2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

Optimality of Fundamental Parallel Algorithms on
the Hierarchical Memory Machine, with GPU
implementation

Koji Nakano and Yasuaki Ito
Department of Information Engineering
Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The Hierarchical Memory Machine (HMM) is a
theoretical parallel computing model that captures the essence
of CUDA-enabled GPU architecture. It has multiple streaming
multiprocessors with a shared memory, and the global memory
that can be accessed by all threads. The HMM has several
parameters: the number d of streaming multiprocessors, the
number p of threads per streaming multiprocessor, the number w
of memory banks of each shared memory and the global memory,
shared memory latency /, and global memory latency L. The main
purpose of this paper is to discuss optimality of fundamental
parallel algorithms running on the HMM. We first show that
image convolution for an image with n x n pixels using a filter of

. . n2 n2L 21)2 P
size (2v+1) x (2v+1) can be done in O + .= + "0+ 2
time units on the HMM. Further, we show that this parallel
implementation is time optimal by proving the lower bound of
the running time. We then go on to show that the product of two
n X n matrices can be computed in O(20 + 75 + 70+ %) time
units on the HMM if the capacity of the shared memory in each
streaming multiprocessor is O(m?). This implementation is also
proved to be time optimal. We further clarify the conditions for
image convolution and matrix multiplication to hide the memory
access latency overhead and to maximize the global memory
throughput and the parallelism. Finally, we provide experimental
results on GeForce GTX Titan to support our theoretical analysis.

n n2v2l

Keywords-Image convolution, matrix multiplication, parallel
algorithms, memory machine models, GPU, CUDA

I. INTRODUCTION

The GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manipulat-
ing images [1], [2]. Latest GPUs are designed for general pur-
pose computing and can perform computation in applications
traditionally handled by the CPU. Hence, GPUs have recently
attracted the attention of many application developers [1],
[3]. NVIDIA provides a parallel computing architecture called
CUDA (Compute Unified Device Architecture) [4], [5], the
computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel
computational elements in NVIDIA GPUs. In many cases,
GPUs are more efficient than multicore processors [6], since
they have thousands of processor cores and very high memory
bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [4]. The shared

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.46

626

memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-48 Kbytes. The global memory is implemented
as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6
Gbytes, but its access latency is very long. The efficient usage
of the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory
access [5], [6], [7]. The address space of the shared memory
is mapped into several physical memory banks. If two or more
threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize the
shared memory access performance, threads of CUDA should
access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the throughput between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory. Also, the latency of the global
memory access is several hundred clock cycles, while that
of the shared memory access is quite small [4]. Hence, we
should minimize the memory access to the global memory to
maximize the performance.

Many researchers have been devoted to implement many
useful operations in GPUs. However, most of parallel imple-
mentations in GPUs are evaluated by the running time of a
particular GPU. The performance of implementations depends
on many factors including compiler optimization, program-
ming skills, GPU model numbers, among others. Hence, the
running time on an actual GPU may not indicate the good-
ness of parallel algorithms and implementations. Theoretical
parallel computing models that capture the features of GPU
architecture should be used to evaluate the performance of
algorithms and implementations.

Recently, we have introduced three models, the Discrete
Memory Machine (DMM), the Unified Memory Machine
(UMM), and the Hierarchical Memory Machine (HMM) which
reflect the essential features of computation performed by
CUDA-enabled GPUs [8], [9], [10], [11]. The DMM is a theo-
retical parallel computing model of a streaming multiprocessor
in a CUDA-enabled GPU. It has a shared memory with w
memory banks, and w threads in a warp can access the shared

cps’s

Conference Publishing Services

DMM

shared memory
latency=I

G0

Qoo
i

address line

O | | | '

[(T][TT][T][T][T][T] (T[T [T][T][T][T] data line
MB:Memory bank
T:Tread

flobal memory
atency=L

Fig. 1.

memory at the same time. The UMM is a model for the parallel
computation using the global memory of a CUDA-enabled
GPU. It also has a global memory with w memory banks. The
difference of the shared memory of the DMM and the global
memory of the UMM is the restriction of access to memory
banks. The same address of memory banks of the global
memory must be accessed in each time unit, while different
addresses of memory banks of the shared memory can be
accessed. The HMM is a hybrid of the DMM and the UMM,
which can be used to design and evaluate parallel algorithms
using multiple streaming multiprocessors in a GPU. The HMM
has multiple DMMs each of which has a shared memory. It
also has a global memory which can be accessed by threads
in all DMMs. The reader should refer to Figure 1 illustrating
the HMM with width 4 and 3 DMMs. We use parameters w,
L, and [to denote the number of memory banks, the global
memory access latency, and the shared memory access latency.
We also use parameters d and p to denote the number of
DMMs in the HMM, and the number of threads in each DMM.
Thus, the HMM has totally dp threads. By using the HMM, we
can give a theoretical analysis of performance of algorithms
developed for CUDA-enabled GPUs using these parameters,
w, L, [, d, and p. Actually, theoretical analysis of algorithms
on the HMM approximates the performance of them on GPUs.
For example, we have presented offline permutation algorithms
for the DMM in [12] and for the HMM [13]. These offline
permutation algorithms are implemented on CUDA-enabled
GPUs. Experimental results showed that theoretical analysis
approximates the actual performance on the GPU. We have
also shown in [14] that parallel algorithms designed for the
HMM are efficient on the GPU. Hence, the DMM, the UMM,
and the DMM are promising parallel computing model for
parallel computing using CUDA-enabled GPUs.

Suppose that an image a of size n x n and kernel b
of size (2v + 1) x (2v + 1) are given. Image convolution

627

The Hierarchical Memory Machine (HMM) with 3 DMMs.

is a task to compute the convolution of a and b. it is
one of the most important operations in the area of image
processing, because it is used for various image processing
applications [15]. For example, we can blur images by image
convolution using a Gaussian kernel. Image convolution using
Sobel kernels is used to detect edges in an image [16]. Image
convolution can be implemented efficiently in GPUs using
CUDA [17]. The first contribution of this paper is to present an
optimal implementation for irr}zage convolutlon in tgle2 HMM.
Our implementation runs O(%~ + = pL + 2 d;’} + %) time
units on the HMM. We can think that four terms of the
performance correspond to the global memory bandwidth, the
global memory latency, the shared memory bandwidth, and the
shared memory latency as shown in Table I. We also prove that
any implementation of image convolution in the HMM takes

2 2 2,2 2,2 . . .
Q2+ % v 4 vl time units by exploring these four

w dw dp

terms. Thus, our implementation for image convolution in the
HMM is time optimal. We further show that, wL < dp and
wl < p must be satisfied to hide the memory access latency.
Also, the global memory throughput is maximized if v2 < d,
and the parallelism is maximized otherwise.

Matrix multiplication is one of the most well-known ap-
plications which can be implemented in GPUs using CUDA
very efficiently. Thus, it is introduced as the first example
of a CUDA C program [4]. Our second contribution is to
show time optimal parallel implementation for multiplying two
matrices of 51ze n X n on the HMM. Our implementation runs
O(% mdp + =+ 5 l) time units on the HMM if the
capacity of each shared memory is O(m?). Similarly to image
convolution, the four terms of the performance correspond
to four hardware limitations (Table I). By analyzing each of
the four terms, we prove that any 1mplementat10n of matrix
multiplication in the HMM takes Q(— +2 mdp + 7=+ ’fipl)
time units. Hence, our implementation is time optimal. In the
same way as image convolution, we can see that wL < dp

TABLE I
THE PERFORMANCE OF OUR IMPLEMENTATIONS FOR IMAGE CONVOLUTION AND MATRIX MULTIPLICATION

Sequential | Global memory Global memory Shared memory Shared memory | Shared memory
algorithm bandwidth latency bandwidth latency capacity
Image convolution O(n%v?) O(Z}—Q) o(zL) O(";Z O(@) O(w?)
3 3
Matrix multiplication O(n3) O(£=-) O(::zd?z o(%-) O(’;71 O(m?)

n X n: the size of an image/matrix, (2v + 1) X (2v + 1): the size of a kernel,
w: the number of memory banks of global memory and shared memory/the number of threads in a warp, L: the global memory latency,
[: the shared memory latency, d: the number of DMMs, p: the number of threads in each DMM

and wl < p must be satisfied to hide the memory access
latency. Further, the global memory throughput is maximized
if m < d, and the parallelism is maximized otherwise. We
have implemented our image convolution and matrix multipli-
cation algorithms using CUDA C. The experimental results
on GeForce GTX Titan show that our theoretical analysis
approximates the experimental results.

The rest of this paper is organized as follows. Section II
introduces three memory machines, the Discrete Memory Ma-
chine (DMM), the Unified Memory Machine (UMM), and the
Hierarchical Memory Machine (HMM), which are theoretical
parallel computing models for CUDA-enabled GPUs. It also
shows several fundamental memory access operations used
later. In Section III, we show an imzpleerntatio2n 2of ir;]a2ge
convolution in the HMM running O(*%- + % Bt "d—;’al)
time units. Section IV discusses the time lower bound for
image convolution on the HMM, and shows the optimality
of our implementation. It also shows conditions to hide the
memory access latency and to maximize global memory
throughput and parallelism. In Section V, we present an
implgmentatﬁion of rg]atrix 3multiplication in the HMM running
OGnw % + oo+ %) time units. We also prove that
our implementation of matrix multiplication is optimal in
Section VI. Finally, Section VII provides experimental results
on GeForce GTX Titan. Section VIII concludes our work.

II. THE DMM, THE UMM, AND THE HMM

The main purpose of this section is define three memory
machine models: the Discrete Memory Machine (DMM), the
Unified Memory Machine (UMM), and the Hierarchical Mem-
ory Machine (HMM), which capture the essence of parallel
computing on CUDA-enabled GPUs.

We first define the Discrete Memory Machine (DMM) [8].
[18] of width w and latency I. Let B[j] = {4, j+w, j+2w, j+
3w,...} (0 <j <w—1) denote a set of addresses arranged
in the j-th memory bank. In other words, each address 7 is
in the (¢ mod w)-th memory bank. We assume that data with
addresses in different banks can be accessed in a time unit, but
no two data in the same bank can be accessed in a time unit.
Also, we assume that [time units are necessary to complete
an access request and continuous requests are processed in
a pipeline fashion through the MMU (Memory Management
Unit). Thus, it takes k + [— 1 time units to complete memory
access requests to k distinct data in a particular bank.

628

We assume that p threads are partitioned into 2 groups
of w threads called warps. More specifically, p threads 7'(0),
T(1), ..., T(p—1) are partitioned into £ warps W (0), W (1),

.o W(L — 1) such that W(i) = {T(i w),T(i-w +
,....,T((G+1)-w—=1)} (0 <7 < £ —1). Warps are
dispatched for memory access in turn, and w threads in a
warp try to access the memory at the same time. In other
words, W (0), W (1),...,W (£ —1) are dispatched in a round-
robin manner if at least one thread in a warp requests memory
access. When W (i) is dispatched, w threads in W (i) send
memory access requests, at most one request per thread, to
the memory. We also assume that a thread cannot send a
new memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory access
request, it must wait at least [time units to send a new memory
access request.

We next define the Unified Memory Machine (UMM) [8],
[11] of width w and latency L. Let A[j] = {j - w,j - w +
1,...,(j+1)-w—1} denote the j-th address group. We assume
that data in the same address group are processed at the same
time. However, if they are in the different groups, one time
unit is necessary for each of the groups. Also, similarly to the
DMM, p threads are partitioned into warps and the memory
is accessed by warps in turn.

Figure 2 shows examples of memory access on the DMM
and the UMM. We assume that each memory access request is
completed when it reaches the last pipeline stage. Two warps
W(0) and W (1) access to (7,5,15,0) and (10,11,12,9),
respectively. In the DMM, memory access requests by W (0)
are separated into two pipeline stages, because addresses 7
and 15 are in the same bank B(3). Those by W (1) occupies
1 stage, because all requests are in distinct banks. Thus, the
memory requests occupy three stages, it takes 3+4—1=06
time units to complete the memory access. In the UMM,
memory access requests by W(0) are destined for three
address groups. Hence the memory requests occupy three
stages. Similarly those by W (1) occupy two stages. Hence, it
takes 5+6—1 = 10 time units to complete the memory access.
Note that, the architecture of pipeline registers illustrated in
Figure 2 are imaginary, and it is used only for evaluating
the computing time. The actual architecture should involves
a multistage interconnection network [19], [20] or sorting
network [21], [22], to route memory access requests.

Finally, we define the Hierarchical Memory Machine

l-stage pipeline registers

W (0) —
e 12 o
L HHE
> 9
DMM W (1) [p SRS S
> 10 (>
S
f» 11 > 15

B[o]

pr1] Each pipeline stage stores
memory access requests
destined for the different
banks

Y Py

B[3]

>l >l
o b b5 |
T*_*ﬁ
n bs b7 |

Fig. 2.

(HMM). The HMM consists of d DMMs and a single UMM
as illustrated in Figure 1. Each DMM has w memory banks
and the UMM also has w memory banks. We call the mem-
ory banks of each DMM the shared memory and those of
the UMM the global memory. All DMMs work in parallel.
Threads are partitioned into warps of w threads, and each warp
are dispatched for the memory access for the shared memory
in turn. Further, each warp of w threads in all DMMs can
send memory access requests to the global memory. Figure 1
illustrates the architecture of the HMM with d = 3 DMMs
and w = 4. Each DMM and the UMM has w = 4 memory
banks. The shared memory of each DMM and the global
memory of the UMM correspond to “the shared memory” of
each streaming multiprocessor and “the global memory” of
CUDA-enabled GPUs. Also, it makes sense to assume that
the shared memory in each DMM can store up to O(w?)
words of data. CUDA enabled-GPUs can store 12w? words
of data as follows. The capacity of the shared memory in a
streaming multiprocessor of CUDA enabled-GPUs is up to
48Kbytes [4]. Since the number of memory banks and the
number of threads in a warp is w = 32, an array of w?
32-bit integers occupies 4K bytes. Thus, the shared memory
cannot store more than 12 such arrays. Despite this fact, we
may use parameter m to denote the capacity of the shared
memory to see its effect for the computational power. We use
[and L to denote the memory access latencies of the shared
memory in a DMM and the global memory of the UMM.
The memory access latency of the global memory of CUDA-
enabled GPUs is several hundred clock cycles, while that of
the shared memory of a streaming multiprocessor is several
clock cycles [4]. Hence, it makes sense to assume that [< L.

For later reference, we will evaluate the time necessary
to complete fundamental memory access operations. Suppose
that p (> w) threads in £ warps in a DMM of the HMM access
n elements in the shared memory, 2 elements each in turn.
If all memory access requests by w threads in all warps are

629

Each pipeline stage stores
memory access requests
destined for the same address
group

Examples of memory access on the DMM and the UMM

conflict-free, the first p elements can be accessed in % +1-1
time units. Since this memory access is repeated % times, it
takes % - (£ +1-1) = O(3 + %l) time units to access n
elements. Hence, we have,

Lemma 1: If n memory access requests by p (> w) threads
in a DMM with width w and latency [are conflict-free, then
they can be completed in O(7> + %’) time units.

Suppose that the HMM has d DMMs with p threads each
and they need to copy n elements stored in consecutive
addresses of the global memory to the shared memory of the
DMMs such that each shared memory stores *; elements. Each
of the dp threads works for copying pﬂd elements. Clearly,
memory access to the global memory is coalesced and that to
the shared memory is conflict-free. Hence, the first pd elements
can be read from the global memory in %1 + L — 1 time
units. After that, they can be written in the shared memory
in % + | — 1 time units. Thus, the first pd elements can be
copied in (%1 +L-1)+(E4+1-1)= O(%d + L) time units
from [< L. Since this operation is repeated % times, the

n nLy H
+ ﬁ) time units.

total running time is 2 O+ L)=0(2
Hence, we have,

Lemma 2: The task of copying n elements in the global
memory to the shared memory of d DMMs with p threads
each takes O(% + Z—s) time units of the HMM.

Clearly, the task of copying in the opposite direction, that is,
from the shared memories to the global memory can be done
in the same time units.

Even if n elements are not in consecutive addresses of the
global memory and they are separated in several segments, the
task of copy can be done in the same time units. Suppose that
we have n elements in the global memory to be copied into the
shared memories of d DMMs such that each shared memory
stores 5 elements each. We assume that n elements are
partitioned into at most i segments each of which constitute
elements in consecutive addresses. For example, a sub matrix
of size m x m in a large submatrix of size n x n (m < n)

corresponds to m segments of m elements each. We have the
following lemma.

Lemma 3: The task of copying n elements separated in at

most =+ segments in the global memory to the shared memory
of d DMMs with p threads each takes O(" + Z—s) time units
of the HMM.
Due to the stringent page limitation, we omit the proof of
Lemma 3. Please see [11] for the details and the proof.
Similarly, the copy in the opposite direction can be done in
the same time units.

ITII. IMAGE CONVOLUTION ON THE HMM

Let a be an image of size n x n. and b be a kernel of size
(2v+1) x (2v+1). The image convolution is to compute an
image ¢ = a ® b of size n x n such that

Z Z a(i+s,7+1t)-bv+s,v+1t).

s=—vit=—v

c(i,)

For simplicity, we assume that a(i,j) = 0 if (4,4) is out of
range. It should be clear that, the values of all ¢(4, j)s can be
computed in O(n?v?) time in an obvious way.

Suppose that image a of size m x m and kernel b of size
(2v + 1) x (2v + 1) are stored in the shared memory of
the DMM. We first show a parallel implementation of image
convolution in the DMM with p threads. We partition output
image c into %2 groups of p pixels each in a raster scan order
of c. Image c is computed group by group in turn. We formally
describe a parallel algorithm for the case that p = n threads
are used. Clearly, each row of ¢ corresponds to a group if this
is the case.

[Algorithm CONV-DMM]
for ¢ +— 0 to n — 1do
for j < 0 to n — 1 do in parallel
T(j) performs c(i,j) < 0
for s <~ —v to v do
for t < —v to v do
if(0<i+s,j+t<n-—1)then
T(j) performs c(i, j)
—c(i,j)+a(i+s,j+1) -blv+s,v+1t)

The reader should have no difficulty to confirm that Algorithm
CONV-DMM can be modified to perform the multiplication
when p # n. If p < n then each row of ¢ is computed in 2
rounds. If p > n then £ rows of ¢ is computed at the same
time.

Let us evaluate the computing time of Algorithm CONV-
DMM. For each pair s and ¢, p threads read p elements in
¢, p pixels in a and one element in b, and write p elements
in c¢. Since these memory access operation is conflict-free,
this procedure takes O(2 + %l) = O(Z +1) time units from
Lemma 1. To compute the value of p elements in ¢, this
operation is repeated (2v + 1)? times. Thus, the value of p
elements in ¢ can be computed in O(”%’ + v2l) time units.

. . . 2 .
Further, since this procedure is repeated % times, the total

630

2’1)2

w

21

n2v
p)

n

2 2
2oz

computing time is o

Thus, we have,

Lemma 4: Algorithm CONV-DMM computes the convolu-
tion of an n x n image and a kernel of size (2v+1) X (2v+41)
in O(% + @) time units using p threads on the DMM
with width w and latency .

+v3) = O

Next, we will show a parallel algorithm for the HMM.
Suppose that the global memory is storing an image a of size
n x n and kernel b of size (2v + 1) x (2v + 1). The goal is
to compute output image ¢ = a ® b in the global memory.
Let d be the number of available DMMs in the HMM. We
partition ¢ into s x s subimages of size w x w each, where
s = 2. Each DMM computes % subimages one by one. Let
cli,j] (0 <i,j7 < s—1) be a subimage in i-th row and j-th
column. Note that, to compute a subimage of size w X w in
¢, a subimage of size (w + 2v) X (w + 2v) in a is necessary.
Let ali, j] be a subimage of a necessary to compute c[é, j]. A
DMM is assigned to c[i, j] computes it as follows:
[Algorithm CONV-HMM for subimage c[i, j|]

Step 1: Copy afi, j] and b from the global memory to the
shared memory

Step 2: Compute c[i, j] < ali, j]®b using Algorithm CONV-
DMM

Step 3: Copy cli,j] from the shared memory to the global
memory

Algorithm CONV-HMM computes the resulting image ¢ by
executing these three steps for subimages c[i, j] for all ¢ and
7 (0<1,j <s—1)using d DMMs.

Let us evaluate the total computing time of Algorithm
CONV-HMM. First, d DMMs compute d subimages of ¢ in
parallel. Since ali, j] has (w+ 2v)? pixels, totally d(w + 2v)?
pixels are copied from the global memory to the shared
memories of d DMMs in Step 1. From Lemma 3 and v < w,
this copy operation takes O(d(wz%)z + d(wtiiv)%) = O(dw+
wa) time units. After that, kernel b of size (2v+1) x (2v+1)
is copied from the global memory to the shared memory.
Clearly, b is smaller than subimage a[i, j], it takes no more
than O(dw + %) time units. Hence, Step 1 takes O(dw +
“’%) time units. In Step 2, each DMM executes Algorithm
CONV-DMM in parallel, which takes O(% + %) =
O(wv? + w2”2l) time units from Lemma 4. After that, each
DMM copies c[i, j] in parallel in Step 3 Since cfi, j] has w?
plxels this copy operation takes O(+ dl;pL) O(dw +
w L) time units from LLemma 3. Thus, d DMMs computes d

subimages in O(dw—i—“’ WL 4y +w - l) time units. Since this
procedure is repeated s tlmes Algorlthm CONV HMM runs
= O(dw+2L 4 ? +w Uy = O L e .
Thus we have
Theorem 5: Algorithm CONV-HMM runs O(ok

n’ v +) time units using d DMMs with p threads each
on the HMM with width w, global memory latency L, and
shared memory latency /.

nv

nvl

IV. LOWER BOUND OF IMAGE CONVOLUTION

We will prove the optimality of Algorithm CONV-HMM.
More specifically, we will show four limitations, the global
memory bandwidth limitation, the global memory latency
limitation, the shared memory bandwidth limitation, and the
shared memory latency limitation to implement image con-
volution on the HMM. Clearly, each of the n? pixels in the
global memory must be accessed at least once and at most
w pixels in the global memory can be accessed in a time
unit. Hence, at least Q(%) time units are necessary (the
global memory bandwidth limitation). The HMM has totally
dp threads and each thread can send at most one memory
access request to the global memory in L time units. Hence,
dp threads can send at most tdp memory access requests in
tL time units for any t. Since n? memory access requests
must be destined for the global memory, tdp > n? must be
satisfied to send n? memory access requests by dp threads.
Thus, tL > Q(Ti—;) time units are necessary (the global
memory latency limitation). For image convolution we need
to compute a(i + s,§ +t) - b(v + s,v + t) for n?v? pairs of
a(i + s, +t) and b(v + s,v + t). These elements must be
read from the global memory or the shared memory. Since the
HMM has d shared memories and one global memory with
w memory banks each, at most (d + 1)w elements can be

read at the same time. Thus, at least (;i‘l’)zw = (%) time
units are necessary (the shared memory bandwidth limitation).
Also, each of the dp threads in the HMM can send at most
one memory access request to a shared memory in [time units
or to the global memory in L time units. Since n?v? memory
access requests must be sent to the shared memories or the
global memory and [< L, at least Q(” o l) time units are
necessary (the shared memory latency llmltatton). Thus, we

have,

Theorem 6: Any parallel implementation of image convo-
lution in the HMM with d DMMs with p threads each, width
w, global memory latency L, and shared memory latency [,
takes at least Q(" - + " dp + "jfj + "21;[) time units.

From Theorem 6 Algorithm CONV-HMM shown for Theo-
rem 5 is time optimal.

We show the conditions to hide the memory access latency.
The global memory bandwidth hides the global memory
latency if =~ > ”d—pL, that is, wL < dp is satisfied. Strictly
speaking, the condition must be wL = O(dp), because the
computing time is evaluated using big-O notation. However,
to avoid confusion, we simply write wlL < dp. Recall that
the global memory is connected to L-stage pipeline with each
stage having w registers. Hence, memory access requests are
queued in wL pipeline registers. Also, at most one memory
access request by each of dp threads in the HMM can be
queued. Hence, it is possible to fill pipeline registers with
memory access requests only if wL < dp is satisfied. The
shared memory bandwidth hides the shared memory latency if
”w(”i > n’ v °l , that is, wl < p. Recall that the shared memory
in each DMM is connected to [-stage pipeline with each stage
having w registers. At most one memory access request by

631

each of p threads in a DMM, and memory requests are queued
in wl pipeline registers. Hence, it is possible to fill pipeline
registers with memory access requests if wl < p is satisfied.
Suppose that both wlL < dp and wl < p are satlsﬁed If this
is the case, Algorlthm CONV-HMM runs O(%- + ™ dz) time
units. Intuitively, O(2~) and O(%%-) correspond to the global
m2emory access and the shared memory access, respectively. If
o> ot that is v? < d, the time for global memory access
domlnates that for the shared memory access. Hence, we can
think that global memory access throughput in Algorithm
CONV-HMM is maxrmlzed if v2 < d, because Algorithm
CONV-HMM runs O(*-) time units. On the other hand, if
v? > d, Algorithm CONV-HMM runs O(” 7{’,). Recall that
sequential algorithm for image convolution runs in O(n%v?)
time. Also, w threads in a warp out of p threads in a DMM
work in each time unit, and thus wd threads in the HMM work
in parallel. Hence, the acceleration ratio can be up to wd, and
the running time of O(Z 7’2) attains optimal speed-up. Thus,

wd
we can say that parallelism is maximized if v2 > d.

'I’l’U2

V. MATRIX MULTIPLICATION ON THE HMM

In this section, we first show Algorithm MUL-DMM that
computes the product of two matrices on the DMM. After that,
we present Algorithm MUL-HMM that computes the product
of two matrices on the HMM.

Let us start with the computation of the product of two
matrices a and b of size n X n (n > w) each stored in the
shared memory of a DMM. The goal is to compute a matrix
¢ of the same size such that ¢ = a x b. In other words,

m—1

c(i,j) = Y ali,

k=0

k) - b(k, j)

is computed for all ¢ and j (0 <4i,j <n—1)

Suppose p (w < p < n?) threads are used for computing the
product. For simplicity, we assume that n and p are multiples
of w, and n? is a multiple of p. We partition output matrix ¢
into % groups of p elements each in a raster scan order of
c. Output matrix ¢ is computed group by group in turn. We
formally describe a parallel algorithm for the case that p = n.
Clearly, each row of ¢ corresponds to a group if this is the
case.

[Algorithm MUL-DMM]
fori<-0ton—1do
for j <~ 0 to n — 1 do in parallel
T(j) performs c(i,7) < 0
for k<~ 0ton—1do
T(j) performs c(i,j) < c(i,j) + a(i, k) - b(k, 5)

The reader should have no difficulty to modify Algorithm
MUIL.-DMM to compute the product when p = n. If p < n
then each row of ¢ is computed in % rounds. If p > n then %
rows of ¢ is computed at the same time.

Let us evaluate the computing time. For each value of k, p
threads read p elements in ¢, max(%,1) elements in a and p
element in b, and write p elements in c. Since these memory

access operation is conflict-free, this procedure takes O(Z +1)
time units from LLemma 1. To compute the value of p elements
in ¢, this operation is repeated n times. Thus, the value of p
elements in ¢ can be computed in O("2 +nl) time units. Since
this procedure is repeated ”;
. CO("2 +nl) = (% "Sl) time units. Thus, we have,
Lemma 7: Algorithm MUL- DMM comPutes the product of
two matrices of size n x n each in O(% + =) time units
using p threads on the DMM with width w and latency [.

Next, we will show an algorithm for matrix multiplication
on the HMM. We assume that two matrices a and b of size
n X n (n > w) each are stored in the global memory of
the HMM. The goal is to store the product of a and b in
matrix ¢ of the global memory. Let m be a parameter such
that w < m < n and let s = . We partition matrix c into 52
submatrices of size m xm each. Let d (< s?) be the number of
DMMs in the HMM. Each DMM is assigned #; submatrices
of ¢, and is responsible for computing the resulting values of
them. Let a[i, 7], b[i, 7], and c[i, j] (0 < 4,5 < s — 1) denote
submatrices of size m x m in i-th row and j-th column of a,
b, and ¢, respectively. Clearly, c[i, j] can be computed by

times, the total computing time

is

s—1

> ali, k] x blk, 5],

k=0

cli, jl

where a[i, k] X bk, j] denotes the product of two matrices.
Thus, a DMM assigned to c[i, j] can compute c[i, j] as follows:

[Algorithm MUL-HMM for ¢, j|]
fork+0tos—1
Copy ali, k] and b[k, j] from the global memory to
the shared memory
Compute cli, j] « cli, j] + ali, k] x blk, j] by
Algorithm MUL-DMM
Copy cli, j] from the shared memory to the global memory

We assume that c[i, j] in the %hared memory is initialized by
zero. Since c[i, j] stores S 5_ 1 ali, k] x b[k, 7] when Algorithm
MUIL.-HMM terminates, the product of two matrices is com-
puted correctly. Since the HMM has d DMMs, d c[i, j]s can be
C(z)mputed in parallel, and this parallel computation is repeated
2 times.

Let us evaluate the computing time. First, d DMMs copy d
submatrices of a and b, respectively, from the global memory
to the shared memory. Since each submatrix has m? elements,

. . . o 2 2
this copy operation can be done in O(d;’j + %)

O(dm + mpL) time units from Lemma 3. After that, Algo-
rithm MUL-DMM is executed by d DMMs in parallel. This
matrix multiplication takes O(™- + ";l) time units from
Lemma 7. These copy and matrix multiplication operatlons
are repeated s times, c[i, j] can be computed in s - O(dﬂ +
m2L + m3

P w
to the global memory in O

+ ";l) time units. Finally, d c[i, j|s are copied

2 2 . .
(dm> 4 m L) time units. Hence, d
w P

. . 2 2 3 3
DMM:s computes d submatrices in s-O (%2 +mTL +7 —I—mTl)
time units. Since the HMM computes s2 submatrices, the total

632

computing time is % s - O(d’;‘ 4+ L om T + mT%) =
O(mw + 2 md + 7= —|— dp) Thus, we have

Theorem 8 Algorithm MUL-HMM computes the products
of two matrice@ of sizemxm (w<m< n) each in O(—3 +
md + =+ Zpl) time units using d (< 2,) DMMs with p
> w) threads each on the HMM with width w, global memory
latency L and shared memory latency .

Note that, in Algorithm MUL-HMM, the shared memory of
each DMM must store O(m?) elements.

VI. LOWER BOUND OF MATRIX MULTIPLICATION

Let us discuss the lower bound for Theorem 8. We first show
that, at least Q(”) read operations to the global memory are
necessary if the capacity of each shared memory is O(m?). We
can assume that each element in ¢ is computed in one of the
DMM, and evaluate the number of memory access destined for
the global memory; it may be possible that two or more DMMs
computes a particular element of ¢ partially, and the resulting
values are combined. However, such cooperative computation
does not decrease the total number of read operations to the
global memory necessary to compute a particular element.
It should be clear that, to compute each element c(i, j), the
DMM computing ¢(i,) must read n elements in the i-th row
of a and those in j-th column of b. Hence, the DMM must read
2n elements. Since the shared memory of the DMM can store
O(m?) elements, it can compute at most O(m?) elements in ¢
at the same time. Since we use big-O notation and ignore the
constant factor, we can assume that DMM can compute at most
m? elements of c at the same time. Suppose that, a DMM must
read o rows of a and 8 rows of b to compute m? elements
of ¢. Clearly, m? < «f must be satisfied. Since the DMM
reads na+nf elements in the global memory, o+ 8 must be
minimized. From o+ 8 > 2y/a8 > 2m, we have a = S =m
to minimize a 4+ . If a DMM computes a submatrix of size
m X m, a = = m is satisfied. Hence, Algorithm MUL.-
HMM performs the minimum memory read operations to the
global memory. Also, to compute s2 submatrix, s2-2n = %
elements in the global memory must be read. Since at most
w elements can be read from the global memory in a time
unit, at least "i]) time units are necessary (the global
memory bandwidth limitation). Further, the HMM has totally
pd threads, and each thread can send one memory access
reque%t to the global memory in L time units. Hence, to read
2” elements in the global memory, at least Q(7 pL) time units
are necessary (the global memory latency ltmztatzon)

Next, let us discuss the limitation of shared memory access.
As we have discussed, at most (d + 1)w elements in d shared
memory and one global memory can be read. Since at least n?
read operations to a (or b) must be performed to compute c,
at least (dﬁ)w = Q5) time units are necessary (the shared
memory bandwidth llmltatlon). Further, each of the dp threads
in the HMM can send at most one memory access request to
a shared memory in [time units or to the global memory in L
time units. Since n® memory access requests must be sent to
the shared memories or the global memory and [< L, at least

Q(Z—Z) time units are necessary (the shared memory latency
limitation). Thus, we have,

Theorem 9: Any parallel implementation of straightforward

matrix multiplication using d DMMs with p threads each in
the HMM with width w, global memory latency L, and shared
memory latency [, takes at least Q(-"— :jdz + % + ’}i—zf
time units.
Hence, Algorithm MUL-HMM for Theorem 8 is time optimal.
Note that, Theorem 9 is not the lower bound for matrix
multiplication. It just shows the lower bound for implementa-
tions of the O(n?)-time straightforward matrix multiplication
algorithm. It is well-known that the product of two matrices
of size n x n can be computed in less than o(n?) time by
Strassen’s algorithm [23], [24], [25]. Hence, it is possible that
matrix multiplication can be computed faster than the lower
bound shown in Theorem 9, if the Strassen’s algorithm is
implemented in the HMM. However, Strassen’s algorithm is
complicated and has a large constant factor in the computing
time, and it is not practically fast.

Similarly to image convolution, we discuss the conditions
for hiding memory access latency. To hide the global memory
latency, % > :’jde, that is, wL < dp must be satisfied.

3 3
Similarly, to hide the shared memory latency, g—w > % that
is, wl < p must be satisfied. Note that these conditions are
the same as those for image convolution.

If both wL < cgp and 3wl < p are satisfied, AlgorithmﬂMUL—
HMI\S/I runs O(.7— + 7-) time units. Intuitively, O(;) and
O(%=) correspond to the global memory access and the shared
memory access, respectively. If % > %, that is m < d, the
time for global memory access dominates that for the shared
memory access. Hence, we can think that the global memory
access throughput in Algorithm MUL-HMM is maximized if
m < d, because Algorithm MUL-HMM runs O(TZ—Z)) time
units. On the other hand, if m > d, Algorithm MUL-HMM
runs 0(3—2) Recall that sequential algorithm runs in O(n?)
time. Also, w threads in a warp out of p threads in a DMM
work in each time unit and thus wd threads work in parallel.
Hence, the acceleration ratio can be up to wd, and the running
time of O(%) attains optimal speed-up. Thus, we can say that
the parallelism is maximized if m > d.

VII. EXPERIMENTAL RESULTS

We have implemented our image convolution and matrix
multiplication using CUDA C, and evaluated the performance
on GeForce GTX TITAN. An algorithm for a DMM is
implemented as a CUDA block. Hence, our implementation
invokes d CUDA blocks to implement an algorithm on the
HMM with d DMMs.

Figure 3 shows the computing time of image convolution of
a 1024 x 1024 image with respect to a 7 x 7 kernel. Each pixel
is a 4-byte float number. From the table, the computing time
is almost the same for p = 512 and p = 1024 when d > 32.
Hence, we can think that the global memory access latency
is hidden when p = 512 and d > 32. Therefore, the number
d of CUDA blocks must be at least 32 and the number p

633

Time[ms]
100

p:the number of threads/CUDA block

0.1 7 4 8 16 3204 128 236 512 1024
d: the number of CUDA blocks
Fig. 3. The running time for image convolution when v = 3
Time[ms]
100

' (2v'+ 1) X (21) + 1) filter size

pomitt

0.1

@: thenumblr of CUDA blocks =0 212 10

Fig. 4. The running time for image convolution when p = 1024

of threads per CUDA block must be at least 512 to maximize
the performance. Figure 4 shows the computing time of image
convolution when p = 1024. Clearly, the computing time is
longer for larger v. For each value of v, the computing time is
almost the same when d > 64. This is because the streaming
multiprocessors on the GPU execute CUDA blocks in turn, if
d is large.

Figure 5 shows the computing time for matrix multiplica-
tion of two 1024 x 1024 float matrices. Similarly to image
convolution, we can see that the computing time is almost the
same for p = 256,512 and 1024 when d > 32, because the
global memory access latency is hidden. Figure 6 shows the
computing time when p = 1024. Since the size of matrix is
1024 x 1024, the number of submatrix is 256 when m = 64.
Hence, the computing time is evaluated only for d < 256
CUDA blocks. We can see that the computing time is shorter
for larger m. However, the computing for m = 32 is not
so different from that for m 64, because the size of

Time[ms]

1000} p:the number of threads/CUDA block |

100}

10}

3 4 8 16 32 64 128 236 512 1024
d: the number of CUDA blocks

Fig. 5. The running time for matrix multiplication when m = 32
Time[ms]
1000 - - - - - - -
m X m: the size of each submatrix
m =16 =
m =32 -+
m = 64 x

1004

10}

! 7 4 8 16 32 64 128 256 512 T024
d: the number of CUDA blocks
Fig. 6. The running time for matrix multiplication when p = 1024

submatrix is too large when m = 64. Each submatrix occupies
64 x 64 x 4 = 16KBytes in the shared memory, and we need
to store three matrices. Since the size of the shared memory
is up to 48Kbyte [4], there is no extra space in the shared
memory.

VIII. CONCLUSION

We have shown two parallel implementations for image
convolution and matrix multiplications on the HMM, which
is a theoretical parallel computing model for CUDA-enabled
GPUs. We have proved that the running time of our imple-
mentations are time optimal. We also clarified the conditions
for hiding memory access latency, and for maximize global
memory access throughput and parallelism. Finally, we have
provided experimental results on GeForce GTX Titan to sup-
port our theoretical analysis.

[1]

=
B

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

REFERENCES

W. W. Hwu, GPU Computing Gems Emerald Edition.
Kaufmann, 2011.

Y. Takeuchi, D. Takafuji, Y. Ito, and K. Nakano, “Ascii art generation
using the local exhaustive search on the GPU,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 194-200.
K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge detection
using a GPU,” in Proc. of International Conference on Networking and
Computing. 1EEE CS Press, Nov. 2010, pp. 279-280.

NVIDIA Corporation, “NVIDIA CUDA C programming guide version
5.0, 2012.

, “NVIDIA CUDA C best practice guide version 3.1,” 2010.

D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations
of a paralle]l algorithm for computing Euclidean distance map in mul-
ticore processors and GPUS,” International Journal of Networking and
Computing, vol. 1, no. 2, pp. 260-276, July 2011.

K. Nakano, “Optimal parallel algorithms for computing the sum, the
prefix-sums, and the summed area table on the memory machine
models,” IEICE Trans. on Information and Systems, vol. E96-D, no. 12,
pp. 2626-2634, 2013.

——, “Simple memory machine models for GPUSs,” International Jour-
nal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1, pp.
17-37, 2014.

——, “The hierarchical memory machine model for GPUs,” in Proc.
of International Parallel and Distributed Processing Symposium Work-
shops, May 2013, pp. 591-600.

K. Nakano, S. Matsumae, and Y. Ito, “The random address shift to
reduce the memory access congestion on the discrete memory machine,”
in Proc. of International Symposium on Computing and Networking,
Dec. 2013, pp. 95-103.

K. Nakano, “Sequential memory access on the unified memory machine
with application to the dynamic programming,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 85-94.

A. Kasagi, K. Nakano, and Y. Ito, “Offline permutation algorithms
on the discrete memory machine with performance evaluation on the
GPU,” IEICE Transactions on Information and Systems, vol. Vol. E96-
D, no. 12, pp. 2617-2625, Dec. 2013.

, “An optimal offline permutation algorithm on the hierarchical
memory machine, with the GPU implementation,” in Proc. of Interna-
tional Conference on Parallel Processing (ICPP), Oct. 2013, pp. 1-10.
D. Man, K. Nakano, and Y. Ito, “The approximate string matching on the
hierarchical memory machine, with performance evaluation,” in Proc. of
International Symposium on Embedded Multicore/Many-core System-on-
Chip. 1IEEE CS Press, Sept. 2013, pp. 79-84.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd
Edition). Prentice Hall, 2007.

J. F. Canny, “A computational approach to edge detection,” TEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698,
1986.

V. Podlozhnyuk, “Image convolution with CUDA,” July 2007.

A. Kasagi, K. Nakano, and Y. Tto, “An implementation of conflict-free
off-line permutation on the GPU,” in Proc. of International Conference
on Networking and Computing, 2012, pp. 226-232.

D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. on Computers, vol. C-24, no. 12, pp. 1145- 1155, Dec.
1975.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. M. andLARRY Rudolph,
and M. Snir, “The NYU ultracomputer — designing an MIMD shared
memory parallel computer,” JEEE Trans. on Computers, vol. C-32, no. 2,
pp. 175 — 189, Feb. 1983.

S. G. AKl, Parallel Sorting Algorithms. Academic Press, 1985.

K. E. Batcher, “Sorting networks and their applications,” in Proc. AFIPS
Spring Joint Comput. Conf., vol. 32, 1968, pp. 307-314.

V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, pp. 354-356, Aug. 1969.

J. Li, S. Ranka, and S. Sahni, “Strassen’s matrix multiplication on
GPUSs,” in Proc. of International Conference on Parallel and Distributed
Systems, 2011, pp. 157-164.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. MIT Press, 1990.

Morgan

