' in an 0bV10us way.

« Step 1.3 P(0) sorts keys in C. Since keys in each Cp,
Cy, ..., Cp_; are sorted, this can be done by merge
sort. Pick every pk keys in C.

It should be clear that, the picked keys are threshold values
do, di, ..., dp_1.

o Step 2.1 Let s5; ; (0 < 4,7 < p—1) be the minimum
index of a key in B; satisfying b; s, ; > d;. Clearly,
Ai’j = {bi,si,]- N bi7si‘j+1, Ceey bi’si,].Jrl,l} hOldS, where
Sip = %. Each P(i) (0 < i < p — 1) computes the
values of s; 0, 58,1, -.,Sip—1 using the obvious binary
search.

small

n/p keys

n/p%k keys
Bo O O O
B[O |
By O O]
Bs O A

Figure 1.

o Step 2.2 Clearly, A; ; has s; j+1 —s; ; keys. Each P(j)
(0 < j < p—1)computes |Ag ;|+| A1 ;|+ - -+|Ap—1,5]s
which is equal to |A4;|. After that, P(0) computes the
prefix sums o = |Ag| + |41] + - - + |A4;| for each j
O<j<n-1.

Step 2.3 Let R; be a subset of array R such that R;

consists of |A;| elements from «;-th element of R.

Each P(j) (0 <j < p—1) copies keys in 4; to R;.

Finally, we sort each R; as follows:

o Step 3 Each P(j) (0 < j < p—1) sort sub-array R;
independently. Note that, R; consists of Ag j, A1 j, ...,
Ap_1,;. Also, each A; ; is sorted. Hence, the sorting of
R; can be done by merging Ag ;, A1, ..., Ap—1;.
Let us evaluate the computing time necessary to perform

each step. In Step 1.1, each processor performs the sorting of

= keys. This can be done in O(3 log) time using the heap
sort, and in expected O(% log %) time using the quick sort.

In Step 1.2, each processor performs the copy of pk keys,

and thus, it takes O(pk) time. In Step 1.3, P(0) performs

the merging of p sorted sequences of pk keys each, which
can be done in O(p®klogp) time. Therefore, Step 1 can be
done in O(% log 2 + p*klog p) time.

In Step 2.1, each processor performs p binary searches on
= keys. Hence, Step 2.1 can be done in O(plog %) time. In
Step 2.2, the sum and the prefix sums of p integers are com-
puted, which takes O(p) time. In Step 2.3, P(j) performs
the copy operation of |4;| keys, which takes O(|A4;]) time.
From Lemma 1, we can guarantee that Step 2.3 can be done
in O(% + 2% — p) time. Therefore Step 2 can be done in
O(% + plog %) time.

In Step 3, each P(j) performs merge sort of p sorted
sequences of totally |A;| keys, which can be done in
O(]A;|logp) time. From Lemma 1, we can guarantee that
the computing time is no more than O(% + %) time.

Finally we have

514

Tlustrating the sorting algorithm using threshold values

Theorem 2: Sorting of n keys can be done in

O(%(log% + logp) + p’klogp + plog%) time using p
processors.
Note that, if p < n and k£ < n, then the computing time
is O("l‘;’#). Since the sequential sorting takes O(n logn)
time, our algorithm achieves the speed up of factor p using
p processors. Therefore, our parallel sorting algorithm is
optimal.

IV. MULTICORE SORTING COMPATIBLE WITH QSORT

The main purpose of this section is to show an idea of our
multicore sorting compatible with “qsort”. Standard gsort
function is an implementation of the quick sort algorithm
provided in C Standard Library. The contents of the array
are sorted in ascending order according to a user-supplied
comparison function. The interface of “qsort” is shown, as
follows.

void gsort(void *base, size_t nmemb,
int(*compar)(const void *, const void *));

size_t size,

The interface of “gsort” consists of four arguments:
« *base : a pointer to the first entry in array to be sorted.
nmemb : the number of elements in the array to be
sorted.
size : the size, which is in bytes, of each entry in the
array.
*compar() : the name of the comparison function
which is called with two arguments that point to the
elements being compared.
Since “gsort” operates on void pointers, it can sort arrays of
any size, containing any kind of object and using any kind
of comparison predicate. If the objects are not the same in
size, pointers have to be used. To satisfy the above property
of “gsort”, we have developed our parallel sorting such that
its interface is same as that of “qsort”.

Our method has implemented in C language with
OpenMP 2.0 (Open Multi-Processing). The OpenMP is
an application programming interface that supports shared
memory environment [11]. It consists of a set of compiler
directives and library routines. By using OpenMP, it is
relatively easy to create parallel applications in FORTRAN,
C, and C++. However, there is considerable overhead due to
parallel processing when the number of elements in a sorted
array is small.

Therefore, to obtain the optimal parameters ¢ and k,
we have implemented and evaluated the performance of
our parallel sorting in a Linux server with two quad-core
processors, that is, we have used eight processor cores,
where t is the number of used processor cores and k is
a parameter described in Sections II and III. Figure 2 shows
the computing time of our implementation when random
32-bit unsigned integers are sorted for general purpose. The
evaluation has been carried out for different values of k, n
and p (recall that n represents the number of the input data
and p represents the number of using processing cores). Note
that in Step 1, each processor does local sort using “gsort”,
and for p = 1, that is single process, the implementation
performs “gsort” for the whole input data. Therefore, the
computing time for p = 1 is independent of k.

The figure shows that for n < 10,000, the execution time
of the single process, that is p = 1, is short because in com-
parison with the total execution time, there is considerable
overhead due to parallel processing. On the other hand, for
n > 10,000, the execution time of the single process is quite
long. For n > 1,000, 000, when k is not large, the execution
time is independents of k. Based on the results, Table I
shows the parameter ¢ and k, which seem to be optimal. For
example, when the number of input data is 200,000 and the
number of available cores is 4, from the table, the optimal
parameters ¢ and k are 4 and 2, respectively.

V. EXPERIMENTAL RESULTS

We have implemented and evaluated the performance of
our parallel sorting algorithm in a Linux server (CentOS 5.1)
with two quad-core processors (Intel Xeon X5355 2.66GHz
[12]), that is, we have used eight processor cores. The
program is compiled by gcc 4.1.2 with -O2 option.

For comparing with other implementation of parallel
sorting, we have used C Multithread Library (beta release
0.1) [13]. The library features two interface-compatible sort-
ing functions for “gsort” and “mergesort” from C Standard
Library. These two parallel sorting functions are imple-
mented from original function in C Standard Library using
POSIX Treads.

Table II shows the performance of our implementation
when random 32-bit unsigned integers, 64-bit unsigned
integers and 64-bit double precision floating-point numbers
are sorted. In the table, “qsort”, “psort”, “qsort_mt” and
“mergesort_mt” denote gsort in C Standard Library, our

515

proposed multicore sorting, parallel gsort in C Multithread
Library and parallel mergesort in C Multithread Library,
respectively. The performance evaluation has been carried
out for different values of n (recall that n represents the
number of the input data).

The table shows that for n < 10,000, our method
is almost the same as “gqsort”. On the other hand, com-
puting time of gsort_mt and mergesort_mt is longer. For
n > 100, 000, our method sorted faster than the others. For
n > 10,000, 000, our method sorted at least 6 times faster
than gsort in C Standard Library and approximately 2 times
faster than gsort and mergesort in C Multithread Library.
Since the speed up factor cannot be more than p if we use
p cores, our algorithm is close to optimal.

VI. CONCLUDING REMARKS

We have presented an efficient multicore sorting compat-
ible with gsort. Our multicore sorting is implemented such
that its interface is compatible with gsort in C Standard
Library and can sort arrays of any size, containing any
kind of object and using any kind of comparison predicate.
By replacing calls to gsort with our multicore sorting, the
sequential sorting is replaced with our parallel sorting easily.

Also, we have implemented and evaluated our algorithm
in a Linux server with two Intel quad-core processors
(Intel Xeon X5355 2.66GHz). The experimental results have
shown that our multicore sorting is 6 times faster than
original gsort. Since the speed up factor cannot be more
than 8 if we use 8 cores, our algorithm is close to optimal.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming. Vol.3:
Sorting and Searching, 1973.

[2] M. Jeon and D. Kim, Parallel Merge Sort with Load Balanc-

ing, International Journal of Parallel Programming, pp. 21-33,

Vol.31, No.1, February, 2003.

[3] K. Batcher, Sorting Networks and Their Applications, Pro-

ceedings of the AFIPS Spring Joint Computer Conference

32, Reston, VA, pp. 307-314, 1968.

[4] M. F. Ionescu and K. E. Schauser, Optimizing Parallel Bitonic

Sort, in Proceedings of the 11th International Symposium on

Parallel Processing, pp. 303-309, Geneva, Switzerland, April,

1997.

[5] D.R. Helman, D. A. Bader and J. JaJa, A randomized parallel

sorting algorithm with an experimental study, Journal of

Parallel and Distributed Computing, Vol. 52, pp. 1-23, July,

1998.

[6] A.C.Dusseau, D. E. Culler, K. E. Schauser, and R. P. Martin,

Fast Parallel Sorting under Log P: Experience with the CM-5,

IEEE Transactions on Parallel and Distributed Systems, Vol.

7, pp. 791-805, August, 1996.

[7]1 A. Sohn and Y. Kodama, Load Balanced Parallel Radix Sort,

in Proceedings of the 12th ACM International Conference on

Supercomputing, July, 1998.

Time[s]

Time[s]

Time[s]

Time[s]

0.008 : : .
p=1 ——
0.007 | b]
p=4 o
0.006 |- b8 o
0005 o, 1
0.004 | |
0.003 |
—————— A
0.002 | e)
0.001 f==="=-- & |
0.000 L L L
20 o 22 3 o
k
(@) n =100
0009 F— =TT 1 3 jarp
0.008 - e
p= 8
0.007 | P e o -
0.006 - i
Bl B---g---B-g
0.005 | B2 S |
0.004 o
NN N
0.003 - |
0.002 |
0.001 |
0.000 IR T T Y S RO S
20 ol 92 53 94 95 o6 o7 8 o9 10 Hif
k
(¢) n = 10,000
T T T T T T ,1 .
pP= ——
02} rl o
p=4 ---o---
p=8 o
02 .-
A’/A//
) NN N NN N N Sy N N N N -t
o1} o 1
o
PERs
¥e-o8e0a85-0-80F
0.1 & i
S T - S i
0.0 oy
0 02 of 9B o8 ol0 12 14,16 18
k
(e) n = 1,000,000
80 T T T T T T T T T T T
p=1 —o—
p=2 ——2-——-
25 | p=2]
p=8 o
20 i
15 PN NN SISl
¥l
10 + —5, i
858680880 088088880F
5
5 < DN i
1 L L L L L 1 I I I L

0
20 22 24 26 28 210 212 214 216 218 220 222 224
k

(2) n = 100,000, 000

Time([s]

Timel[s]

Timel[s]

Time([s]

0.009 ¢~ T T T T T p T
p=1 ——
0.008 | . p=2 b
o o p=4 ——-8---
0.007 @ o p=8 o
0.006 B
0.005 B
g Qoegeees gl
0.004 &~ i
0.003 AL T
A - S~ VGRS 4
0002 | AT T all Tae .
0.001 i
0000 1 1 1 1 1 1
PR L - - L 1
k
(b) n = 1,000
0018 T T T T T T T T T T T T T
0.016 4
o .
0.014 | A
& _a-ar
0.012 §-trca-Bmp o B A oAy Ss ! R
A B - S =
00104 * o g g B g B0 .
0.008 - B
0.006 B
0.004 p=1 —o— 4
p=2 ——A--
0.002 p=t -3
0000 1 1 1 1 1 1 1 1 1 Ip=8I] IVO IV
20 o1 92 93 o4 o5 96 o7 8 59 510511512513 514
k
(d) n = 100,000
30 T T T T T T T T T T
p=1 ——
p=2 ——A—
2.5 ¢ p=4 -3 B
p=8 o
20 B
A
15 | P
L A A A-DBA DDA B DD DA DDA
o
1.0 | = u
-EHEI'B-B'B'EH}'B'E'E-E'B'E-B'B’g:a
05 F oom00-00 000 0000 T
00 1 1 1 1 1 1 1 1 1 1
20 02 o4 96 98 510 512 o514 516 518 520 522
k
() n = 10,000,000
T T T T T T T T T T T T
300 | ot Lol]
p=2 A
=4 o
250 | Z:S & 1
200 | .
}A«A—Aﬂgﬂgfgf,gﬂgé,gggAgAﬁaﬂéﬁA—A;A,g”
150 1
pa)
10 ssnpoeoBanoBaooaoaeaaad
50 00070 i

0
20 22 24 26 28 210 212 214 216 218 220 222 224 226

k
(h) n = 1,000,000, 000

Figure 2. Computing time for our parallel sort

516

(8]

(91

(10]

(11]

(12]

[13]

Table I

OPTIMAL PARAMETERS
The number of available cores 1 2 4 8
t| k|t k| t|k|t]Ek
n < 50,000 1] -11 -1 -111-
50,000 < n < 500,000 1| -12]16 | 4 4
500,000 < n 11 -12 1141 (8]1
Table IT
PERFORMANCE OF PARALLEL SORTING
(a) 32-bit unsigned integers
n gsort psort gsort_mt mergesort_mt
Time[s] Time[s] Speed up Time[s] Speed up Time[s] Speed up
100 0.0000148 0.0000145 1.02 0.0004480 0.03 0.0005950 0.02
1,000 0.0002306 0.0002286 1.01 0.0006281 0.37 0.0007240 0.32
10,000 0.0015593 0.0015594 1.00 0.0019760 0.79 0.0027144 0.57
100,000 0.0177477 0.0096842 1.83 0.0126510 1.40 0.0137161 1.29
1,000,000 0.2103429 0.0426486 493 0.1062432 1.98 0.0864644 2.43
10,000,000 2.4999987 0.4013662 6.23 0.9547787 2.62 0.8945034 2.79
100,000,000 28.8102803 4.6296428 6.22 9.1322992 3.15 9.2465315 3.12
1,000,000,000 | 318.0739780 | 51.8421750 6.14 91.5192440 3.48 100.5022250 3.16
(b) 64-bit unsigned integers
n gsort psort qgsort_mt mergesort_mt
Time[s] Time[s] Speed up Time[s] Speed up Time[s] Speed up
100 0.0000153 | 0.0000151 1.01 0.0004584 0.03 0.0005992 0.03
1,000 0.0002227 | 0.0002213 1.01 0.0005805 0.38 0.0007268 0.31
10,000 0.0015831 | 0.0016246 0.97 0.0018301 0.87 0.0026526 0.60
100,000 0.0185624 | 0.0117281 1.58 0.0122585 1.51 0.0147567 1.26
1,000,000 0.2306025 | 0.0472184 4.88 0.1022577 2.26 0.0944008 2.44
10,000,000 2.7766366 | 0.5811376 4.78 0.9689922 2.87 0.9953102 2.79
100,000,000 | 32.4576996 | 7.0135219 4.63 9.6505263 3.36 10.9065100 2.98
(c) 64-bit double precision floating-point numbers
n gsort psort gsort_mt mergesort_mt
Time[s] Time[s] Speed up Time[s] Speed up Time[s] Speed up
100 0.0000149 | 0.0000154 0.97 0.0004594 0.03 0.0006109 0.02
1,000 0.0002401 | 0.0002305 1.04 0.0006145 0.39 0.0007513 0.32
10,000 0.0016692 | 0.0016998 0.98 0.0018899 0.88 0.0030235 0.55
100,000 0.0197145 | 0.0117318 1.68 0.0125129 1.58 0.0155153 1.27
1,000,000 0.2453897 | 0.0496379 4.94 0.1040864 2.36 0.1021421 2.40
10,000,000 2.9484040 | 0.5935436 4.97 0.9516576 3.10 1.0748308 2.74
100,000,000 | 34.4574052 | 7.0960471 4.86 9.5402221 3.61 11.5991955 2.97

S. J. Lee, M. Jeon, D. Kim, and A. Sohn, Partitioned Parallel
Radix Sort, Journal of Parallel and Distributed Computing,
Vol. 62, pp. 656668, 2002.

E. Sintorn and U. Assarsson, Fast parallel GPU-sorting
using a hybrid algorithm Journal of Parallel and Distributed
Computing, Vol. 68, pp. 1381-1388, October, 2008.

K. Nishihata, D. Man, Y. Ito and K. Nakano. Parallel sam-
pling sorting on the multicore procesors, in Proceedings of
the International Conference on Applications and Principles
of Information Science, pp. 233-236, January, 2009.

OpenMP Application Program Interface,
http://www.openmp.org

Intel Corporation, Intel Xeon Processor 5000 Sequence,
http://www.intel.com/products/processor/xeon5000/

Diomidis D. Spinellis and Markus Weissmann, C Multithread
Library — libmt,
http://libmt.sourceforge.net/

517

