
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Special Section on Parallel and Distributed Computing and Networking

Offline Permutation Algorithms on the Discrete Memory Machine
with Performance Evaluation on the GPU

Akihiko KASAGI†, Nonmember, Koji NAKANO†, and Yasuaki ITO†, Members

SUMMARY The Discrete Memory Machine (DMM) is a theoretical
parallel computing model that captures the essence of the shared memory
access of GPUs. The bank conflicts should be avoided for maximizing the
bandwidth of the shared memory access. Offline permutation of an array
is a task to copy all elements in array a into array b along a permutation
given in advance. The main contribution of this paper is to implement a
conflict-free permutation algorithm on the DMM in a GPU. We have also
implemented straightforward permutation algorithms on the GPU. The ex-
perimental results for 1024 double (64-bit) numbers on NVIDIA GeForce
GTX-680 show that the straightforward permutation algorithm takes 247.8
ns for the random permutation and 1684ns for the worst permutation that
involves the maximum bank conflicts. Our conflict-free permutation algo-
rithm runs in 167ns for any permutation including the random permutation
and the worst permutation, although it performs more memory accesses. It
follows that our conflict-free permutation is 1.48 times faster for the ran-
dom permutation and 10.0 times faster for the worst permutation.
key words: memory machine models, data movement, bank conflict, shared
memory, GPU, CUDA

1. Introduction

The GPU (Graphics Processing Unit), is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [1]–[3]. Latest GPUs are designed for gen-
eral purpose computing and can perform computation in ap-
plications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application de-
velopers [1], [4]. NVIDIA provides a parallel computing ar-
chitecture called CUDA (Compute Unified Device Architec-
ture) [5], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and
memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multi-
core processors [6], since they have hundreds of processor
cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [5]. The
shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-64 Kbytes. The global memory is
implemented as an off-chip DRAM, and has large capacity,
say, 1.5-6 Gbytes, but it has high access latency. The effi-
cient usage of the shared memory and the global memory is
a key for CUDA developers to accelerate applications using
GPUs. In particular, we need to consider the bank conflict of

Manuscript received January 1, 2010.
Manuscript revised January 1, 2010.
†The authors are with Department of Information Engineering,

Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima,
739-8527, JAPAN

DOI: 10.1587/trans.E0.??.1

the shared memory access and the coalescing of the global
memory access [2], [6], [7]. The address space of the shared
memory is mapped into several physical memory banks. If
two or more threads access to the same memory banks at
the same time, the access requests are processed sequen-
tially. Hence, to maximize the memory access performance,
threads of CUDA should access to distinct memory banks to
avoid the bank conflicts of the memory accesses. To maxi-
mize the bandwidth between the GPU and the DRAM chips,
the consecutive addresses of the global memory must be ac-
cessed at the same time. Thus, CUDA threads should per-
form coalesced access when they access the global memory.

In our previous paper [8], we have introduced two
models, the Discrete Memory Machine (DMM) and the
Unified Memory Machine (UMM), which reflect the essen-
tial features of the shared memory and the global mem-
ory of NVIDIA GPUs. The outline of the architectures of
the DMM and the UMM are illustrated in Figure 1. In
both architectures, a sea of threads (Ts) are connected to
the memory banks (MBs) through the memory management
unit (MMU). Each thread is a Random Access Machine
(RAM) [9], which can execute fundamental operations in
a time unit. We do not discuss the architectures of the sea
of threads and the MMU in this paper. We can imagine that
the sea of threads consists of a set of multi-core processors
which can execute many threads in parallel. Also, the MMU
should include a multistage network to route memory access
requests to the MBs. Threads are executed in SIMD [10]
fashion, and the processors run on the same program and
work on the different data.

MBs constitute a single address space of the memory.
A single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
i is stored in the (i mod w)-th bank, where w is the num-
ber of MBs. The main difference of the architectures of
the DMM and the UMM is the connection of the address
line between the MMU and the MBs, which can transfer
an address value. In the DMM, the address lines connect
the MBs and the MMU separately, while a single address
line from the MMU is connected to the MBs in the UMM.
Hence, in the UMM, the same address value is broadcast to
every MB, and the same address of the MBs can be accessed
in each time unit. On the other hand, different addresses of
the MBs can be accessed in the DMM. The DMM and the
UMM capture the essence of the shared memory access and
the global memory access of current GPUs. In our previ-
ous papers [8], [11], we have presented efficient algorithms

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

including matrix transpose and computing the sum and the
prefix-sums on the DMM and the UMM.

DMM UMM

MMU

MB MB MB MB

MMU

MB MB MB MB

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

a sea of threads a sea of threads

data lineaddress line

Fig. 1 The architectures of the DMM and the UMM

Offline permutation is a task to move data along a per-
mutation given beforehand. Accelerating offline permuta-
tion is very important, because it has many applications.
For example, matrix transpose, which is one of the impor-
tant permutations, is frequently used in matrix computation.
It is known that the computation of FFT can be done by a
multistage network in which each stage involves permuta-
tion [12]. Sorting network such as bitonic sorting [13], [14]
also involves permutation in each stage. Further, communi-
cation on processor networks such as hypercubes, meshes,
and so on can be emulated by permutation on the shared
memory. Thus, parallel algorithms on processor networks
can be simulated on the shared memory machine by data
permutations.

If a parallel algorithm performs offline permutations
frequently, the acceleration of offline permutations has a
large impact. Some algorithms frequently execute offline
permutation. For example, bitonic merging [14] be imple-
mented using the perfect shuffle permutation [15] and the
compare-exchange of adjacent values. The implementation
repeatedly performs the alternation of data movement along
the perfect shuffle permutation and the compare-exchange.
As illustrated in Figure 2, the implementation for 16 data in-
cludes 4 stages of perfect shuffle permutation and 4 stages of
the compare-exchange. Since the compare-exchange of ad-
jacent values is a light-weight task with conflict-free mem-
ory access, the acceleration of perfect shuffle permutation
will give a large impact on the running time of the bitonic
sorting.

The main contribution of this paper is to present
conflict-free offline permutation algorithm on the DMM and
implement it to run on the shared memory in the GPU. Sup-
pose that we have two arrays a and b of size n each. Let
P be a permutation of (0, 1, . . . , n − 1). In other words,
P(0),P(1), . . . , P(n − 1) take distinct integer values in the
range [0, n − 1]. Offline permutation along P is a task

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
data movement compare-exchange

Fig. 2 An implementation of bitonic merge using shuffle exchange

to copy a[i] to b[P(i)] for all i (0 ≤ i ≤ n − 1). The
destination-designated (D-designated) algorithm just per-
forms b[P(i)] ← a[i] for all i. However, writing operation
in array b may involve bank conflicts. Our idea is to use
two permutations S and D which can be obtained from P.
Using these two permutations our conflict-free permutation
algorithm performs b[D(i)]← a[S (i)] for all i. Two permu-
tations S and D are determined so that memory access oper-
ations to arrays a and b have no bank conflict. Two permu-
tations S and D can be determined using a graph theoretic
result about bipartite graph coloring. This idea is originally
shown in our previous paper [8]. Our main contribution is
to actually implement permutation algorithms including the
D-designated and our conflict-free permutation algorithms
on the shared memory of the latest GPU, NVIDIA GeForce
GTX-680.

The experimental results for 1024 double (64-bit) num-
bers on NVIDIA GeForce GTX-680 show that the straight-
forward permutation algorithm takes 247.8 ns for the ran-
dom permutation and 1684ns for the worst permutation that
involves the maximum bank conflicts. Our conflict-free per-
mutation algorithm runs in 167ns for any permutation in-
cluding the random permutation and the worst permutation,
although it performs more memory accesses. It follows that
our conflict-free permutation is 1.48 times faster for the ran-
dom permutation and 10.0 times faster for the worst permu-
tation. Further, we show a conflict-free in-place permutation
method that computes S and D in place. Quite surprisingly,
for the transpose, the shuffle, and the bit reversal permuta-
tions, it runs in 105.4-109.0ns. Since the simple copy oper-
ation of two arrays takes 102.8ns, our conflict-free in-place
permutation method has very small overhead for permuta-
tion. We also present the experimental results for 1024 float
(32-bit) numbers.

This paper is organized as follows. First, we define the
DMM formally in Section 2. In Section 3, we define off-line
permutation and show straightforward algorithms. Section 4
shows our conflict-free permutation algorithm and Section 5
describes the details of the implementation. In Section 6,
we define several important permutations used for our ex-
periment, and present an in-place permutation method. In

KASAGI et al.: OFFLINE PERMUTATION ALGORITHMS ON THE DISCRETE MEMORY MACHINE WITH PERFORMANCE EVALUATION ON THE GPU
3

Section 7, experimental results using GeForce GTX-680 are
shown. Section 8 concludes our work.

2. Discrete Memory Machine (DMM)

The main purpose of this section is to define the Discrete
Memory Machine (DMM) introduced in our previous pa-
per [8]. The reader should refer [8] for the details of the
DMM.

We will define the Discrete Memory Machine (DMM)
of width (or the number of memory banks) w and memory
access latency l. Let m[i] (i ≥ 0) denote a memory cell of
address i in the memory. Let B[j] = {m[j],m[j + w],m[j +
2w],m[j+3w], . . .} (0 ≤ j ≤ w−1) denote the j-th bank of the
memory. Clearly, a memory cell m[i] is in the (i mod w)-th
memory bank. Figure 3 illustrates memory banks of DMM
for w = 4. We assume that memory cells in different banks
can be accessed in a time unit, but no two memory cells
in the same bank can be accessed in a time unit. Also, we
assume that l time units are necessary to complete an access
request and continuous requests are processed in a pipeline
fashion through the MMU. Thus, it takes k+ l− 1 time units
to complete k access requests to a particular bank.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

memory banks of DMM

B[0] B[1] B[2] B[3]

Fig. 3 Memory banks for w = 4

Let T (0), T(1), . . . , T (p − 1) be p threads. We assume
that p threads are partitioned into p

w groups of w threads
called warps. More specifically, p threads are partitioned
into p

w warps W(0),W(1), . . ., W(p
w − 1) such that W(i) =

{T(i·w), T(i·w+1), . . . , T((i+1)·w−1)} (0 ≤ i ≤ p
w
−1). Warps

are dispatched for memory access in turn, and w threads
in a warp try to access the memory at the same time. In
other words, W(0),W(1), . . . ,W(p

w
− 1) are dispatched in a

round-robin manner if at least one thread in a warp requests
memory access. If no thread in a warp needs memory ac-
cess, such warp is not dispatched for memory access. When
W(i) is dispatched, w thread in W(i) sends memory access
requests, one request per thread, to the memory. We say
that the bank conflict occurs if two or more threads in a
warp access the same bank. The cost of the memory ac-
cess by a warp is the maximum number of memory requests
destined for a single bank. For example, if w threads in a
warp access the distinct memory banks, the cost is 1. If
w threads access to the same bank, the cost is w. We also

assume that a thread cannot send memory requests continu-
ously. If a thread sends a memory request, it is transferred to
the (imaginary) memory access queue with l-stage pipeline
registers. We assume that the memory access is completed
when it reaches the last stage. Figure 4 shows an exam-
ple of memory access on the DMM with w (= 4) memory
banks and memory access latency of l (= 5). We assume that
each memory access request is completed when it reaches
the last pipeline stage. Two warps W(0) and W(1) access to
〈m[7],m[5],m[15],m[0]〉 and 〈m[10], m[11], m[12], m[9]〉,
respectively. In the DMM, memory access requests by W(0)
are separated into two pipeline stages, because m[7] and
m[15] are in the same bank B[3]. Those by W(1) occupies
1 stage, because all requests are destined for distinct banks,
one request for each bank. Thus, the memory requests oc-
cupy three stages, and it takes 3 + 5 − 1 = 7 time units to
complete the memory access.

3. Offline Permutation and Conventional Algorithms

The main purpose of this section is to define offline permu-
tation and show conventional algorithms for this task.

Suppose that we have two arrays a and b of size n each.
Let P be a permutation of (0, 1, . . . , n − 1). In other words,
P(0),P(1), . . . , P(n − 1) take distinct integer values in the
range [0, n − 1]. Offline permutation along P is a task to
copy a[i] to b[P(i)] for all i (0 ≤ i ≤ n − 1).

Suppose that we have n threads for the task of offline
permutation. We assume that P(0),P(1), . . . , P(n − 1) are
stored in an array p of size n, such that p[i] = P(i) for all i
(0 ≤ i ≤ n−1). Let T (i) (0 ≤ i ≤ n−1) denote a thread. The
following algorithm, D-designated permutation algorithm,
performs the offline permutation along P.

[Destination-designated permutation algorithm]
for i← 0 to n − 1 do

T(i) performs b[p[i]]← a[i]

Clearly, reading operations from arrays a and p have
no bank conflict. However, writing operation in array b may
have bank conflict.

For example, if P = (0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14,
3, 7, 11, 15) and w = 4, then the first warp W(0) performs
writing operation to b[0],b[4],b[8], and b[12], which are in
the same bank B[0] (Figure 3). Hence, writing operations
by W(0) have bank conflict.

We can avoid writing bank conflict if we use the S-
designated permutation. Let P−1 be the inverse of P, that
is, P−1(P(i)) = i for all i (0 ≤ i ≤ n − 1). We assume that
P−1(0), P−1(1), . . . , P−1(n−1) are stored in an array q of size
n, such that each q[i] stores P−1(i). The following algorithm
performs the offline permutation along P.

[Source-designated permutation algorithm]
for i← 0 to n − 1 do

T(i) performs b[i]← a[q[i]]

Let us show that this algorithm performs the offline permu-

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

w

l-stage pipeline registers

057 15

10 11 12 9

W(0)

W(1)DMM

0

5

715

10

11

12

9

B[0]

B[1]

B[2]

B[3]

Fig. 4 The memory access on the DMM

tation along P correctly. Clearly, when the S-designated per-
mutation algorithm terminates, b[i] = a[P−1(i)] holds for all
i (0 ≤ i ≤ n−1). It follows that b[P(i)] = a[P−1(P(i))] = a[i]
holds for all i. Thus, the S-designated permutation algorithm
performs the offline permutation along P correctly.

It should be clear that writing operations in b and read-
ing operations from q have no bank conflict. However, read-
ing operations from a may have bank conflict. For example,
for P defined above, we have P = P−1. Hence, reading op-
erations have always bank conflicts.

We will show that, bank conflict-free permutation is
possible if we use two arrays s and d determined from P ap-
propriately. Let S and D be permutations over (0, 1, . . . , n −
1). Suppose that D(S −1(i)) = P(i) for all i (0 ≤ i ≤ n − 1),
where S −1 denotes the inverse of S . Let s and d be arrays
of size n storing the values of S and D respectively. The
following algorithm performs permutation along P:

[Conflict-free permutation algorithm]
for i← 0 to n − 1 do

T(i) performs b[d[i]]← a[s[i]]

Let us see the correctness of the algorithm. When the algo-
rithm terminates, b[D(i)] is storing a[S (i)] for all i (0 ≤ i ≤
n − 1). Hence, b[D(S −1(i))] is storing a[S (S −1(i))] for all i.
Thus, b[P(i)] = a[i] is satisfied and permutation along P is
performed correctly.

Clearly, reading operations for array s and d are
conflict-free. However, access to arrays a and b may have
bank conflicts. If we define S and D appropriately, access
to arrays s and d can be conflict-free. Let P be a per-
mutation defined above. We define S and D as follows:
S = (0, 5, 10, 15, 1, 6, 11, 12,2, 7,8, 13, 3, 4,9, 14) and D =
(0, 5, 10, 15, 4,9, 14, 3, 8,13, 2, 7, 12, 1, 6, 11). For such S ,
we have S −1 = (0, 4, 8, 12, 13,1, 5, 9, 10, 14, 2, 6, 7, 11, 15, 3).
Hence, D · S −1 = (0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10,14, 3, 7,
11, 15) = P. Thus, after our conflict-free permuta-
tion algorithm using S and D are executed, permuta-
tion along P can be completed. Also, reading opera-
tions from a and writing operations in b are conflict-free.
For example, warp W(1) reads from a[1], a[6], a[11], a[12]
which are in banks B[1], B[2], B[3], B[0], respectively. It
also writes in b[4], b[9], b[14], b[3] which are in banks
B[0], B[1], B[2], B[3], respectively.

Let us evaluate the computing time of our conflict-free
permutation algorithm. We assume that n threads are used
to permute an array of size n. Since we have n

w
warps of w

threads each and reading from array s involve no bank con-
flict, reading from array s takes O(n

w
+ l) time units. Simi-

larly, reading from array a and d, and writing in array b also
take O(n

w
+ l) time units. On the other hand, in the worst

case, the D-designated and S-designated permutation algo-
rithms take O(n + l) time units if memory access by a warp
is performed to the same bank.

4. Graph coloring based conflict-free permutation

This section is devoted to show how S and D are determined
from P to guarantee that the conflict-free permutation using
S and D involves no bank conflict. The same idea is used in
our previous paper [8].

We use an important graph theoretic result [16], [17] as
follows:

Theorem 1 (König): A regular bipartite graph with degree
ρ is ρ-edge-colorable.

Figure 5 illustrates an example of a regular bipartite graph
with degree 4 painted by 4 colors. Note that the graph may
have multiple edges. Each edge is painted by 4 colors such
that no node is connected to edges with the same color. In
other words, no two edges with the same color share a node.
The readers should refer to [16], [17] for the proof of Theo-
rem 1.

Fig. 5 A regular bipartite graph with degree 4

Suppose that a permutation P of (0, 1, . . . , n − 1) is

KASAGI et al.: OFFLINE PERMUTATION ALGORITHMS ON THE DISCRETE MEMORY MACHINE WITH PERFORMANCE EVALUATION ON THE GPU
5

given. We draw a bipartite graph G = (U,V, E) of P as
follows:

• U = {B[0], B[1], B[2], . . . , B[w − 1]} is a set of nodes
each of which corresponds to a bank of a.

• V = {B[0], B[1], B[2], . . . , B[w − 1]} is a set of nodes
each of which corresponds to a bank of b.

• For each pair source a[i] and destination b[P(i)], E has
a corresponding edge connecting B[i mod w](∈ U) and
B[P(i) mod w](∈ V).

Clearly, an edge (B[u], B[v]) (0 ≤ u, v ≤ w − 1) corre-
sponds to a word of data to be copied from bank B[u] of
a to B[v] of b. Also, G = (U,V, E) is a regular bipartite
graph with degree n

w . Hence, G is n
w -colorable from The-

orem 1. Suppose that all of the n edges in E are painted
by n

w
colors 0, 1, . . ., n

w
− 1. We determine value ci, j

(0 ≤ i ≤ n
w − 1, 0 ≤ j ≤ w − 1, 0 ≤ ci, j ≤ n − 1) such that

an edge (B[ci, j mod w], B[P(ci, j) mod w]) with color i corre-
sponds to a pair of source a[ci, j] and destination b[P(ci, j)].
It should have no difficulty to confirm that, for each i,

• w banks B[ci,0 mod w], B[ci,1 mod w], . . ., B[ci,w−1 mod
w] are distinct, and

• w banks B[P(ci,0) mod w], B[P(ci,1) mod w], . . .,
B[P(ci,w−1) mod w] are distinct.

Thus, we have the following important lemma:

Lemma 2: Let ci, j (0 ≤ i ≤ n
w
− 1, 0 ≤ j ≤ w − 1, 0 ≤ ci, j ≤

n − 1) denote a source defined above. For each i, we have,
(1) a[ci,0], a[ci,1], . . ., a[ci,w−1] are in different banks, and (2)
b[P(ci,0)], b[P(ci,1)], . . ., b[P(ci,w−1)] are in different banks.

We define permutation S and D using ci, j as follows:

S (i · w + j) = ci, j

D(i · w + j) = P(ci, j)

Suppose that the conflict-free permutation algorithm
using S and D above is executed. Since the copy operation is
performed from a[ci, j] to b[P(ci, j)], the permutation along P
is completed correctly. Also, each warp W(i) (0 ≤ i ≤ n

w
−1)

performs copy operation from a[c i,0], a[ci,1], . . . , a[ci,w−1] to
b[P(ci,0)], b[P(ci,1)], . . . , b[P(ci,w−1)]. From Lemma 2, read-
ing from a and writing in b by warp W(i) are conflict-free.

5. Implementation of conflict-free permutation algo-
rithm

The main purpose of this section is to show an implemen-
tation of the conflict-free permutation algorithm to the GPU
using CUDA.

Suppose that a permutation P of (0, 1, . . . , n − 1) is
given. We first draw a bipartite graph G = (U,V, E) of P
shown in the previous section and find an edge coloring. Re-
call that edges are painted by n

w
colors so that no two edge

with the same color shares a node. Clearly, the edge coloring
can be done by repeating a bipartite graph matching n

w times.
Also, it is known that a maximum bipartite graph matching,

which is a subset of edges sharing no node, can be found in
polynomial time [18]. We perform a bipartite graph color-
ing in offline. So, it is not necessary to find a bipartite graph
coloring using a GPU. Actually, we have implemented a bi-
partite graph coloring to run on a convectional Linux PC.

We have implemented permutation algorithms using
CUDA. Arrays a and b are defined as arrays of n 32-bit
float (or 64-bit double) numbers in the shared memory of
the GPU and arrays p, q, s, and d are defined arrays of n int
numbers in the shared memory as follows:

shared float a[n], b[n];
shared int p[n], q[n], s[n], d[n];

Also, three permutation algorithms are implemented by
CUDA device functions as follows:

[Destination-designated permutation algorithm]
device d-designated(float *a, float *b, int *p){
b[p[threadIdx.x]]=a[threadIdx.x];
}

[Source-designated permutation algorithm]
device s-designated(float *a, float *b, int *q){
b[threadIdx.x]=a[q[threadIdx.x]];
}

[Conflict-free permutation algorithm]
device conflict-free(float *a, float *b, int *s, int *d){
b[d[threadIdx.x]]=a[s[threadIdx.x]];
}
Each of the above codes is executed by every thread with a
unique ID represented by threadIdx.x such that threadIdx.x
= i for T (i).

To clarify the overhead of permutation, we also use a
simple copy CUDA device function as follows:

[Copy algorithm]
device copy(float *a, float *b){
b[threadIdx.x]=a[threadIdx.x];
}
In other words, the copy algorithm performs identical per-
mutation such that P(i) = i for all i.

Since the permutation algorithms uses one or two ar-
rays of p, q, s, and d, we call it the array-use methods.
Table 1 summarizes memory access operations performed
by each of the permutation algorithms. For example, the
D-designated permutation algorithm performs read opera-
tions for arrays a and p, and write operations for array b.
Hence, it performs 2n + n = 3n memory access operations.
Our conflict-free permutation algorithm performs 4n mem-
ory access operations. Thus, if each memory access opera-
tion have the same access time, the conflict-free permutation
algorithm is 4n

3n =
4
3 times slower than the D-designated and

S-designated permutation algorithms. However, as we are
going to show later, our conflict-free permutation algorithm
can be much faster than the D-designated and S-designated

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Memory access by each algorithm

Algorithms a b p q s d read write
Copy r w n n
D-designated r w r 2n n
S-designated r w r 2n n
Our conflict-free r w r r 3n n

permutation algorithms.

6. Important permutations and in-place permutation
method

This section first introduces several important permutations
used to evaluate the performance of permutation algorithms
later. Also, we introduce the in-place permutation method
which is the most efficient if a permutation is simple.

We use several widely-used important permutations as
follows:
Identical: Permutation such that P(i) = i for every i.
Random: One of all possible n! permutations is selected
uniformly at random.
Transpose: Suppose that a and b are matrices with dimen-
sion

√
n× √n. Transpose corresponds to the data movement

such that a is read in row-major order and b is written in
column-major order. That is, P(i · √n + j) = j · √n + i for
every i and j (0 ≤ i ≤ √n − 1, 0 ≤ j ≤ √n − 1).
Shuffle: Let imim−1 · · · i1 be the binary representation of
i. The shuffle permutation is defined as P(imim−1 · · · i1) =
im−1 · · · i1im. Shuffle permutation is used for shuffle ex-
changing in sorting networks [13], [14].
Bit-reversal: The bit-reversal permutation is defined as
P(imim−1 · · · i1) = i1 · · · im−1im. Bit-reversal is used for data
reordering in the FFT algorithms [12].

If a permutation P is simple and regular, it may be pos-
sible to compute the value of P(i) for every i (0 ≤ i ≤ n − 1)
easily. If this is the case, it is not necessary to use array p to
store the value P. Instead, each thread computes the value
of P(threadIdx.x) in place. For simplicity, we assume
n = 1024 and explain how the values of P(threadIdx.x)
for the transpose, the shuffle, and the bit-reversal permu-
tations are computed. Let p denote a local integer vari-
able of a thread to store the destination. The values of
P(threadIdx.x) for the transpose permutation can be com-
puted by the following formula:

p = (threadIdx.x >> 5) |
((threadIdx.x & 0x1f)<< 5);

After the value p above is computed, the destination-
designated permutation can be done by executing the fol-
lowing assignment in parallel.

b[p]=a[threadIdx.x];

The value of P(threadIdx.x) for the shuffle permutation
can be obtained by the following assignment:

p = (threadIdx.x >> 9) |
((threadIdx.x & 0x1ff)<< 1);

The following three assignments can perform the bit-
reversal permutation. In these formulas, two local variables
u and v are used to store temporal integers.

u = (threadIdxIdx.x >> 5) |
((threadIdxIdx.x & 0x1f)<< 5);

v = ((u & 0x318) >> 3) | ((u & 0x63)<< 3);
p= ((v & 0x252) >> 1) | ((v & 0x129)<< 1) |

(u & 0x84);

Next, let us consider the S-designated permutation for
the three permutations. Clearly, P−1 = P for the transpose
and the bit-reversal permutations. Hence, the same assign-
ments can be used for these two permutations. Also, the
source index of the shuffle permutation can be obtained by
the following assignment.

q = (threadIdx.x >> 1) |
((threadIdx.x & 0x1)<< 9);

Thus, the S-designated permutation method can be done in
the same manner as the D-designated permutation.

We can apply the same technique to the conflict-free
permutation. In other words, the values of S (i) and D(i) can
be computed in place without using arrays s and d. Let s
and d denote local integer variables to store the source and
the destination. Quite surprisingly, for n = 1024, the value
of s for the three permutations above can be computed by
the following formula:

s = threadIdx.x ˆ ((threadIdx.x & 0x1f) << 5);

The value d can be computed using the formulas to com-
pute p. For example, the value d for the transpose can be
computed using s as follows:

d = (s>> 5) | ((s & 0x1f)<< 5);

After the values of s and d are computed, the conflict-free
permutation can be done by executing the following assign-
ment in parallel.

b[d]=a[s];

For the shuffle and the bit-reversal permutations, we can
use the above formula for computing s as it is to obtain the
conflict-free permutation.

Note that the in-place permutation approach can be
used only for simple permutations such that the values p,
q, s, and d can be computed by simple formulas without
using arrays to store the pre-computed values. As we have
shown, the transpose, the shuffle, and the bit-reversal per-
mutations are examples of simple permutations. However,
in general, it may not be possible to compute the values p,
q, s, and d by simple formulas if the permutation has no
regularity. In particular, there is no simple way to compute
these values for the random permutation. One obvious pro-
gram is to use the switch statement “switch(threadIdx.x)“
with n cases. Clearly, this obvious program occupies more
space than the permutation methods using arrays of size n to
store the source or the destination. Actually, from the Kol-
mogorov complexity theory [19], the length of programs to

KASAGI et al.: OFFLINE PERMUTATION ALGORITHMS ON THE DISCRETE MEMORY MACHINE WITH PERFORMANCE EVALUATION ON THE GPU
7

compute these values for the random permutation must be
proportional to n. It follows that, there is no better way than
the program using the switch statement for most of the ran-
domly generated permutations.

7. Experimental results

This section is devoted to show the experimental results
using GeForce GTX-680 with CUDA Compute Capability
3.0 [5]. The shared memory has w = 32 memory banks with
access latency l = 1. It has two modes: 64-bit mode and 32-
bit mode. In the 64-bit mode, the word size of each of the 32
banks is 64. In the 32-bit mode, the word size is 32. We have
evaluated the performance of three permutation algorithms,
the D-designated permutation algorithm, the S-designated
permutation algorithm, and our conflict-free permutation al-
gorithm for both of the two modes. The computing time
for five permutations, the identical, the random, the trans-
pose, the shuffle, and the bit-reversal is evaluated. Further,
the in-place permutation method are evaluated for the three
permutations, the transpose, the shuffle, and the bit-reversal.
Also, to estimate the overhead of these three permutation
algorithms, we have evaluated the performance of the sim-
ple copy algorithm. Since any permutation algorithm cannot
be faster than the copy algorithm, its computing time is the
lower bound of that for all permutation algorithms. Hence,
we can see the overhead of the computation and/or the mem-
ory access performed by permutation algorithms. The per-
formance has been evaluated for arrays of size n = 1024.
We used the 64-bit mode to permute 64-bit (double) num-
bers and the 32-bit mode to permute 32-bit (float) numbers.
A CUDA kernel with a single block of 1024 threads was
invoked from the host.

Table 2 shows the execution time to permute an array
of 64-bit (double) numbers of size n = 1024. Since the ex-
ecution time of each algorithm for n = 1024 is too short
to measure, each algorithm has been executed for each per-
mutation 100 million times and we have taken its average.
The simple copy operation takes 102.8ns, which is the lower
bound of the execution time of all permutation algorithm.
Our conflict-free algorithm runs in 166.7-167.1 ns for all
permutations. We can clarify the fact that our conflict-free
algorithm runs in the same time units for any permutation.
Also, if the in-place computation is used, our conflict-free
algorithm runs in 105.4-109.0 ns. Since the in-place compu-
tation of the bit-reversal is more complicated than the others,
it takes a bit more time. However, compared with the simple
copy, the overhead of the in-place computation is less than
10% of the total execution time. Thus, if the in-place com-
putation of a required permutation is enough simple, then
we should select the in-place conflict-free permutation al-
gorithm.

The D-designated and the S-designated permutation
algorithms both for the transpose and for the bit-reversal
permutations involve the full bank-conflict, in the sense
that all memory access requests by a warp are destined
for the same memory bank. For example, the first

warp of the D-designated permutation algorithm read from
a[0], a[1], . . . , a[31] and write in b[0·32],b[1·32], . . . , b[31·
32] for the transpose permutation. Clearly, the write opera-
tions are performed to the same bank of b. We can see this
fact that the D-designated and the S-designated permutation
algorithms for the transpose and the bit-reversal permuta-
tion are 10 times slower than our conflict-free algorithm. In
the shuffle permutation, a pair of memory requests is des-
tined for the same same memory bank. For example, the first
warp of the D-designated permutation algorithm read from
a[0], a[1], . . . , a[31] and write in b[0], b[2], . . . , b[62]. Each
of 16 pairs (b[0], b[32]), (b[2], b[34]), . . . , (b[30], b[62]) are
in the same memory bank. Hence, every two memory bank
receives two write requests. Thus, the D-designated and the
S-designated permutation algorithms are bit slower than our
conflict-free permutation algorithm for the shuffle permuta-
tion.

Table 3 summarizes the the cost of memory access re-
quests for arrays a (read) / b (write) and the total costs of the
array-use and the in-place methods. For example, the cost
of the D-designated permutation algorithm for the transpose
permutation is 1/32, because reading of a has no bank con-
flict and 32 write requests to b are destined for the same
memory bank. Also, its total cost for the in-place method is
33. For the array-use method, the D-designated permutation
algorithm need to access array p and its cost is 1. Thus, the
total cost for the array-use method is 34. We can see that
more the permutation algorithm with more total costs takes
more execution time.

Table 4 shows the execution time to permute an array
of 32-bit (float) numbers of size n = 1024. Each execution
time for 32-bit (float) numbers is almost equal to the corre-
sponding execution time of 64-bit (double) numbers except
the underlined. Each underlined execution time for 32-bit
numbers is much smaller than that for 64-bit numbers. This
is because the 32-bit mode of the shared memory has some
exception of the bank conflict. If two memory requests are
destined for different 32-bit words of the same bank and
these different 32-bit words are aligned in the same 64-bit
word, they can be accessed at the same time. For example,
two 32-bit words b[0] and b[32] are in the same bank, but
they are aligned in the same 64-bit word. Thus, b[0] and
b[32] can be accessed at the same time without bank con-
flict. The reader should refer to Figure 6 for illustrating the
word alignment of the 64-bit and the 32-bit mode. Please
see Section F.5.3 in [5] for the details. From the word align-
ment of the 32-bit mode, the cost of each permutation algo-
rithm is evaluated as shown in Table 3. For example, in the
D-designated permutation algorithm of the shuffle permuta-
tion, the first warp writes in b[0], b[2], . . . , b[62]. Since each
of 16 pairs (b[0], b[32]), (b[2], b[34]), . . . , (b[30], b[62]) are
aligned in a 64-bit word, the writing operations by a warp
are conflict-free. From Tables 3 and 4, we can see that if
more requests are destined for the same bank, a permutation
takes more time.

By comparing Tables 2, 3, and 4, we can see that the
execution time is almost proportional to the total cost. More

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 2 The execution time (ns) of the three algorithms for an 64-bit (double) array of size 1024.

Algorithms (array-use) Algorithms (in-place)
Permutations D-designated S-designated Conflict-free D-designated S-designated Conflict-free Copy

Identical 135.4 124.4 167.1 - - -
Random 247.8 275.5 166.7 - - -

Transpose 1684 1696 167.1 1626 1633 105.4 102.8
Shuffle 178.4 183.4 166.9 160.0 161.3 105.4

Bit-reversal 1684 1697 166.9 1668 1677 109.0

Table 3 The cost of memory access requests for arrays a (read) / b (write) and the total cost (array-
use/in-place)

64-bit(double) 32-bit(float)
D-designated S-designated Conflict-free D-designated S-designated Conflict-free

Identical 1/1 (3) 1/1 (3) 1/1 (4) 1/1 (3) 1/1(3) 1/1(4)
Random 1/3.46 (5.46) 3.46/1 (5.46) 1/1 (4) 1/3.37 (5.37) 3.37/1(5.37) 1/1(4)

Transpose 1/32 (34/33) 32/1 (34/33) 1/1(4/2) 1/16 (18/17) 16/1 (18/17) 1/1 (4/2)
Shuffle 1/2 (4/3) 2/1 (4/3) 1/1 (4/2) 1/1 (3/2) 2/1 (4/3) 1/1 (4/2)

Bit-reversal 1/32 (34/33) 32/1 (34/33) 1/1 (4/2) 1/16 (18/17) 16/1 (18/17) 1/1(4/2)

Table 4 The execution time (ns) of the three algorithms for an 32-bit (float) array of size 1024.

Algorithms (array-use) Algorithms (in-place)
Permutations D-designated S-designated Conflict-free D-designated S-designated Conflict-free Copy

Identical 135.5 123.6 164.9 - - -
Random 245.9 265.8 164.9 - - -

Transpose 876.3 891.0 164.7 839.3 847.5 105.5 102.8
Shuffle 135.3 183.2 164.9 104.0 161.3 105.0

Bit-reversal 876.3 891.2 164.8 862.0 870.5 108.9

· · ·

0 1 2 31

32

64

96

33

65

97

34

66

98

63

95

127

64-bit mode

· · ·
0 1 2 31

32-bit mode

32 33 34 63

64 65 66 9596 97 98 127

64 bits

Fig. 6 The word alignments of the 64-bit and 32-bit modes

specifically, the total cost multiplying by 50ns is a moder-
ately good estimation of the execution time. For example,
the total cost of the D-designated permutation algorithm
(array-use) for the 64-bit transpose is 34. Hence, we can
estimate that the execution time is 1700ns, while the ex-
perimental result shows that the execution time is 1684ns.
Thus, we can say that the DMM is a good theoretical model
of GPUs.

Suppose that some new permutation is given and we
need to write a program for it. We can use the D-designated
or the S-designated permutation algorithms if the execution
time is not dominant in the whole application program. If
we want to minimize the execution time we should use the
conflict-free permutation algorithm. If the permutation is
so simple that we can write a simple program to compute
the values of s(i) and d(i) of the conflict-free permutation,

we should choose the in-place conflict-free permutation al-
gorithm. If this is the case, the execution time is almost
the same as the simple copy program. If we cannot find
such simple program, we should use graph-coloring based
conflict-free permutation algorithm using two additional ar-
rays s and d.

8. Conclusion

The main contribution of this paper is to implement several
permutation algorithms including our conflict-free permuta-
tion algorithm on the shared memory of NVIDIA GeForce
GTX-680 The experimental results for 1024 64-bit numbers
on NVIDIA GeForce GTX-680 show that the destination-
designated permutation algorithm takes 247.8 ns for the ran-
dom permutation and 1684ns for the worst permutation that
involves the maximum bank conflicts. Our conflict-free per-
mutation algorithm runs in 167ns for any permutation in-
cluding the random permutation and the worst permutation,
although it performs more memory accesses.

References

[1] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan Kauf-
mann, 2011.

[2] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of
computing euclidean distance map with efficient memory access,”
Proc. of International Conference on Networking and Computing,
pp.68–76, Dec. 2011.

[3] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” Proc. of Inter-
national Conference on Networking and Computing, pp.153–159,

KASAGI et al.: OFFLINE PERMUTATION ALGORITHMS ON THE DISCRETE MEMORY MACHINE WITH PERFORMANCE EVALUATION ON THE GPU
9

Dec. 2011.
[4] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-

gramming for the matrix chain product on the GPU,” Proc. of Inter-
national Conference on Networking and Computing, pp.320–326,
Dec. 2011.

[5] NVIDIA Corporation, “NVIDIA CUDA C programming guide ver-
sion 4.2,” 2012.

[6] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-
tions of a parallel algorithm for computing euclidean distance map in
multicore processors and GPUs,” International Journal of Network-
ing and Computing, vol.1, no.2, pp.260–276, July 2011.

[7] NVIDIA Corporation, “NVIDIA CUDA C best practice guide ver-
sion 3.1,” 2010.

[8] K. Nakano, “Simple memory machine models for GPUs,” Proc. of
International Parallel and Distributed Processing Symposium Work-
shops, pp.788–797, May 2012.

[9] A.V. Aho, J.D. Ullman, and J.E. Hopcroft, Data Structures and Al-
gorithms, Addison Wesley, 1983.

[10] M.J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol.C-21, pp.948–960, 1972.

[11] K. Nakano, “An optimal parallel prefix-sums algorithm on the mem-
ory machine models for GPUs,” Proc. of International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP,
LNCS 7439), pp.99–113, Springer, Sept. 2012.

[12] J. D. Scott Parker, “Notes on shuffle/exchange-type switching net-
works,” IEEE Trans. on Computers, vol.C-29, no.3, pp.213 – 222,
March 1980.

[13] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge
University Press, 1988.

[14] K.E. Batcher, “Sorting networks and their applications,” Proc.
AFIPS Spring Joint Comput. Conf., pp.307–314, 1968.

[15] H.S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. on Computers, vol.C-20, no.2, pp.153–161, Feb. 1971.

[16] K. Nakano, “Optimal sorting algorithms on bus-connected processor
arrays,” IEICE Trans. Fundamentals, vol.E76-A, no.11, pp.2008–
2015, Nov. 1993.

[17] R.J. Wilson, Introduction to Graph Theory, 3rd edition, Longman,
1985.

[18] J.E. Hopcroft and R.M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on Computing, vol.2,
no.4, pp.225–231, 1973.

[19] M. Li and P.M. Vitányi, An Introduction to Kolmogorov Complexity
and Its Applications, 3rd Edition, Springer, 2008.

Akihiko Kasagi received the BE from
the Department of Information Engineering, Hi-
roshima University in 2012. Currently, he is a
master student at the Department of Information
Engineering, Hiroshima University.

Koji Nakano received the BE, ME and Ph.D
degrees from Department of Computer Science,
Osaka University, Japan in 1987, 1989, and
1992 respectively. In 1992-1995, he was a Re-
search Scientist at Advanced Research Labora-

tory. Hitachi Ltd. In 1995, he joined Depart-
ment of Electrical and Computer Engineering,
Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. He has also guest-edited several special issues in-
cluding IEEE TPDS Special issue on Wireless Networks and Mobile Com-
puting, IJFCS special issue on Graph Algorithms and Applications, and
IEICE Transactions special issue on Foundations of Computer Science.
He has organized conferences and workshops including International Con-
ference on Networking and Computing, International Conference on Par-
allel and Distributed Computing, Applications and Technologies, IPDPS
Workshop on Advances in Parallel and Distributed Computational Models,
and ICPP Workshop on Wireless Networks and Mobile Computing. His
research interests includes image processing, hardware algorithms, GPU-
based computing, FPGA-based reconfigurable computing, parallel comput-
ing, algorithms and architectures.

Yasuaki Ito received B.E. degree from
Nagoya Institute of Technology (Japan), M.S.
degree from Japan Advanced Institute of Sci-
ence and Technology in 2003, and D.E. degree
from Hiroshima University (Japan), in 2010.
From 2004 to 2007 he was a Research Asso-
ciate at Hiroshima University. Since 2007, Dr.
Ito has been with the School of Engineering, at
Hiroshima University, where he is working as
an Assistant Professor. His research interests in-
clude reconfigurable architectures, parallel com-

puting, computational complexity and image processing.

